Introduction 00000000	Related Literature ooo	Model 000	Equilibrium 000000	Conclusion -	References

Introduction -0000000	Related Literature 000	Model 000	Equilibrium 000000	Conclusion o	References
Introduction					

Welfare Effects of Process Innovation
 in Two-Sided Markets:
 The Role of Compatibility Decisions

Masayoshi Maruyama and Yusuke Zennyo ${ }^{1}$
Graduate School of Business Administration, Kobe University

October, 2013

[^0]| Introduction 0,000000 | Related Literature 000 | $\begin{aligned} & \text { Model } \\ & \text { Ooo } \end{aligned}$ | Equilibrium 000000 | Conclusion o | References |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Introduction | | | | | |
| Comp | lity? | | | | |

What is the two-sided markets?
Two-sided (or, more generally, multi-sided) markets are roughly defined as markets in which one or several platforms enable interactions between end-users and try to get the two (or multiple) sides "on board" by appropriately charging each side. (Rochet and Tirole, 2006)
(e.g. shopping mall, video game, and e-book reader)

Introduction 00000000	Related Literature 000	Model	Equilibrium 000000	Conclusion。	References
Introduction					

- We extend the arguments of R\&D investment competition into the two-sided markets.
- Particularly in the markets of system goods such as video game, digital music, and e-book, 'razor-razor blade model' is a well-known business model, which involves pricing hardware devices inexpensively, usually at a normal level, insufficient to cover costs, but forcing up software prices to cover remaining costs plus provide a profit.
- It is important for these platforms to make a substantial investment in reducing hardware costs.

Introduction 00000000	Related Literature OOO	Model ooo	Equilibrium 000000	Conclusion -	References	
Introduction						
The aim of this paper \|						

- Additionally, in two-sided markets of hardware-software system, compatibility decisions as to whether to make its software compatible with the other's device are very important for platforms
- The aim of this paper is to provide a framework that accounts for R\&D investment competition in the two-sided markets, and incorporates another important feature of compatibility decisions by competing platforms.

Introduction 00000000	Related Literature 000	Model ○○○	Equilibrium 000000	Conclusion -	References

Our assertion and contribution

- We argue that process innovation (the increased efficiency of cost-reducing investment) of hardware device can hurt the social surplus in two-sided markets.
- Contrary to the previous literature, the unique contribution of this paper lies in examining the welfare effects of process innovation in the model of two-sided markets which endogenizes the determination of compatibility structure among platforms.
- To the best our knowledge, this is the first paper which explores the possibility of welfare-reducing process innovation in two-side markets mediated by strategic compatibility decisions of platforms.

Introduction 00000000	Related Literature 000	Model 000	Equilibrium 000000	Conclusion -	References
Introduction					
Main Results and Intuition					

When the efficiency of investment is low,

- Consider the parameter space in which equilibrium market structure becomes (IC, C)

Introduction 00000000	Related Literature 000	Model ○○○	Equilibrium 000000	Conclusion -	References
Introduction					

When the efficiency of investment is high,

process innovation helps platform 1 to monopolize the hardware market

Introduction 00000000	Related Literature ooo	$\begin{aligned} & \text { Model } \\ & \text { Ooool } \end{aligned}$	Equilibrium 000000	Conclusion -	References
Introduction					

Main Results and Intuition

Platform 2 has an incentive to choose incompatibility.

Introduction 00000000	Related Literature $\bullet \circ$	Model	Equilibrium 000000	Conclusion -	References
Review					
R\&D investment with licensing					

- The technology licensing literatures show licensing may reduce welfare.
- induces competitors to exit the market (Kabiraj and Marjit, 1992; Lin, 1996),
- facilitates collusion (Fauli-Oller and Sandonis, 2002),
changes R\&D organization (Mukherjee, 2005),
- induces excessive entry (Mukherjee and Mukherjee, 2008).
- These papers don't consider how the increased efficiency of R\&D investment affects social welfare.
- Chang et al. (2013) focus this point, and finds that the availability of licensing leads to lower social surplus, if the "efficiency of R\&D investment" is high.

