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Abstract

In this paper, we consider dynamic games with noisy signals in which due to noises

in observations any signal is possible in equilibrium. We argue that in the games

with noisy signals, the consistency condition of beliefs required by the perfect Bayesian

equilibrium (PBE) or sequential equilibrium (SE) is too strong to comprehend some

reasonable outcomes, and accordingly propose alternative solution concepts which we

will call ε-perfect Bayesian equilibrium (ε-PBE) and limit perfect Bayesian equilibrium

(limit PBE). The two equilibrium concepts rely on a weaker consistency condition that

requires beliefs to be updated by Bayes’ law only if the likelihood of the signal given

the equilibrium strategy was played exceeds ε > 0. Our concepts are consistent with

empirical observations that show higher deviations from Bayes’ law for rare events.

We show that under a mild condition, both of ε-PBE and limit PBE recover the first

mover advantage that disappears with even a slight noise in observing the first mover’s

strategy. We also show that there exists a fully revealing outcome in a game of cheap

talk to an informed receiver with monotone motives if ε-PBE or limit PBE is employed

as equilibrium concepts.
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1 Introduction

Observability is one of the central issues in a noncooperative game theory. In particular, in

dynamic games, an equilibrium outcome must be highly sensitive to whether or not a player

can observe the previous action of the other player. Indeed, the issue is closely related to

information. If a player can observe all the previous moves of the other players perfectly,

we call it a game of perfect information, and if he cannot, it is called a game of imperfect

information. Starting from subgame perfection (Selten, 1965), many equilibrium concepts

that have been developed in the context of dynamic games pay close attention to the issue.

In particular, the concept of subgame perfection may become less appealing in games of

imperfect information, even if it is very successful in eliminating all the unreasonable Nash

equilibrium outcomes that rely on incredible threat in games of perfect information. How-

ever, this problem has been remedied by various subsequent equilibrium concepts including

trembling-hand perfect equilibrium in extensive forms (Selten, 1975), sequential equilibrium

(Kreps and Wilson, 1982) and perfect Bayesian equilibrium (Fudenberg and Tirole, 1991a)

etc. which embrace the possibility of unobservability in equilibrium concepts. It was mainly

due to Kreps and Wilson (1982)’s ingenuous idea of introducing beliefs (about what a player

cannot observe) into a game.

This idea of using beliefs shifted the attention of game theorists to beliefs of players at

an information set in order to define equilibrium concepts for dynamic games. Especially,

this approach of using beliefs has been remarkably successful in signaling games in which a

player has an opportunity to infer the unobservable type of the other player from observing

his previous action. Many equilibrium concepts have been proposed in signaling games

to eliminate implausible predictions of the perfect Bayesian equilibrium (PBE) and the

sequential equilibrium (SE). Most of them basically rely on defining what is a more reasonable

belief at an information set that could be reached out of the equilibrium path.1 However,

all of those concepts except trembling-hand perfect equilibrium which is not a belief-based

refinement2 impose the minimum requirement of beliefs, what we call weak consistency,

which is part of the definition of the perfect Bayesian equilibrium.3 Roughly speaking, weak

1To name a few, see Cho and Kreps (1987), Banks and Sobel (1987), Grossman and Perry (1986) and

Farrell (1993).
2Selten (1975) did not explicitly mention “beliefs” in defining trembling-hand perfect equilibrium but the

notion of beliefs is implicit in his definition in the sense that perturbed strategies play the role of beliefs.
3Mas-Colell et al. (1995) distinguishes PBE and weak PBE, and Fudenberg and Tirole (1991a) defines

PBE by imposing the condition of no signaling what you don’t know on the off-the-equilibrium belief in

2



consistency requires that beliefs must be consistent with equilibrium strategies in a Bayesian

sense, i.e., beliefs must be updated according to Bayes’ law whenever possible.4 This is the

weakest version of consistency that has been known so far. It is clearly weaker than the

consistency condition required by sequential equilibrium. In this paper, we argue that this

version of consistency is too strong to comprehend all reasonable outcomes.

Contrary to what we have described so far, observability is not a matter of all or nothing.

Perfect observability and perfect unobservability are not all the possibilities in the real world,

although we are most of the times confined into the two extreme cases.5 Observations by

players are often imperfect. They may be able to observe only a noisy signal of what the other

player did. We will call such a situation with imperfect observation a dynamic game with

noisy signals.6 It is a game in which the outcome that the second mover (player II) observes

provides only an imperfect signal on the private information of the first mover (player I)’s

choice which is relevant to the payoff of the second mover.7 In such games, the second mover

can infer the private information of the first mover stochastically by observing the signal that

occurs as a result of his action, if he is informed of the probabilistic signal generating rule.

However, if the second player knows what the equilibrium strategies are, in other words, what

strategy the first player is supposed to play in equilibrium, the inference should be modified

by this additional information. Suppose, for example, that player II happens to observe

an outcome that can occur only with very low probability if player I takes the equilibrium

addition to the requirement of weak PBE. But we do not distinguish between the two concepts for the

reason that will be clear soon. Briefly speaking, the additional requirement is not binding in games we

consider in this paper.
4What “whenever possible” means exactly has never been precisely defined. Watson (2017) is one of

recent researches in this direction. He requires conditional-probability updating on separate dimensions of

the strategy space.
5Fudenberg and Tirole (1991a) defined the perfect Bayesian equilibrium only for games with perfectly

observed actions, although their definition can be straightforwardly extended to games with imperfectly

observed actions.
6Our model of noisy signals should be distinguished from noisy signaling models by Matthews and Mirman

(1983) and Hertzendorf (1993) in the sense that no noisy signaling is involved in our model. Noisy signals

in our model are just a consequence of the Nature’s choice, not a consequence of a player’s strategic choice

to influence the other player’s belief. Neither player has private information of his own type in our model.
7In this sense, dynamic games with noisy signals share common features with games of imperfect public

information. See Fudenberg and Tirole (1991b) for examples of games of imperfect public information. One

difference is that signals in our games need not be public information. They may be private information of

the second mover.
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action. The notion of weak consistency requires player II to still believe with probability

one that player I took the equilibrium action, insofar as the outcome he observed can be

generated from the equilibrium action.8 However, what if this outcome is such that can

occur with much higher (ex ante) probability9 as a result of deviating from the equilibrium?

