Airlines-within-airlines strategies and entry of Low-cost carriers

Ming Hsin LIN
Faculty of Economics,
Osaka University of Economics
After airline deregulation, low cost carriers (LCCs) entered the markets, e.g., Southwest, American West, Frontier, Jetblue... One interesting aspect: LCCs entered in non-hub city-pairs ("rim" routes).
Entry on hub city-pairs (spoke route)

Entry on non-hub city-pairs (rim route)
Entry routes by **Southwest**

By Bamberger and Carlton 2006

Total ## of entry on Hub City-pairs: 52 only

Total number of entry on Non-hub city-pairs: 495
Entry routes by other LCCs
By Bamberger and Carlton 2006

Total ## of entry on Hub City-pairs : 374

Total number of entry on Non-hub city-pairs : 906
1. Intro. A-in-a strategies

- Hub-spoke carriers establishing “low cost, no frills” divisions to meet LCCs those entered their rim routes.

[airlines-within-airlines strategy]

in U.S.: major carriers failed on Aina.

in Europe and Asia Pacific: carriers are now adopting the A-in-a stra.
1. Intro. Examples in US

<table>
<thead>
<tr>
<th>Major carriers</th>
<th>Delta</th>
<th>United</th>
<th>Continental</th>
<th>Delta</th>
<th>US Airways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-cost, nonstop division</td>
<td>Song</td>
<td>Ted</td>
<td>CALite</td>
<td>Delta Express</td>
<td>Metrojet</td>
</tr>
<tr>
<td>LCC rivals</td>
<td>JetBlue</td>
<td>Frontier, America West</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Intro. in EU/Asia Pacific

<table>
<thead>
<tr>
<th>Major carriers</th>
<th>British Airways</th>
<th>Qantas</th>
<th>Iberia Airline</th>
<th>Thai Airways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-cost, nonstop division</td>
<td>OpenSkies</td>
<td>Jetstar</td>
<td>Jetstar</td>
<td>Clickair</td>
</tr>
<tr>
<td></td>
<td>NY-Amst.</td>
<td></td>
<td></td>
<td>Bangkok-Singapore</td>
</tr>
<tr>
<td>LCC rivals</td>
<td></td>
<td></td>
<td>Vueling Airlines</td>
<td>Value Air, Tiger Air</td>
</tr>
</tbody>
</table>
Many examples in Dunn (2008) & new examples in this paper!!
1. Intro. Carriers’ concerns

interesting trade-off:

Merit: has cost advan.to comp.with LCCs.

Demerit: cannibalizes network carries’ pi

- Is the A-in-a stra profitable for major carriers?
1. Intro. Anti-comp. concerns

- Two complaints to DOT.
 Valujet complained US airways:
 Air south Continental:

- DOT suggests the A-in-a stra. are difficult to explain as non-predatory.
1. Intro. Previous studies

- Morrell (2005) JATM: cost comparison analysis
- Dunn (2008) IJIO: empirical study

No existing study addresses the issue of A-in-a stra and LCCs’ entry theoretically.
1. Intro. Dunn’s main results

A hub-spoke network carrier

Network carriers’ own one-stop service (or their rivals’) is low quality

Less likely to enter/adopt

More likely to enter/adopt
1. Intro. Dunn’s main results

A hub-spoke network carrier

Hub-spoke network carriers

Less likely to enter/adopt

if non-stop rival exists

More likely to adopt
1. Intro. Paper’s purpose

Theoretically investigate profitability of Aina stra., relevant impacts on LCCs.

Focus and features:

- entry of LCCs
- adoption of A-in-a stra:
 - establish a low cost nonstop division
- flight frequency com.
Network for Case-e: nonstop LCCs rival entered

- Operating costs per flight: K1

- Nonstop LCC rival entered

- LCC rival’s operating costs per flight: K2
Network for Case-aI offering q_{AB}^1

Case-aII withdrawing q_{AB}^1

Operating costs per flight: $K3$
2. Model. Utility function

- w: will to pay, uniformly distributed $[-\infty, W]$
- Symmetric AH, BH spoke markets
 \[u_j = w + (f_j^1)^{1/2} - p_j^1, j = AH, BH \]
- Connecting AB market (hub-through extra cost: T)
 \[u_{AB} = \begin{cases}
 u_{AB}^{\text{nonstop}} & \text{if using Airline i's nonstop service, } i = 2,3 \\
 u_{AB}^{\text{onestop}} & \text{if using Airline 1's onestop service}
 \end{cases} \]
 \[u_{AB}^{\text{nonstop}} = w + (f_{AB}^i)^{1/2} - p_{AB}^i \]
 \[u_{AB}^{\text{onestop}} = w + (f_j^1)^{1/2} - p_{AB}^1 - T \]
2. Model. Demand functions