Introduction 0000000	Related Literature 000	Model 000	Equilibrium 000000	Conclusion o	References

Main Results and Intuition

1. Process innovation may change the compatibility decisions of platforms.
2. The change of platforms' strategy about compatibility leads the different equilibrium market structure.
3. Different market structure may reduce the social welfare.

Introduction 00000000	Related Literature $0 \bullet 0$	Model 000	Equilibrium 000000	Conclusion。	References
Review					

Focusing on the argument comparing the incentive for R\&D investment under different market structures in two-sided markets, there are two strands in the recent literature

- Open-source or Proprietary Platform
- Casadesus-Masanell and Llanes (2013)
- Net-Neutrality Platform
- Musacchio et al. (2009)
- Choi and Kim (2010)
- Economides and Hermalin (2012)

aton	Reples luatue	Uosal	Eandiom	Comensuon	Refenenes
Revem					
Comp					

The literature on compatibility in two-sided markets.

- Doganoglu and Wright (2006)
- Casadesus-Masanell and Ruiz-Aliseda (2008)
- Miao (2009)
- Viecens (2011)
- Maruyama and Zennyo (2013)

However, these papers do not treat the R\&D investment by platforms.

Introduction 00000000	$\underbrace{}_{\substack{\text { Related Literature } \\ \text { ooo }}}$	Model	Equilibrium	Conclusion	References
Model					
Platfo					

- Each platform chooses whether to make its content compatible with the other' s hardware device.
(Compatibility decisions)
- Each platform charges a royalty rate $r(0 \leq r \leq 1)$ for each unit of content sold at its marketplace.
- Suppose that marginal cost of hardware device is \boldsymbol{c}. Each platform decide the level of cost-reducing investment, $\boldsymbol{y}_{i}\left(\boldsymbol{y}_{i}<\boldsymbol{c}\right)$. Each platform inccurs $\boldsymbol{k y} \boldsymbol{y}_{i}^{2}$ from this investment. The parameter \boldsymbol{k} expresses the efficiency of innovation

Introduction 00000000	Related Literature 000	Model $\bullet 0$	Equilibrium 000000	Conclusion -	References
Model					

Platforms

- There are two platforms, $\boldsymbol{i}=\mathbf{1 , 2}$, who sell hardware device \boldsymbol{i} at price $\boldsymbol{p}_{\boldsymbol{i}}$.

Each platform operates its marketplace \boldsymbol{i} that distributes content for its own hardware device.

- There are two kinds of content, $\boldsymbol{i}=\mathbf{1 , 2}$, and content \boldsymbol{i} is exclusively supplied to marketplace i at price ρ_{i}. Each unit of content provides an equal benefit for any consumer, and that the price of a unit of content is the same for any content, $\rho_{i}=\rho(i=1,2)$.

- The profit function of platform is
$\Pi_{i}=\left(p_{i}-c+y_{i}\right) D_{i}+r \rho D_{i}+\delta_{i} r \rho D_{j}-k y_{i}^{2}, \quad i=1,2, j \neq i$.
where $\boldsymbol{D}_{\boldsymbol{i}}$ denotes the demand of hardware device \boldsymbol{i} and δ_{i} is following function. $\delta_{i}= \begin{cases}0 & \text { if platform } i \text { chooses incompatibility } . \\ 1 & \text { if platform } i \text { chooses compatibility } .\end{cases}$

Introduction 00000000	Related Literature 000	Model ∞	Equilibrium 000000	Conclusion -	References

Consumers I

Introduction 00000000	Related Literature ○○○	Model $0 \bullet 0$	Equilibrium 000000	Conclusion。	References

- Use a Hotelling model of product differentiation.
- Hardware 1 located at 0, and hardware 2 at 1.
- Ideal points of consumers are distributed uniformly on the unit interval with a unit density.
- Each consumer incurs a constant proportional disutility t per unit length.
- The benefit derived from consumption of the hardware device is \boldsymbol{v}. $(\boldsymbol{v}=\mathbf{0})$
- Denote by \boldsymbol{B} the utility that any consumer derives from a unit of content, which is assumed to be the same for any content and for any consumer, and satisfies the condition $\boldsymbol{B}>\boldsymbol{\rho}$.