Can we say that it is more reasonable to still believe that player I took the equilibrium

action but the unlikely outcome has occurred unexpectedly, rather than the first mover took

a non-equilibrium action which was very likely to lead to the observation?

In a game with perfect observability, an equilibrium action induces an outcome which

is possible in equilibrium, whereas an off-the-equilibrium action leads to an outcome which

is impossible in equilibrium. So, it is natural that player II believes that player I took an

equilibrium action if he observes an outcome which is possible only on an equilibrium path.

However, in a game with imperfect observability that can occur mainly due to noises (with

unbounded supports), any outcome is possible, whether player I took an equilibrium action or

not. So, it is not necessarily true that player I actually took an equilibrium action when player

II observes an outcome which is possible on an equilibrium path. It could be also possible

if player I took an off-the-equilibrium action. Moreover, contrary to games with perfect

unobservability in which some outcome is possible in equilibrium and some other outcomes

are not, every information set (i.e., every outcome) can be reached on an equilibrium path in

games with imperfect observability (due to noisy signals), although probabilities of reaching

different information sets may differ, depending on whether to choose an equilibrium action

or not. The information about this probability difference is completely ignored by the concept

of PBE, but it may have an important implication.10 Then, when should we believe that

player II reached a certain information set as a result of an off-the-equilibrium action by

player I? If the probability that the information set is reached given that player I took

an equilibrium action is very low, it may be more reasonable to reject the hypothesis that

player I chose the proposed equilibrium action and to believe that player I deviated from the

8This is the case only when we take only pure strategies into account.
9By ex ante probability, we mean the probability at the point of time before the players get additional

information of what the equilibrium strategies are, i.e., what strategies they will agree to play in equilibrium.
10For example, let h1 and h2 be two information sets. Suppose the probability that h1 is reached if player

I took an equilibrium action is low and the probability is high if she did not take an equilibrium action. On

the other hand, suppose the probability that h2 is reached is high if player I took an equilibrium action and it

is low if she did not take an equilibrium action. Then, it seems reasonable that the beliefs that player I took

an off-the-equilibrium action at h1 and h2 should be updated differently, more specifically, the probability

at h1 should be higher.
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equilibrium strategy. At least we should doubt the assumption that she took the equilibrium

strategy. In this event, we regard the outcome as an almost off-the-equilibrium signal.

Players sometimes make mistakes (e.g., Selten [1975], Kreps and Wilson [1982]).11 If a

mistake is perfectly observed without noises, the second mover can surely identify where he

is at his information set. However, if player I’s mistake (generally, her action) is imperfectly

observed with noises, player II cannot be sure whether an observation of a deviant action is

due to player I’s mistake or player II’s mistake in observing player I’s action. With noises,

therefore, equilibrium behavior and off-the-equilibrium behavior are pooled. In this case, one

should interpret even an equilibrium outcome by taking account of this small probability of

player I’s deviation more seriously,12 rather than taking it for granted that player I took an

equilibrium action. Therefore, we believe that the consistency condition required by PBE

or SE should be relaxed. A noisy signal that can be observed in equilibrium should be

interpreted in some cases as a consequence of an equilibrium action or in other cases as

a consequence of a mistake or an intentional deviation especially when the signal is very

unlikely to occur, provided that an equilibrium action was actually taken.

Let us take a simple example. Suppose a worker (player I) exerts effort a and then an

outcome y is realized as a result of it. Assume that y can take the value of a with probability

.9999 and of a − 1 with probability .0001, if player I chooses action a. Now, suppose that

a∗ is the equilibrium effort. If a principal (player II) actually observes y = a∗ − 1, is it still

reasonable for player II to believe that player I chose a∗? The perfect Bayesian equilibrium

stipulates that the unique reasonable belief is to believe with probability one that player

I took a∗, not a∗ − 1. However, it seems more reasonable (at least) to us to believe that

player I chose the action a∗− 1, because the likelihood (probability) that y = a∗− 1 actually

happens given that a = a∗ is very small (.0001).

On this ground, we think that it is too demanding to insist on the weak consistency

of beliefs that the perfect Bayesian equilibrium requires. The perfect Bayesian equilibrium

imposes a too strong restriction on beliefs on the equilibrium path that occurs only with

infinitesimally small probability (too stringent!), whereas it imposes no restriction at all on

the path that occurs in equilibrium with probability zero, thereby allowing arbitrary beliefs

11Players may indeed deviate intentionally from a proposed equilibrium (e.g., Kohlberg [1990]). Consid-

ering this possibility allows us to develop a forward induction argument.
12Kreps and Wilson (1982) and Kohlberg (1990) considered this small possibility in order to restrict the

belief off the equilibrium path, but our approach is different and even in the opposite direction in the sense

that we relax the requirement imposed on equilibrium beliefs.
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(too lenient!). Furthermore, the perfect Bayesian equilibrium requires that one assign the

same beliefs on the path that can occur only with a very low probability in equilibrium as

on the path that can occur with a very high probability in equilibrium. It seems reason-

able, neither. For example, suppose that player I intended to mean “reminder” by a word

“memento” used in equilibrium to mean it. But if the second mover observes a noisy signal

“mementa” or “mementu”, it would be reasonable for him to believe that the first mover

who intended to mean “reminder” just misspelled it, because such misspelling often occurs.

However, if he observes a signal “momentu”, it appears to be more natural to believe that

she intended the word “momentum”, because those who intended to spell “memento” are

very unlikely to misspell it to “momentu”. In this case, it would be more reasonable to

believe that she intended to mean a different word “momentum”.