Case-e: without q^3_{AB}, P^3_{AB}

Case-aI:

\[
\begin{align*}
P_j^1 &= W + (f_j^i)^{1/2} - q_j^1, \ j = AH, BH \\
P_{AB}^1 &= W + (f_{AB}^i)^{1/2} - (q_{AB}^1 + q_{AB}^2 + q_{AB}^3) - T \\
P_{AB}^2 &= W + (f_{AB}^2)^{1/2} - (q_{AB}^1 + q_{AB}^2 + q_{AB}^3) \\
P_{AB}^3 &= W + (f_{AB}^3)^{1/2} - (q_{AB}^1 + q_{AB}^2 + q_{AB}^3)
\end{align*}
\]

Case-aII: without q^1_{AB}, P^1_{AB}
2. Model. Cost differential

Following Brueckner & Zhang 2001, Kawasaki 2008

Air.i’s oper. costs/per direct flight: \(K_{i,i} = 1, 2, 3 \)

- \(K_i = \text{fixed cost} + \text{constant marginal cost} (\equiv 0) \)
- \(K_1 \geq K_2 \equiv 1, \ K_3 \text{ larger/smaller than k2.} \)
- Entry/establishment costs are ignored.
2. Model. Profits functions

Case aI:

\[\Pi_1 = p_{AH}^1 q_{AH}^1 + p_{BH}^1 q_{BH}^1 + p_{AB}^1 q_{AB}^1 - (f_{AH}^1 + f_{BH}^1)K_1 + [p_{AB}^3 q_{AB}^3 - f_{AB}^3 K_3] \]

\[\pi_2 = p_{AB}^2 q_{AB}^2 - f_{AB}^2 K_2 \]

3. Outcomes for three cases

See Table A.1, A.2 in Appendix
4. Adoption of A-in-a stra.

Lemma 1. benchmark case: $K_2 = K_3$

$\Pi_{1\text{all}} \geq \Pi_{1\text{al}}$ if $T \geq T_L^{a} \equiv \left[\frac{2(3 - 2K_1)}{5(4K_1 - 1)} \right] W$

A-in-a strategy with Sce. II (withdraw the one-stop service) is preferable, except costs (T, K_1) is small.
4. Intuition for lemma 1

Network for Case-aI

Network for Case-aII

Merit: enjoy Network Freq. Eff. by joint-production
Demerit: cannibalization effect

Merit: without cannibalization effect

(T,K1) small: Air.1 remains one-stop to enjoy NFE.
(T,K1) large: then give up NFE, derives larger profits by Air.3 with lower cost K3.
Prop. 1: A-in- aI always $\downarrow \Pi 1$, $\uparrow \pi2$. This holds, even though $K3<<K2=1$
4. Intuition for Prop. 1

Network for Case-e

Network for Case-aI

Merit: enjoy network freq. eff. by joint-production
Demerit: cannibalization effect

establishing 3 cannibalizes 1's demand of one-stop service
→ 1 has to ↓ spokes' f1s. → f1s, q1s, ↓ Π1^{HS} ↓ > π3 ↑ ⇒ Π1 ↓
[q1ABe] > [q1ABaI + q3ABaI] ⇔ [q2ABe] < [q2ABaI] ⇒ π2 ↑
4. Effects for A-in-aI
Comparative-static analysis of K3

Corollary 1 to Prop. 1:
1. \(\frac{d\Pi_1}{dK_3} < 0, \frac{d\pi_2}{dK_3} > 0 \). ← transparent
2. \(\frac{d\Pi_1^{HS}}{dK_3} < 0, \frac{d\pi_3}{dK_3} > 0 \). ← unusual

\(K_3 \downarrow \rightarrow 3 \uparrow f3AB \rightarrow \text{bring new demand into the market!} \)

However this created demand is absorbed by 1

i.e., \([f1s \uparrow \text{spokes} f1s, q1s \uparrow \Rightarrow \Pi_1^{HS} \uparrow]\)

\(q3AB \downarrow \Rightarrow \pi_3 \downarrow \)
4. effects for A-in-aII

Network for Case-e

Network for Case-aII

\[f_{AH}^1; q_{AH}^1 \]
\[f_{BH}^1; q_{BH}^1 \]
\[f_{AB}^2; q_{AB}^2 \]