Introduction 00000000	Related Literature ○○○	Model ○○•	Equilibrium 000000	Conclusion 。	References
Model					
Timing of game					

Consider the following three-stage game.

1. Each platform chooses between compatibility and incompatibility. (C or IC)
2. Each platform decides the level of investment. ($\boldsymbol{y}_{\boldsymbol{i}}$)
3. Each platform sets the price of hardware device $\left(\boldsymbol{p}_{\boldsymbol{i}}\right)$

Consumers II

- The utility function of a customer who is located at \boldsymbol{x} buys a hardware device i, and uses its available contents is written as

$$
u_{i}=N_{i}(B-\rho)-p_{i}-t\left|x-x_{i}\right|,
$$

where denotes N_{i} the variety of contents on hardware device \boldsymbol{i} and $\boldsymbol{x}_{\boldsymbol{i}}$ the location of hardware device \boldsymbol{i}

- We will use the notation, $\boldsymbol{b}=\boldsymbol{B}-\boldsymbol{\rho}$.

Intodution		Model	${ }_{\text {Egatiorium }}^{\text {acooum }}$	Conolusion	encos
Anaysis					
Incompatible platforms I					

The utility function of a customer who is located at \boldsymbol{x} can be written as

$$
u_{i}=b-p_{i}-t\left|x-x_{i}\right|, \quad(i=\mathbf{1 , 2}) .
$$

The proportion of consumers who buy hardware 1:

$$
u_{1}=u_{2} \Rightarrow \hat{x}=\frac{t-p_{1}+p_{2}}{2 t}
$$

Hence, the demand for hardware device \boldsymbol{i} is

$$
D_{i}=\frac{t-p_{i}+p_{j}}{2 t}(i=1,2, j \neq i) .
$$

Incompatible platforms II

Platform \boldsymbol{i} maximizes its profit

$$
\begin{aligned}
\Pi_{i} & =\left(p_{i}-c+y_{i}\right) D_{i}+r \rho D_{i}-k y_{i}^{2} \\
& =\left(p_{i}-c+y_{i}+r \rho\right) \cdot \frac{t-p_{i}+p_{j}}{2 t}-k y_{i}^{2}
\end{aligned}
$$

with respect to its hardware price $\boldsymbol{p}_{\boldsymbol{i}}$.
Taking the first-order conditions with respect to price and solving, we have the prices as follows:

$$
p_{i}\left(y_{1}, y_{2}\right)=t+c-r \rho-\frac{2 y_{i}+y_{j}}{3}
$$

Incompatible platforms III

Substitute this price in the profit function.

$$
\Pi_{i}=\frac{\left(3 t+y_{i}-y_{j}\right)^{2}}{18 t}-k y_{i}^{2}
$$

Next, we consider the decisions at stage 2.
Taking the first-order conditions with respect to investment and solving, we have the investments as follows:

$$
y_{i}(\mathrm{IC}, \mathrm{IC})=\frac{1}{6 k}
$$

where, we assume for second-order condition with respect to investment that 18kt-1>0 holds.

Introduction 00000000	Related Literature 000	Model	Equilibrium	Conclusion	References
Analysis					
Incompatible platforms V					

Consumer surplus is

$$
\begin{aligned}
C S(\mathrm{IC}, \mathrm{IC}) & =\int_{0}^{D_{1}(\mathrm{IC}, \mathrm{IC})} u_{1}(x) d x+\int_{D_{1}(\mathrm{IC}, \mathrm{IC})}^{1} u_{2}(x) d x \\
& =\frac{1}{6 k}+b-\frac{5}{4} t-c+r . \rho
\end{aligned}
$$

Social surplus is

$$
\begin{aligned}
S S(\mathrm{IC}, \mathrm{IC}) & =C S(\mathbf{I C}, \mathbf{I C})+\sum_{i} \pi_{i}(\mathrm{IC}, \mathrm{IC})+\sum_{i} \Pi_{i}(\mathrm{IC}, \mathrm{IC}) \\
& =\frac{1}{9 k}+b-\frac{t}{4}-c+\rho
\end{aligned}
$$