Based on this consideration, we propose two equilibrium concepts, the ε-perfect Bayesian

equilibrium (ε-PBE) and the limit perfect Bayesian equilibrium (limit PBE),13 both of which

are slightly weaker than perfect Bayesian equilibrium. The notion of ε-PBE imposes the

consistency condition only if the likelihood that a noisy signal occurs given the equilibrium

action was played is reasonably high (higher than ε for some small ε > 0), and allows the

second mover to believe that the first mover deviated from the proposed equilibrium if the

likelihood is not higher than ε > 0.14 We call this consistency ε-likelihood consistency. A

rationale for ε-likelihood consistency is that if the likelihood is very low, it is reasonable for

13Similarly, Myerson and Reny (2019) define the perfect conditional ε-equilibrium to extend sequential

equilibrium to games with infinite sets of signals and actions. They first define the conditional ε-equilibrium

by a strategy profile such that no player could expect significant gains by unilaterally deviating from it

after any event that has positive probability in the equilibrium, and then define the perfect conditional

ε-equilibrium by a strategy profile such that there exists a pair of a perturbed strategy profile and nature’s

perturbation in the neighborhood which constitutes a conditional ε-equilibrium. Our definition is to apply

consistency to an event with a positive likelihood, not to an event with a positive probability. This is

reasonable because a positive likelihood enables us to update the posterior belief by the conditional density

function (not the conditional probability). Also, relatedly, ε-Nash equilibrium or ε-rationality by Radner

(1980) permits an ε-gap in payoffs rather than in likelihood (not probability). Note that ε-PBE is not a

special case of ε-Nash equilibrium, because a restriction on the belief as in the definition of PBE or ε-PBE

is to reduce the set of sequentially rational strategies, not to affect the set of optimal strategies by allowing

small errors in payoffs.
14Ortoleva (2012) proposed a different equilibrium concepts of hypothesis testing equilibrium from a similar

motivation. His approach is, however, non-Bayesian. He assumes that players use subjective priors which

were initially chosen by them among all possible priors and pick a new prior if they receive an unexpected

evidence. For more details of the hypothesis testing equilibrium, see Ortoleva (2012) or Sun (2019).
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the second player to believe that the first mover made a mistake rather than believe that the

second mover himself made a wrong observation, thereby ignoring the equilibrium message.15

If an equilibrium is an ε-PBE for any small ε > 0,16 we call it a limit PBE.

These concepts turn out to be very useful especially in games with noisy signals that make

every outcome possible in equilibrium. By allowing more natural beliefs on the equilibrium

path rather than restricting beliefs off the equilibrium path, we can obtain more realistic

outcomes in equilibrium in many games with noisy signals. For example, Bagwell (1995)

argued that the first-mover advantage is eliminated if there is even a slight amount of noise

in observing the first-mover’s choice.17 We show, however, that ε-PBE enables the first-

mover advantage to be recovered. We also show that a fully revealing outcome is possible in

a game of cheap talk to an informed receiver with monotone motives if ε-PBE or limit PBE

is employed as equilibrium concepts.

There is a large empirical literature arguing that players tend to violate Bayes’ law.18

Among others, Grether (1992) showed that empirical data for rare events are more likely to

deviate from Bayes’ law. Holt and Smith (2009) also presented the experimental evidence

that players do not tend to follow Bayes’ law after very unlikely events occur.

The organization of this paper goes as follows; In section 2, we introduce definitions of

ε-PBE and limit PBE. In section 3, we revisit the example by Bagwell (1995) and show that

15Some may think that if this ε-chance event occurs, it may be more reasonable to believe that the first

mover chose an action maximizing the likelihood function, rather than just ignoring the equilibrium message.

If so, the resulting equilibrium concept may not contain the set of PBE, though. Ortoleva (2012) takes the

maximum likelihood approach.
16A likelihood and a (posterior) belief are both conditional probabilities, but a belief is a probability of

reaching a node at an information set conditional on the event that the information set is reached, whereas

a likelihood is a probability of reaching an information set conditional on the event that the player chose an

equilibrium action. Also, a likelihood is similar to the concept of plausibility used by Bonanno (2013), but

plausibility is defined for all histories and not for information sets.
17This result relies crucially on the restriction to pure strategy equilibria. Bagwell was aware of the

limitation of the claim himself, and later van Damme and Hurkens (1997) generalized the mixed strategy

version of the claim. Also, Maggi (1999) showed that the first-mover advantage reappears when the first

mover’s choice is based on pure private information, i.e., private information that is payoff-irrelevant for the

second mover. By focusing only on “pure private information”, he abstracts from signaling consideration. If

one considers private information that is not pure, the first mover advantage may or may not appear. See

Gal-Or (1987), Matthews and Mirman (1983) and Hertzendorf (1993).
18See, for example, Kahneman and Tversky (1973), Grether (1992), Griffin and Tversky (1992), and Holt

and Smith (2009).
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we can recover the first-mover advantage by applying ε-PBE, and generalize this claim. In

Section 4 and 5, we apply the two concepts to a price competition model with a Stackelberg

leader and to a cheap talk model with an informed receiver respectively. Concluding remarks

follow in Section 6.

2 Definitions

There are two players, player I (“she”) and player II (“he”). Player I first chooses an

action a1 from a set A1 ∈ R. Each action induces a probability distribution over observable

outcomes y in a set Y ∈ R. Let f(y | a1) and F (y | a1) denote the density function and

the corresponding probability distribution function conditional on the action a1 is taken.

After observing y (not observing a1), player II responds by choosing an action a2 from a

set A2 ∈ R. We assume that f(y | a1) is common knowledge. The support of f given a1

is defined by supp(f | a1) = {y | f(y | a1) > 0}. Most of the time, we will assume that

A1 = Y = R, i.e., supp(f | a1) = R for any a1 ∈ R. We also assume that f(y | a1) first-order

stochastically dominates f(y | a′1) if a1 > a′1.

The payoff to player i is given by a function U i : A1 × A2 → R. We assume that U i

is twice-continuously differentiable with respect to a1 and a2, and that it is concave in a1

and a2. This guarantees that for any aj, U
i is uniquely maximized by aBRi (aj), which gives

continuous best response functions. We also assume that aBRi (aj) is strictly monotonic,

implying that we exclude the possibility that U i
ij = 0.19 Notice that U i does not depend

directly on y.20

A strategy for player I, σI , is identical to his action. A system of beliefs is defined by a

map from the set of possible observations (Y ) to ∆(A1), where ∆A1 denotes the set of all

19If U i
ij = 0 for all a1 and a2, we will say that a1 and a2 are strategically independent. If this is the

case, aBR
i (aj) is the same for any aj , that is, the best response function aBR

i (aj) is constant. We ignore this

possibility, because there is no strategic interaction in this case. If U i
ij ≷ 0 for any a1 and a2, a1 and a2 are

called strategic complements (strategic substitutes, resp.). Our analysis encompasses both cases.
20We can imagine many situations in which the payoffs of the players depend directly on y. For instance,

in a Cournot game with fluctuating demands, the profit of each firm depends directly on the market price.

The output produced by the rival firm affects the profit only indirectly through affecting the market price.