K2=1

\[f_{AH}^1; q_{AH}^1 \]
\[f_{BH}^1; q_{BH}^1 \]
\[f_{AB}^2; q_{AB}^2 \]

K1

\[f_{AB}^3; q_{AB}^3 \]

K3
4. Effects for A-in-a II

Prop. 2: holds when $K_3 = K_2 = 1$

Due to the A-in-a II

Reg. Z: $\Pi_1 \uparrow$, $\pi_2 \downarrow$

Reg. Y: $\Pi_1 \downarrow$, $\pi_2 \downarrow$

Reg. V, X: $\Pi_1 \downarrow$, $\pi_2 \uparrow$
4. Intuition for Prop. 2

Network for Case-e

Reg. Z (T,K1) large:
large K1 leads 1 to withdraw q1AB, to ↓ expensive f1s
large T leads 1 to shift its one-stop service to its division's nonstop service with low cost K3.
3 greatly steals 2's AB demand ⇒ π2 ↓

Reg. V,X (T,K1) small:
1 not adopt Aina, so as to enjoy large NFE. If adopt Π1 ↓, π2 ↑

Reg. Y (T,K1) intermediate:
If adopt, q1AB < q3AB → q2AB ↓ ⇒ π2 ↓, But the loss on the two spokes (the cost for giving up NFE) > π3+ ⇒ Π1 ↓
Corollary 2 to Prop. 2: $\frac{d\Pi_1}{dK_3} < 0, \frac{d\pi_2}{dK_3} > 0$.

Region X: $\Pi_{1}^{\text{all}} < \Pi_{1}^{e}, \pi_{2}^{\text{all}} > \pi_{2}^{e}$

Region Y: $\Pi_{1}^{\text{all}} < \Pi_{1}^{e}, \pi_{2}^{\text{all}} < \pi_{2}^{e}$

Region Z: $\Pi_{1}^{\text{all}} > \Pi_{1}^{e}, \pi_{2}^{\text{all}} < \pi_{2}^{e}$

$K_3 = 3/5$
5. Conclusion - Contribution 1
implications for a HS network carrier
to meet its nonstop LCC rivals, Aina stra.could be profitable only if the HS network operating costs are suff.ly large. But importantly, has to withdraw the one-stop if it aims to enjoy NFE by remaining HS network (ie, remain one-stop service), while to seek cost advantage by A-in-a stra. then even though its division is relatively cost efficient, the stra. is unprofitable overall.
5. Conclusion—Contribution 2
with Dunn’s empirical results

Dunn (2008): it is not unusual that network carriers entering markets with nonstop service, even though they also offer one-stop service through a hub, in particular, when their one-stop service is of low-quality.

This theoretical paper: if the quality of network carriers’ one-stop service is low (e.g., the hub-through extra cost is large), then it is sensible for network carriers to adopt the A-in-a stra, but importantly it has to withdraw the one-stop service.
Previous studies showed: HS network is useful for deterring the entry on spoke markets.

This paper found that in certain circumstance the Aina stra. may hurt LCCs, implicitly implies the possibility of point-to-point network formed by Aina stra. may play a role of deterring the LCCs' entry on rim markets.

5. Conclusion—Contribution 3
new insight into airline studies
5. Conclusion - future works

- the relationship between the parent airlines and their low-cost divisions
- to consider the choices of aircraft size (the relationship between frequencies and total traffic volume)
- to consider the timing of LCCs' entry and the establishment of low-cost divisions. Using a dynamic game to explicitly investigate how Aina stra. affects the entry decision of LCCs.
Thank you for your attention ♪

Ming Hsin LIN (明信 林)*

Hereafter for references
4. Intuition for Prop. 1 - note

Why $[q_{1ABe}] > [q_{1ABaI} + q_{3ABaI}]$?

- Larger $-1 + 1$

Establishing $3 \rightarrow$ hedonic price is the same
 \rightarrow total demand does not change.

If q_{3AB} and q_{1AB} are identical \rightarrow

$[q_{1ABe}] = [q_{1ABaI} + q_{3ABaI}]$

-1 $+ 1$

But! Network frequency effect exist

$q_{3AB} + 1 \rightarrow q_{1AB} -1 \rightarrow f1AH(q_{1AH}) \downarrow \rightarrow q_{1AB} \downarrow$ more