Incompatible-compatible platforms with tipping III

Proof

The demand and profit function of platform 1 can be written as

$$
\begin{gathered}
D_{1}= \begin{cases}1 & \text { if } p_{1} \leq b-t+p_{2} \\
\frac{b+t-p_{1}+p_{2}}{2 t} & \text { if } b-t+p_{2} \leq p_{1} \leq b+t+p_{2} \\
0 & \text { if } b+t+p_{2} \leq p_{1}\end{cases} \\
\Pi_{1}= \begin{cases}\left(p_{1}-c+y_{1}+r \rho\right) \cdot 1-k y_{1}^{2} & \text { if } p_{1} \leq b-t+p_{2} \\
\left(p_{1}-c+y_{1}+r \rho\right) \cdot \frac{b+t-p_{1}+p_{2}}{2 t}-k y_{1}^{2} & \text { if } b-t+p_{2} \leq p_{1} \leq b \\
-k y_{1}^{2} & \text { if } b+t+p_{2} \leq p_{1}\end{cases}
\end{gathered}
$$

Incompatible-compatible platforms with tipping IV

The platform 1 chooses the price that leads to the tipping by its own ($\boldsymbol{D}_{\mathbf{1}}=\mathbf{1}$) when the profit function can be drawn as below.

	$\underbrace{}_{\substack{\text { Related Llerature } \\ \text { Ooo }}}$	$\underset{\substack{\text { Model } \\ \text { Oool }}}{ }$	Egulibrum	${ }_{\bigcirc}^{\text {Conolusion }}$	flerenes
Anaysis					
Incompatible-compatible platforms with tipping VI					

The demand and profit function of platform 2 can be written as

$$
\begin{gathered}
D_{2}= \begin{cases}1 & \text { if } p_{2} \leq-b-t+p_{1} \\
\frac{t-b+p_{1}-p_{2}}{2 t} & \text { if }-b-t+p_{1} \leq p_{2} \leq-b+t+p_{1} \\
0 & \text { if }-b+t+p_{1} \leq p_{2}\end{cases} \\
\Pi_{2}= \begin{cases}\left(p_{2}-c+y_{2}\right) \cdot 1+r \rho-k y_{2}^{2} & p_{2} \leq-b-t+p_{1} \\
\left(p_{2}-c+y_{2}\right) \cdot \frac{t-b+p_{1}-p_{2}}{2 t}+r \rho-k y_{2}^{2} & -b-t+p_{1} \leq p_{2} \leq-b \\
+r \rho-k y_{2}^{2} & -b+t+p_{1} \leq p_{2}\end{cases}
\end{gathered}
$$

mimadition	Remaed urawe	Mosar	Eanmemm	Concsion	
wsis					
Incompatible-compatible					

The platform 2 accepts the price that leads to tipping by rival platform ($\boldsymbol{D}_{\mathbf{1}}=\mathbf{1}$) when the profit function of platform 2 is shown as below.

Intodiction	$\underbrace{}_{\substack{\text { Realaed Lierature } \\ \text { Oood }}}$	Model	$\underset{\substack{\text { Eaguibrium } \\ \text { Oomocom }}}{\text { and }}$	${ }_{\text {Conalusion }}$	arencos
Anaysis					
Incompatible-compatible platforms with tipping IX					

can immediately get the following investment level of platform 2.

$$
y_{2}(\mathbf{I C}, \mathbf{C})^{T}=0
$$

From this investment level, we can rewrite the condition (2) as $\boldsymbol{p}_{1} \leq \boldsymbol{t} \boldsymbol{t}+\boldsymbol{b}+\boldsymbol{c}$.