Also, in a principal-agent game, the payoff of the principal usually depends directly on the output. The

agent’s effort level affects the principal’s utility only through determining the output level stochastically. It

is not difficult to see that our equilibrium concepts can be applied straightforwardly to those situations. In

other words, this assumption is not crucial, but just for expositional convenience.
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probability distribution functions (or density functions) over A1. The conditional density

function as a belief is denoted by g(a1 | y). If the belief g(a1 | y) has the whole probability

mass at a01, we will simply use supp(g | y) interchangeably with g(a1 | y). That is, if the

belief is g(a1 | y) = δa01(a1) where δa01(a1) is a Dirac’s delta function, it is more convenient

to use the notation b(y) = a01 for the belief where b : Y → A1 is a belief function. Finally, a

strategy for player II is a function from the set of beliefs (A1) into A2, σ
II : A1 → A2. Note

that σII depends on y only indirectly through forming belief b, because we assume that y

does not affect U II directly.

An assessment is a pair (σ, b) of a strategy profile σ and a system of beliefs b, where

σ ≡ (σI , σII) = (a1, a2(b)). Note that σI and σII are both defined as pure strategies. For

simplicity, we will restrict our attention to pure strategies throughout the paper.

Before we propose two definitions of our main equilibrium concepts, we introduce the

definition of the perfect Bayesian equilibrium which is adapted to our model.

Definition 1. An assessment (a∗1, a
∗
2(b), b(y)) is a perfect Bayesian equilibrium (PBE) if

(i) it is sequentially rational, i.e.,
∫
Y
U I(a∗1, a

∗
2(b(y)))f(y | a∗1)dy ≥

∫
Y
U I(a1, a

∗
2(b(y)))f(y |

a1)dy,∀a1 ∈ A1 and for every y ∈ Y , U II(a∗1, a
∗
2(b(y))) ≥ U II(a∗1, a2),∀a2 ∈ A2, and (ii)

b(y) is weakly consistent, i.e., b(y) = a∗1 if y ∈ supp(f | a∗1) and b(y) is an arbitrary density

function if y 6∈ supp(f | a∗1).21

To formalize our solution concepts, we need to define a little relaxed notion of consistency

as follows.

Definition 2. An assessment (a∗1, a
∗
2(b), b(y)) satisfies ε-likelihood consistency iff for any y,

b(y) = a∗1 if L(a∗1; y) > ε and b(y) ∈ R can be arbitrary if L(a∗1; y) ≤ ε where L(a1; y) = f(y |
a1) is a likelihood function.

The likelihood function tells us how likely the occurrence of y is if player I chooses the

equilibrium action a∗1. We may call this (L(a∗1; y) ≷ ε) a simple likelihood test. If L(a∗1, y) ≤ ε,

we reject the hypothesis that player I is playing an equilibrium strategy.22 In this definition,

21If y ∈ supp(f | a∗1), the conditional density function g(a∗1 | y) is well defined, since f(y | a∗1) > 0.
22Alternatively, some may want to use a likelihood ratio test but it is not appropriate in this situation

to determine whether player I played the equilibrium action or deviated to some action among many pos-

sible off-the-equilibrium actions. Also, the test is problematic because the likelihood ratio does not reflect

the information that the equilibrium action is more often used than non-equilibrium actions. Therefore,

comparing the likelihood without weights will not make much sense.
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we slightly extend the meaning of “off the equilibrium” to the case that a random outcome

y such that L(a∗1; y) ≤ ε occurs. This event that L(a∗1; y) ≤ ε can be interpreted as almost

off the equilibrium path.23 It is clear that L(a∗1, y) ≤ ε, if y 6∈ supp(f | a∗1). So, it is obvious

that weak consistency implies ε-likelihood consistency. Note that we interpret an equilibrium

event and an off-the-equilibrium event in terms of the likelihood, not in terms of probability.

Even if L(a∗1, y) = f(y | a∗1) > 0, it is possible that the probability that a particular value of y

occurs given that a∗1 is chosen is zero, if y is a continuous random variable without any atom

in the support of its probability distribution. We believe that this likelihood approach is

more relevant to defining an equilibrium event. If the likelihood L(a∗1, y) is positive (although

P(y | a∗1) = 0), it is possible to update the conditional density function (belief) by using the

likelihood function, which is all that matters for an equilibrium event.24

Now, we can define our solution concepts formally.

Definition 3. An assessment (a∗1, a
∗
2(b), b(y)) is an ε-perfect Bayesian equilibrium (ε-PBE),

for some ε > 0, if it satisfies sequential rationality and ε-likelihood consistency.

This concept, ε-PBE, is similar to ε-perfect equilibrium which can be roughly defined

by a strategy profile satisfying the property that if a certain pure strategy yields a strictly

lower payoff than another, the strategy should be used with a probability less than ε(> 0),

not necessarily with a zero probability.25 Note that ε-PBE is a slight departure from the

weak consistency of a belief, whereas ε-perfect equilibrium is a slight departure from the best

response of a strategy. Just as the trembling hand perfect equilibrium is defined as the limit

of ε-perfect equilibrium, we can define a stronger equilibrium concept which can be obtained

by making ε approach zero.

Definition 4. A strategy profile, (a∗1, a
∗
2(b)), is a limit perfect Bayesian equilibrium (limit

PBE), if for any ε > 0 such that ε ≤ ε̄ for some ε̄ > 0, there exists b(y; ε) such that an

assessment (a∗1, a
∗
2(b), b(y; ε)) is an ε-PBE.

The difference between the definitions of the ε-PBE and the limit PBE is just that the

former holds for some small ε > 0, while the latter holds for any small ε > 0. Although a

23We can define an almost off-the-equilibrium event in terms of either the likelihood less than ε or the

p-value less than ε interchangeably.
24Myerson and Reny (2019) defined perfect conditional ε-equilibrium conditional on positive probability

events, not conditional on positive likelihood events.
25See Myerson (1978) for the formal definition of the ε-perfect equilibrium.
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perfect equilibrium is a limit of ε-perfect equilibrium,26 a limit PBE is not necessarily a limit

of ε-PBE, because the definition of the limit PBE does not require that limε→0 b(y; ε) exists.27

If we require that there must exist b(y) such that b(y) = limε→0 b(y; ε), this additional

continuity requirement is so strong that the resulting equilibrium concept, which we will

call strong limit PBE, becomes equivalent to PBE, just as a perfect equilibrium is a limit of

ε-perfect equilibrium.