Introduction 00000000	Related Literature ○○○	Model 000	Equilibrium 000 000	Conclusion。	References

Incompatible-compatible platforms with tipping VIII

The condition that being tipped is a best-response strategy for platform 2 is given by:

$$
\begin{align*}
\lim _{p_{2} \rightarrow\left(-b+t+p_{1}\right)-0} \frac{\partial \Pi_{2}}{\partial p_{2}} & =-\frac{-b+t+p_{1}-c+y_{2}}{2 t} \geq 0 \\
\Longleftrightarrow y_{2} & \leq b-t+c-p_{1} \tag{2}
\end{align*}
$$

Then the best response function of platform 2 can be written as

$$
B R_{2}\left(p_{1}\right)=\left\{p_{2} \mid p_{2} \geq-b+t+p_{1}\right\} .
$$

Here, when there exists an equilibrium with tipping, the profit of platform 2 can be written as $\boldsymbol{\Pi}_{2}=\boldsymbol{r} \boldsymbol{\rho}-\boldsymbol{k y _ { 2 } ^ { 2 }}$. Therefore, we

	Rellated Lierature	Model		${ }_{0}$ Concusion	encos
Anaysis					
Incompatible-compatible platforms with tipping X					

- We have the line $\boldsymbol{p}_{2}=-\boldsymbol{b}+\boldsymbol{t}+\boldsymbol{p}_{1}\left(\boldsymbol{p}_{1} \leq \boldsymbol{b}-\boldsymbol{t}+\boldsymbol{c}\right)$ as the set of common point of both platforms' best response functions. So we cannot derive the unique equilibrium.

		Model ○○○	Equilibrium 000000	Conclusion Co	References
00000000	ooo	०००	000000	\circ	

Incompatible-compatible platforms with tipping XI

Introduction 00000000	Related Literature ○○○	Model ooo	Equilibrium 000 000	Conclusion。	References

- Using the trembling hand perfect equilibrium as equilibrium concept, we have the following unique equilibrium.

$$
p_{1}=b-t+c, p_{2}=c
$$

- The profit of platform 1 can be written as
$\Pi_{1}=b-t+y_{1}+r \rho-k y_{i}^{2}$.
- Taking the first-order conditions and solve for the investment level, we can derive the following investment level.

$$
\frac{\partial \Pi}{\partial y_{1}}=1-2 b y_{1}=0 \Longleftrightarrow y_{1}(\mathrm{IC}, \mathrm{C})^{T}=\frac{1}{2 k}
$$

	$\underbrace{\text { Ool }}_{\substack{\text { Relatod Llerature }}}$	Moodel		${ }_{\text {Condusion }}$	Reterences
Anaysis					
Comparative statics					

Compare the social surplus among the different market structures.
Proposition 4
If the efficiency of investment is low enough to satisfy the condition $\boldsymbol{k}>\hat{\boldsymbol{k}}$ and the degree of hardware differentiation and the benefit from a unit of content are large enough to satisfy the conditions $t>(b+r \rho) / 3$ and $b>3 r \rho$, then the equilibrium social surpluses are ordered as follows:

$$
S S(\mathrm{IC}, \mathrm{IC})<S S(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}=S S(\mathrm{C}, \mathrm{IC})^{\mathrm{NT}} .
$$

Incompatible-compatible platforms with tipping XII

Using this, we can get the equilibrium prices. But, it needs that
$\boldsymbol{p}_{\mathbf{1}}(\mathrm{IC}, \mathrm{C})^{T}, \boldsymbol{p}_{2}(\mathrm{IC}, \mathrm{C})^{T}, \boldsymbol{y}_{\mathbf{1}}(\mathrm{IC}, \mathrm{C})^{T}, \boldsymbol{y}_{2}(\mathrm{IC}, \mathrm{C})^{T}$ satisfy the equation (1) and (2).

- The condition for the existence of this corner solution: $k<1 /(2(3 t-b-r \rho)) \equiv \bar{k}, t>(b+r \rho) / 3$.

	$\substack{\text { Rolatad Llierature } \\ \text { ooc }}$	Model		${ }_{\text {Condusion }}$	Reterencos
Anaysis					
Subgame-perfect equilibrium I					

Proposition 7

If both the degree of hardware differentiation and the benefit of content are at the intermediate levels that satisfy the conditions $\frac{b+r \rho}{3}<t<\frac{b+r \rho}{2}$ and $2 r \rho<b<5 r \rho$, then for all $\boldsymbol{k}>\hat{\boldsymbol{k}}$, the equilibrium market structures are the asymmetric ones without tipping, $(\mathbf{I C}, \mathbf{C})^{\mathrm{NT}}$ and $(\mathbf{C}, \mathbf{I C})^{\mathrm{NT}}$.

Introduction 00000000	Related Literature ○○○	Model 000	Equilibrium 00000 -	Conclusion。	References
Analysis					

Subgame-perfect equilibrium II

Intuition

- Suppose that the rival chooses incompatibility and the degree of hardware differentiation is not very large. Then, choosing incompatibility leads to a price competition in hardware devices, which reduces the profit from selling hardware devices.
- If the rival chooses compatibility, then by choosing incompatibility the platform gains the advantage of available content and gets more profit from selling hardware devices.

Introduction 00000000	Related Literature ○○○	$\begin{aligned} & \text { Model } \\ & \text { ooo } \end{aligned}$	Equilibrium 00000 •	Conclusion。	References

Subgame-perfect equilibrium III

Proposition 8

If both the degree of hardware differentiation and the benefit from content are large enough to satisfy the conditions $t>(b+r \rho) / \mathbf{3}$ and $b>r \rho$, then the equilibrium market structure is given by

$$
\begin{cases}(\text { IC, IC }) & \text { if } \quad t>2 r \rho \text { and } \tilde{k}<k<\bar{k}, \\ (\text { IC, C })^{\mathrm{T}} \text { or }(\mathbf{C}, \mathrm{IC})^{\mathrm{T}} & \text { if } \quad(t<2 r \rho \text { and } 1 /(18 t)<k<\bar{k}) \text { or } \\ & (t>2 r \rho \text { and } 1 /(18 t)<k<\min \{\tilde{k}, \bar{k}\}) .\end{cases}
$$

Introduction 00000000	Related Literature 000	Model 000	Equilibrium 00000 •	Conclusion -	References
Analysis					

Subgame-perfect equilibrium \mathbf{V}

When both of Proposition 7 and 8 holds, that is, $(b+r \rho) / 3<t<(b+r \rho) / 2, b / 5<r \rho<b / 2$, we can show the partition of equilibrium market structure.

Corollary 1
Suppose that $(b+r \rho) / \mathbf{3}<t<(b+r \rho) / 2$. When the royalty revenue from a unit of content is large enough to satisfy the condition $\mathbf{2 b} / 7<r \rho<\boldsymbol{b} / \mathbf{2}$, we can derive the partition of equilibrium market structure in the parameter space as shown in Figure 1. The equilibrium market structure is $(\mathbf{I C}, \mathbf{C})^{\mathrm{NT}},(\mathbf{C}, \mathbf{I C})^{\mathrm{NT}}$ in the range framed in by the yellow line and $(\mathbf{I C}, \mathbf{C})^{\mathbf{T}},(\mathbf{C}, \mathbf{I C})^{\mathbf{T}}$ in the range framed in by the blue line.

Introduction 00000000	Related Literature 000	Model ooo	Equilibrium 00000	Conclusion	References

Subgame-perfect equilibrium VI

Figure 1: $\frac{2}{7} b<r \rho<\frac{b}{2}$
Yellow: $(\mathbf{I C}, \mathbf{C})^{N T},(\mathbf{C}, \mathbf{I C})^{N T} \quad$ Blue: $(\mathbf{I C}, \mathbf{C})^{T},(\mathbf{C}, \mathbf{I C})^{T}$

Introduction 00000000	Related Literature 000	Model 000	Equilibrium $00000 \bullet$	Conclusion 。	References
Analysis					
Subgame-perfect equilibrium VIII					

Figure 2: $\frac{b}{5}<r \rho<\frac{5}{19} b$

Figure 3: $\frac{5}{19} \boldsymbol{b}<\boldsymbol{r} \rho<\frac{2}{7} \boldsymbol{b}$ Yellow: $(\mathbf{I C}, \mathbf{C})^{N T},(\mathbf{C}, \mathbf{I C})^{N T}$ Blue: $(\mathbf{I C}, \mathbf{C})^{T},(\mathbf{C}, \mathbf{I C})^{T}$ Red: (IC, IC)