Definition 5. An assessment (a∗1, a
∗
2(b), b(y)) is a strong limit perfect Bayesian equilibrium

(strong limit PBE), if for any ε > 0 such that ε ≤ ε̄ for some ε̄ > 0, there exist b(y; ε) such

that (i) limε→0 b(y; ε) = b(y) and (ii) (a∗1, a
∗
2(b), b(y; ε)) satisfies ε-PBE.

We have the following properties, i.e., inclusion relations among those equilibrium con-

cepts. The proofs are provided in the Appendix.

Proposition 1. PBE ⊂ limit PBE ⊂ ε-PBE.

Proposition 2. The strong limit PBE is equivalent to PBE.

In the next two sections, we will present some counterexamples for the cases that the

converses do not hold, i.e., ε-PBE does not imply limit PBE and that limit PBE does not

imply PBE.

3 Stackelberg Model

We consider an example by Bagwell (1995) which captures the main feature of the Stackelberg

model. (Figure 1) In this example, the unique Nash equilibrium is (C,C) in a static game

(in which neither player can observe the other’s choice), while the unique subgame perfect

26It is well known that the trembling hand perfect equilibrium requires a∗2 to be a best response to any

nearby others’ strategies perturbed from the equilibrium strategies (which can be also interpreted as a

sequence of beliefs), but the sequential equilibrium only requires a∗2 to be a best response to the limit of the

belief sequence. Therefore, limit PBE is in its spirit closer to the trembling hand perfect equilibrium than

the sequential equilibrium in the sense that it requires a2(b) to be a best response to b(y; ε), not to b(y), the

limit of b(y; ε).
27In an evolutionary game theory, the concept of the limit ESS is defined from a similar motivation. It was

proposed by Selten (1983) to alleviate the severe nonexistence problem of ESS. Contrary to the limit PBE,

however, the limit ESS is required to be a limit of a sequence of strict ESS in ε-perturbed games, although

it need not be ESS in the limit.
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outcome is (S, S) in a sequential game (in which player 2 can observe player 1’s choice),

yielding the first-mover advantage.

Now, suppose player 2 can observe player 1 only imperfectly, i.e., if player 1 chooses S,

player 2 may receive a signal of either S with probability 1− δ or C with probability δ(> 0),

and if player 1 chooses C, player 2 receives a noisy signal of either C with probability 1− δ
or S with probability δ. The extensive form of the resulting game is drawn as in Figure 2.

Note that due to imperfect observation, any information set can be reached after player 1’s

choice of either S or C.

Interestingly, the unique PBE outcome of this imperfect information game is (C,C). To

see that (C,C) is an equilibrium outcome, note that the weak consistency condition pins

down the posterior belief at two information sets, h1 and h2, as (µ(x|h1), µ(z|h1)) = (0, 1)

and (µ(y|h2), µ(w|h2)) = (0, 1), where µ(ω|hi) is the posterior probability that player 2

reaches node ω given that he reaches information set hi, because he believes that she took

the action C regardless of his observation. Thus, it is optimal for player 2 to choose C at

both information sets h1 and h2. Therefore, player 1 chooses C.

It is also easy to see that the Stackelberg outcome (S, S) is not a PBE. If it is an equi-

librium outcome, the only consistent belief is that ((µ(x|h1), µ(z|h1)), (µ(y|h2), µ(w|h2))) =

((1, 0), (1, 0)). Then, player 2 will chooses his best response to S, which is S, whether he

observes either S or C. In particular, even when he observes C, he chooses S by reasoning

that he received a wrong signal, because player 1 must have chosen S. This implies that

player 1 prefers deviating from S to C. Since this holds for any δ > 0, the first-mover

advantage disappears when there is even a slight noise (δ > 0) in the observation of player

2.

Intuitively, a noise, no matter how small it is, makes any signal possible when player 1

makes the equilibrium choice S; hence, no off the equilibrium signal. So, no matter what

signal player 2 may receive, it should be interpreted as the equilibrium meaning. If player 1’s

choice cannot affect player 2’s belief and his choice due to imperfect observation, the resulting

equilibrium outcome must coincide with the Nash outcome. Since the outcome yielding the

first mover advantage is not a Nash equilibrium, it cannot be a PBE. This is mainly because

the weak consistency condition that PBE requires ignores the information about a difference

in probabilities even if the ex ante likelihood that player 1 chose S at information set h1

(when the signal S was observed) is much higher than the ex ante likelihood at information

set h2 (when the signal C was observed), thereby forcing one to assign identical beliefs at h1
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and h2 by superseding the information by the information that she can infer from equilibrium

behavior (which is supposed to be played). If the information about a difference in ex ante

probabilities should not be ignored but taken seriously, the posterior beliefs at h1 and h2

need not be identical. In particular, if the ex ante likelihood that S was played given that

C was observed at h2 is very small, player 2 should doubt the presumption that the signal

C resulted from player 1’s equilibrium behavior of choosing S and be open to all other

possibilities by considering all possible scenarios. This is the motivation of ε-PBE.

If we use ε-PBE as our solution concept, we can see that the first mover advantage

reappears in equilibrium. Suppose it is an equilibrium that player 1 chooses S and player 2

chooses S at h1 and C at h2. After observing the signal S, player 2 will believe that player

1 chose S because S is the equilibrium meaning.28 Therefore, he will respond by choosing

S based on the belief (µ(x|h1), µ(z|h1)) = (1, 0). If observing the signal C, however, he will

think that it is possible that player 1 chose S because it is an equilibrium action, but that the

probability of observing C if player 1 actually chose S is very low, i.e., f(C | S) = δ. If δ < ε,

ε-PBE does not require the belief to be updated by the Bayes’ law. In this case, arbitrariness

of the belief allows player 2 to believe that player 1 chose C, thereby responding by choosing

C. Knowing this, player 1 will choose S because 5(1−δ)+4δ > 5δ+4(1−δ) for small δ(< 1
2
).

However, as ε gets smaller so that ε′ < δ, this equilibrium (S, S, C) cannot be an ε′-PBE

because the consistency condition does not allow such behavior as far as f(C | S) = δ > ε′.

Therefore, (S, S, C) that shows the first mover advantage is an ε-PBE for ε > δ, but not a

limit PBE.