Introduction 00000000	Related Literature ○○○	Model 000	Equilibrium 00000	Conclusion。	References

Subgame-perfect equilibrium VII

Corollary 2

Suppose that $(b+r \rho) / \mathbf{3}<t<(b+r \rho) / 2$. When the royalty revenue from a unit of content is small enough to satisfy the condition $b / 5<r \rho<2 b / 7$, we can derive the partition of equilibrium market structure in the parameter space as shown in Figures 2 and 3. The equilibrium market structure is $(\mathbf{I C}, \mathbf{C})^{\mathrm{NT}},(\mathbf{C}, \mathbf{I C})^{\mathrm{NT}}$ in the range framed in by the yellow line, $(\mathbf{I C}, \mathbf{C})^{\mathbf{T}},(\mathbf{C}, \mathbf{I C})^{\mathbf{T}}$ in the range framed in by the blue line, and (IC,IC) in the range framed in by the red line.

Intodiction	Relled Literatue				cos
Intodicution	${ }^{\text {Realaed Llieraure }}$	Mocel		Concuson	Referenes
Conclusion I					

- In the range by the flamed by the red line, (IC,IC) becomes the equilibrium.
- (IC,IC) has the smallest social welfare in four market structures.
- The process innovation has a positive direct effect on social welfare.
- But, it also lead to an equilibrium with inefficient market structure, (IC, IC) by affecting the compatibility decisions.

- If the positive direct effect exceeds, the process innovation increases welfare.
- If the negative indirect effect exceeds, the process innovation reduces welfare

manaction	Rephad luatue	Hosed	Eanimim	comasteon	Refemenes
References I					

Casadesus-Masanell, R. and F. Ruiz-Aliseda, "Platiorm competition, compatibility, and social efficiency," NET Institute Working Paper, 2008, pp. 08-32.
Casadesus-Masanell, Ramon and Gaston Llanes, "Investment incentives in proprietary and open-source two-sided platiorms," Harvard Business School Strategy Unit Working Paper, 2013, (12-114).
Chang, Ray-Yun, Hong Hwang, and Cheng-Hau Peng, "Technology licensing, R\&D and welfare," Economics Letters, 2013, 118, 396-399.
446-471. B.C. Kim, Net neutrality and investment incentives,' The RAND Journal of Economics, 2010,41 (3),
Doganoglu, T. and J. Wright, "Multihoming and compatibility," International Journal of Industrial Organization, 2006, 24 (1), 45-67.

Economides, Nicholas and Benjamin E Hermalin, "The economics of network neutrality", The RAND Journal of Economics, 2012, 43 (4), 602-629
Fauli-Oller, Ramon and Joel Sandonis, "Welfare reducing licensing," Games and Economic Behavior, 2002, 41 (2), 192-205.
Kabirai, Tarun and Sugata Mariit, "Technology and price in a non-cooperative framework," International Review of Economics \& Finance, 1992, 1 (4), 371-378.
Lin, Ping, "Fixed-fee licensing of innovations and collusion," The Journal of Industrial Economics, 1996, pp. 443-449. Maruyama, Masayoshi and Yusuke Zennyo, "Compatibility and the product life cycle in two-sided markets," Review of Network Economics, 2013, 12 (2), 131-155
Miao, C.H., "Limiting compatibility in two-sided markets," Review of Network Economics, 2009, 8 (4) 346-364
Mukherjee, Arijit, "Innovation, licensing and welfare," The Manchester School, 2005, 73(1), 29-39.

Introduction 00000000	Related Literature 000	Model 000	Equilibrium 000000	Conclusion	References

Conclusion II

- While process innovation directly confers socially benefits, we have shown that it might nevertheless reduce social welfare by inducing change of market structure.
- Indeed, attaining a first-best might actually require taxing investment, to prevent the platforms from choosing inefficient market structures.

Introduction 00000000	Related Literature ○○○	Model 000	Equilibrium 000000	Conclusion -	References

[^1] Viecens, M.F., "Compatibility with firm dominance," Review of Network Economics, 2011, 10 (4), 1-25

Table 1: Equilibrium investment, price, demands, profits of platform, profit of content provider, consumer surplus, and social surplus.

	(IC, IC)	(C, C)	$(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}$	$(\mathrm{IC}, \mathrm{C})^{T}$
y_{1}	$\frac{1}{6 k}$	$\frac{1}{6 k}$	$\frac{3 k(3 t+b+r \rho)-1}{6 k(9 k t-1)}$	$\frac{1}{2 k}$
y_{2}	$\frac{1}{6 k}$	$\frac{1}{6 k}$	$\frac{3 k(3 t-b-r \rho)-1}{6 k(9 k t-1)}$	0
p_{1}	$t+c-r \rho-\frac{1}{6 k}$	$t+c-\frac{1}{6 k}$	$t+c+\frac{b}{3}-\frac{2}{3} r \rho-\frac{1}{6 k}-\frac{b+r \rho}{6 k(9 k t-1)}$	$c-t+b$
p_{2}	$t+c-r \rho-\frac{1}{6 k}$	$t+c-\frac{1}{6 k}$	$t+c-\frac{b}{3}-\frac{1}{3} r \rho-\frac{1}{6 k}+\frac{b+r \rho}{6 k(9 k t-1)}$	c
D_{1}	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}+\frac{3 k(b+r \rho)}{2(9 k t-1)}$	1
D_{2}	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}-\frac{3 k(b+r \rho)}{2(9 k t-1)}$	0
Π_{1}	$\frac{t}{2}-\frac{1}{36 k}$	$\frac{t}{2}+r \rho-\frac{1}{36 k}$	$\left(\frac{t}{2}-\frac{1}{36 k}\right)\left(\frac{3 k(3 t+b+r \rho)-1}{9 k t-1}\right)^{2}$	$\frac{1}{4 k}-t+b+r \rho$
Π_{2}	$\frac{t}{2}-\frac{1}{36 k}$	$\frac{t}{2}+r \rho-\frac{1}{36 k}$	$\left(\frac{t}{2}-\frac{1}{36 k}\right)\left(\frac{3 k(3 t-b-r \rho)-1}{9 k t-1}\right)^{2}+r \rho$	$r \rho$
π_{1}	$\frac{(1-r) \rho}{2}$	$(1-r) \rho$	$(1-r) \rho \cdot D_{1}(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}$	$(1-r) \rho$
π_{2}	$\frac{(1-r) \rho}{2}$	$(1-r) \rho$	$(1-r) \rho$	$(1-r) \rho$
$C S$	$\frac{1}{6 k}+b-\frac{5}{4} t-c+r \rho$	$\frac{1}{6 k}+2 b-\frac{5}{4} t-c$	$\int_{0}^{D_{1}(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}} u_{1}(x) d x+\int_{D_{1}(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}}^{1} u_{2}(x) d x$	$b+\frac{t}{2}-c$
$S S$	$\frac{1}{9 k}+b-\frac{t}{4}-c+\rho$	$\frac{1}{9 k}+2 b-\frac{t}{4}-c+2 \rho$	$C S(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}+\sum_{i} \pi_{i}(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}+\sum_{i} \Pi_{i}(\mathrm{IC}, \mathrm{C})^{\mathrm{NT}}$	$\frac{1}{4 k}-\frac{t}{2}+2(b+\rho)-c$

[^0]: ${ }^{1}$ E-mail: xyzennyo@gmail.com

[^1]: - and Son Me Manchester School, 2008, 76 (6) 675-689.
 Musacchio, J., G. Schwartz, and J. Walrand, "A two-sided market analysis of provider investment incentives with a
 application to the net-neutrality issue," Review of Network Economics, 2009, $8(1)$, 22-39.
 Rochet, J.C. and J. Tirole, "Two-sided markets: a progress report," RAND Journal of Economics, 2006, 37 (3), 645-667