Can the Nash outcome (C,C) be supported as an ε-PBE? It is clear that player 2 chooses

C after receiving a signal C (at information set h2). After receiving S, however, player 2

doubts the possibility that player 1 chose the equilibrium action C, because the probability

that he receives S is too small if player 1 chose C, i.e., f(S | C) = δ < ε. In this case,

arbitrary belief is allowed. If he believes that player I chose C, it is optimal for him to

choose C. Therefore, player 1 will choose C. This implies that the Nash outcome is also

an ε-PBE. Furthermore, for ε′ < δ, ε′-likelihood consistency allows him only to believe that

player 1 chose C at information set h2, implying that player 1 will choose C. So, (C,C,C)

is a limit PBE. In fact, it directly follows from Proposition 1, because (C,C,C) is a PBE.

We can generalize this result to games with any finite actions. Let n = |A1|. For any

28Player 2 knows that player 1 is supposed to choose S in equilibrium. So, in this case, the equilibrium

meaning of player 1’s behavior is S, regardless of what signal player 2 observes.
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a1 ∈ A1, player 2 is assumed to observe y = a1 with probability 1 − δ and receive a wrong

signal y = a′( 6= a1) with equal probabilities δ
n−1 . Let (aN1 , a

N
2 ) be the Nash equilibrium in

the static game without noises. Also, let πN1 ≡ π1(a
N
1 , a

N
2 ) and πs1 ≡ π1(a

s
1, a

s
2). Then, we

have the following Folk Theorem.

Proposition 3 (Folk Theorem). Define A∗ = {a1 ∈ A1 | π1(a1, aBR2 (a1)) > π1} where

π1 ≡ maxa1 π1(a1, a
BR
2 (a1)) and a1 = arg minπ1(a1, a

BR
2 (a1)). Then, in a game with noises,

for any a1 ∈ A∗, there exists δ̄ > 0 such that for any δ such that 0 < δ ≤ δ̄, (a1, a
BR
2 (b(y)))

where b(a1) = a1 and b(y) = a1 if y 6= a1 is an ε-PBE for any ε > 0 such that δ < ε. In

particular, if πN1 > π1, any a1 between aN1 and as1 is an ε-PBE action for such ε.

The belief a1 = arg minπ1(a1, a
BR
2 (a1)) is the one that gives player 1 the minimum payoff

when player 2 responds optimally along the best response function. We call a1 the most

pessimistic belief and aBR2 (a1) the most severe threat.

The payoff π1 ≡ maxa1 π1(a1, a
BR
2 (a1)) plays a similar role of minmax payoff in the Folk

Theorem of repeated games in that player 1 can get at most π1 when player 2 penalizes

her most severely by choosing aBR2 (a1). It is the player 1’s payoff from her most profitable

deviation when she expects the most severe threat. This reflects the fact that player 1’s

actual hidden action is not necessarily identical to the belief a1. We will just call π1 the

minmax payoff of player 1 in a broad sense.

This Folk Theorem says that if the Nash payoff is higher than the minmax payoff, any

outcome (including the Stackelberg outcome) along the best response function of player 2

that yields her a higher payoff than the Nash outcome can be supported as an ε-PBE for

some small δ > 0, as long as we pick ε > δ. Note that when a∗1 is supported in ε-PBE, the

equilibrium payoff is not π1(a
∗
1, a

BR
2 (a∗1)), because π1(a

∗
1, a

BR
2 (a1)) could be realized with a

small probability, depending on the observation y. So, it is better to state this Folk Theorem

given in Proposition 3 in terms of strategies rather than in terms of payoffs, unlike the Folk

Theorem of repeated games.

We can also generalize the result to games with continuum actions.

Proposition 4. Assume that |U I
1 (a1, a2)| ≤ M for some M ∈ (0,∞). In a game with

noises, (as1, a
BR
2 (b)) is an ε-PBE and a limit PBE if the following [UP] condition holds;

U I(as1, a
BR
2 (b)) is strictly monotonic in b and unbounded.

This proposition has an important implication that the first mover advantage which was

forged with even a slight noise in observing the choice of the first mover is re-supported as

an equilibrium outcome if we use ε-PBE or limit PBE as our equilibrium concept.
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The sufficient condition provided in Proposition 4, which we call Unbounded Penalty [UP]

condition, is crucial to our result. Intuitively, if a value of y which is very unlikely given that

as1 is played is realized, player 2 must form a very extreme belief aε1 which makes it possible

for him to rationally respond (to as1), so as to lead to a very small U I(a1, a
BR
2 (aε1)) when [UP]

condition holds.29 This punishment strategy aBR2 (aε1) can be called “boiling-in-oil” strategy,

often referred to as in the principal-agent literature.30 Without the condition, player 2’s best

response even to such an extreme belief might be a mild effect that the resulting utility is

bounded below, so a very harsh punishment by player 2 would not be feasible.

Indeed, the [UP] condition is too strong. If this condition does not hold, the Stackelberg

action as1 may be supported as an ε-PBE for some ε > 0, but cannot be supported as a limit

PBE. This is consistent with the result in Bagwell’s example.

An interesting feature of this model is that player 1 knows that player 2’s response does

not depend on a1 directly, i.e., her choice of a1 does not affect player 2’s response directly.

Most of the times, player 2 behaves as a passive player without responding to a1. (Actually,

player 2 cannot respond to a1 because what he can observe is y, not a1.) Then, how can

player 1 achieve the Stackelberg outcome? It is possible because player 2 can respond to

a signal y which can be affected by a1. If player 1 deviates from the Stackelberg outcome,

player 2 may respond by a punishment action that a value of y falling short of a threshold

level triggers with a very small probability. This possibility prevents player 1 from deviating

from the Stackelberg action.

It is worthwhile to ponder on the implication of the credibility of a threat to punish

in this model. As is well known, if the player 1’s move is perfectly observed by player 2,

player 2 cannot successfully threaten to choose C, regardless of player 1’s choice, because the

threat is incredible. In other words, perfect observability makes it in the interest of player

2 to respond to his observation S, thereby choosing S. However, with even a slight noise

in observation, player 2 can commit to choosing C. This threat is credible because player

2 can observe nothing to respond to. This is why player 2 cannot achieve the Stackelberg

outcome in the Bagwell’s example and in the generalized model. Interestingly, employing

the concept of ε-PBE brings a similar effect to observability. If we employ ε-PBE, when

player 1 chooses S in equilibrium, player 2 responds by choosing S if he observes a signal S

with high probability. This is not because he observes her choosing S, but because he infers

29If A2 6= R, [UP] condition can be modified by replacing a2 → −∞ and a2 → ∞ with a2 → a2 and

a2 → a2 respectively, where a2 = inf Â2, a2 = sup Â2 and Â2 is the range of aBR
2 , i.e., Â2 = aBR

2 (A1) ⊂ A2.
30See, for example, Rasmusen (1994).
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that she chooses S in equilibrium. Player 2 does not need to believe player 1’s threat to

choose S in the case that he observes a signal C, because it is a very unlikely event given

that player 1 actually chose S. In this case, he may respond by choosing C. This means that

player 2’s threat to choose C regardless of his observation is not credible even with imperfect

observation. Therefore, commitment is impossible.

If a likelihood test in the case of noisy observation can have a similar effect of perfect

observability, what is the essential difference that distinguishes the case of noisy observation

from the case of perfect observability? Proposition 3 says that if πN1 > π1, any a∗1 between

aN1 and as1 can be an ε-PBE action in the case of noisy observation, although it is usually

not an equilibrium action in the case of perfect observation. If a1 is perfectly observable,

player 2 responds by aBR2 (a1). So, if player 1 deviates from a∗1 to as1, it induces player 2

to respond from aBR2 (a∗1) to aBR2 (as1), which makes player 1 better off. This implies that

a∗1 6= as1 cannot be an equilibrium outcome. However, if a1 is imperfectly observed with a

noise, deviating from a∗1 to as1 does not induce player 2 to respond to aBR2 (as1) but to aBR2 (a1)

with some probability, because such a deviation leads to the belief of either b(y) = a∗1 or a1,

not b(y) = as1. Due to the possibility of the pessimistic belief b(y) = a1, player 1 may not

deviate from the proposed equilibrium action a∗1, even if a∗1 6= as1.

4 Application: Price Competition Model

We can apply our equilibrium concepts to various real situations. We consider the following

specific model which will be helpful to obtain equilibrium strategies and beliefs explicitly.

Two firms who produce differentiated substitutes compete against each other by choosing

prices. They face symmetric demand functions. The demand function for the good produced

by firm i is given by qi = α − βpi + γpj for j 6= i, i = 1, 2, where α, β, γ > 0 and 2β > γ.

For simplicity, we assume that the marginal cost is zero. Then, we can compute the profit

function of firm i as

πi(pi, pj) = pi(α− βpi + γpj), (1)

and the best response function as

pBRi =
α + γpj

2β
. (2)

Note that p1 and p2 are strategic complements, because pBRi (pj) function has a positive
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slope.31

If the firms cannot observe the price of each other, they end up with the Nash prices

(pN1 , p
N
2 ) = ( α

2β−γ ,
α

2β−γ ). On the other hand, if firm 1 first chooses its price as a Stackelberg

leader and the price is perfectly observed by firm 2, we can expect the well known Stackelberg

outcome (ps1, p
s
2) to be realized in a subgame perfect equilibrium. Since firm 1 expects firm

2 to respond optimally according to his best response function, pBR2 (p1) = α+γp1
2β

, firm 1 will

choose p1 to

max
p1

πI(p1, p
BR
2 (p1)) = p1

[
α− βp1 +

γ(α + γp1)

2β

]
,

leading to equilibrium prices

ps1 =
β + γ

2

2β2 − γ2
α, (3)

ps2 =
α + γp1

2β
=
β + γ

2
− γ2

4β

2β2 − γ2
α, (4)

and the resulting profit of firm 1

πI(ps1, p
s
2) =

α2(2β + γ)2

8β(2β2 − γ2)
. (5)

If firm 2 cannot observe p1 perfectly but only with some noise, however, we can show that

the Stackelberg leader’s price ps1 cannot be a PBE outcome with even a slight noise, insofar

as the noise has a full support (−∞,∞). Since every signal (observation) y is possible in

equilibrium, firm 2 must respond to any observation y by pBR2 (b(y)) which is just the same

as pBR2 (ps1), since b(y) = ps1 in equilibrium, for all y. Knowing that firm 2’s response will not

be affected by firm 1’s choice, firm 1 will deviate from ps1 by slightly cutting its price, which

overturns the Stackelberg equilibrium.

We will now resort to alternative equilibrium concepts, ε-PBE and limit PBE. To char-

acterize the equilibrium strategies explicitly, we assume that after firm 1 chooses its price

p1, firm 2 observes a signal y = p1 + η where the noise η is normally distributed with mean

zero and variance σ2, i.e., η ∼ N(0, σ2). So, the density function of y given p1 is

f(y | p1) =
1√
2πσ

e−
1
2( y−p1σ )

2

. (6)

31It is well known that if the players compete in strategic complements such as prices, the second mover

advantage rather than the first mover advantage appears in the sense that the equilibrium profit of the second

mover is higher than the equilibrium profit of the first mover. See, for example, Gal-Or (1985). However,

throughout this section, we maintain the term of the first mover advantage, simply because the first mover’s

profit is greater than in Nash equilibrium.
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For a given ε, we can determine the corresponding cutoff value of the observation yε for

the left tail event by using the conditional density function:

L(ps1; yε) = f(yε | ys1) = ε. (7)

A cutoff value has the following meaning and interpretation behind it that if a lower

signal than the cutoff value yε is observed, firm 2 believes that firm 1 did not choose the

equilibrium price ps1, on the ground that the likelihood L(ps1; y) is less than ε for any y ≤ yε.

(See Figure 3.) Since y ∼ N(ps1, σ), yε is determined from the following equilibrium;

f(yε | ps1) ≡
1√
2πσ

exp

[
−1

2

(
yε − ps1
σ

)2
]

= ε, (8)

i.e., (
yε − ps1
σ

)2

= −2 ln(
√

2πσε) > 0. (9)

Therefore, for any given ε > 0, the confidence interval for y (equilibrium path) is determined

by ps1 − ρε < y < ps1 + ρε, where ρε = −σ ln(
√

2πσε) is the maximum permissible error. If

y ≤ ps1 − ρε or y ≥ ps1 + ρε, we regard it as an almost off-the-equilibrium event. Note that

the cutoff value of y is yε = ps1 − ρε, which determines the left tail event.

We now consider the incentive compatibility condition of firm 1. The expected profit of

firm 1 can be computed as follows;

E[πI ] =

∫ yε

−∞
πI(p1, p

ε
2)f(y | p1)dy +

∫ ∞
yε

πI(p1, p
s
2)f(y | p1)dy, (10)

where ps2 = pBR2 (ps1) and pε2 is a threat price that will be applied in case that a signal y such

that y ≤ yε is observed. Let δ ≡
∫ yε
−∞ f(y | ps1) = P(y ≤ yε | ps1).32 Then, the first order

condition characterizing the incentive compatibility condition requires

∂E(πI)

∂p1

∣∣∣∣∣
p1=ps1

= πI1(ps1, p
ε
2)δ + πI(ps1, p

ε
2)

∫ yε

−∞
fp1(y | ps1)dy

+πI1(ps1, p
s
2)(1− δ) + πI(ps1, p

s
2)

∫ ∞
yε

fp1(y | ps1)dy

= 0, (11)

32This corresponds with the p-value in hypothesis testing.
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where πI(p1, p2) = p1(α− βp1 + γp2) and πI1(p1, p2) = α+ γp2− 2βp1.
33 Intuitively, if firm 1

increases its price, it reduces its profit directly but also decreases the probability the observed

price falls into the left tail event thereby triggering a punishment. So, ps1 is to balance the

marginal loss in the profit with the marginal benefit from a lower expected punishment.

By using the following Leibniz’s rule;∫ b

a

∂

∂x
f(x; t)dt =

d

dx

(∫ b

a

f(x, t)dt

)
, (12)

we have

πI(ps1, p
ε
2)

∫ yε

−∞
fp1(y | ps1)dy + πI(ps1, p

s
2)

∫ ∞
yε

fp1(y | ps1)dy

= ps1(α− βps1 + γps2)

∫ ∞
−∞

fp1(y | ps1)dy + γps1(p
ε
2 − ps2)

∫ yε

−∞
fp1(y | ps1)dy

= γps1(p
ε
2 − ps2)

∫ yε

−∞
fp1(y | ps1)dy,

since ∫ ∞
−∞

fp1(y | ps1)dy =
d

dp1

(∫ ∞
−∞

f(y | ps1)dy
)

= 0.

Also, we have ∫ yε

−∞
fp1(y | ps1)dy =

d

dp1

∫ yε

−∞
f(y | ps1)dy =

dF (yε | p1)
dp1

∣∣∣∣∣
p1=ps1

. (13)

We know that the normal distribution function is

F (yε | p1) =
1

2

[
1 + erf

(
yε − p1√

2σ

)]
,

where erf(y) = 2√
π

∫ y
0
e−t

2
dt. This implies that

dF (yε | p1)
dp1

∣∣∣∣∣
p1=ps1

=
1√
π
e
−
(
yε−ps1√

2σ

)2

·
(
− 1√

2σ

)

= − 1√
2πσ

e
−
(
yε−ps1√

2σ

)2

= −L(ps1; yε)

= −ε. (14)

33In the Appendix, we prove that the second order condition is satisfied.
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Thus, equation (11) is reduced to

πI1(ps1, p
s
2) = γ(pε2 − ps2)(δ + εps1). (15)

The left hand side is the marginal loss in the profit from increasing the price and the right

hand side is its marginal gain from a fall in the expected punishment. This leads to

pε2 = ps2 +
πI1(ps1, p

s
2)

γ(δ + εps1)
. (16)

Since πI1(ps1, p
s
2) < 0, it must be that pε2 < ps2. Also, as ε, δ → 0, pε2 → −∞. Is pε2 a

credible threat? It is an optimal response to some belief b = pε1 such that pε2 = pBR2 (pε1).

Since pBR2 (p1) is surjective, pε1, which is a threat belief, always exists. A threat to pε2 is

credible, because it is a best response given the threat belief that firm 1 chose a very low

price pε1. Such a low price threat can frustrate firm 1’s incentive to cut its price secretly.

Since equation (16) has a solution for any ε > 0, the Stackelberg outcome is an ε-PBE for

any ε > 0; hence, a limit PBE. Note that in this specific model, [UP] condition holds, i.e.,

limpε1→−∞ π(ps1, p
BR
2 (pε1)) = limpε2→−∞ π(ps1, p

ε
2) = −∞.

It deserves noticing that the Stackelberg outcome cannot be a strong limit PBE, because

neither limε→0 p
ε
1 nor limε→0 p

ε
2 exists. This implies that the Stackelberg leader’s price cannot

be a PBE outcome, either, by Proposition 2.

Figure 4 illustrates equilibrium values of firm 2’s threat price, pε2, with a change in ε for

parameter values of α = 1, β = 3, γ = 2 and σ = 1. It shows that as ε becomes smaller,

the threat price declines rapidly. This monotonicity reflects the intuition that a smaller

probability of a tail event due to a lower ε must be accompanied by a harsher punishment

in order to maintain the same deterrence power. The same intuition can be applied to a

change in the variance of a noise. Figure 5 shows a monotonic decrease in the threat price

as σ2 gets smaller for the value of ε = 0.1. Again, a decrease in firm 1’s utility due to an

excessively low price by firm 2 must be compensated for a smaller probability of a tail event

by more precise information.

5 Cheap Talk Model with an Informed Receiver

Our concepts can be also applied to incomplete information games, although our discussion

has been restricted only to imperfect information games. For example, we can consider the
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following cheap talk game in which a sender observes only a noisy signal of the Nature’s

choice.

There are a sender S, and a receiver R. The state of nature θ is a random variable which

is distributed over R. For example, θ could be the quality of a product that a salesperson sells

to a consumer. According to Bayes-Laplace’s principle of indifference (insufficient reason),34

we assume that θ is uniformly distributed over R,35 i.e., players have no information about

θ a priori. Although neither the sender nor the receiver knows the accurate value of θ, both

of them receive a noisy signal on the state of nature vi ∈ V = R for i = S and R where

vi = θ+ εi, εi is stochastically independent with θ, and εi’s are independent. In other words,

R is also partially informed.36 We assume that εi follows a normal distribution with its mean

zero and the precision hi, i = S,R, where hS > hR.37 The assumption of the inequality in

the precision reflects the feature that the sender (expert) has higher expertise about θ than

the receiver (amateur).

The game proceeds as follows. First, the state of nature θ is realized and then a sender and

a receiver receive a private signal vS and vR respectively without knowing θ. After observing

private information vS, S sends a payoff-irrelevant message (cheap talk) m ∈M = R to R.38

Then, receiving a message m ∈M , R updates the posterior belief about vS, b̂(m), and then

forms the belief about θ, b(m, vR), by using m and vR, where b : M ×V → R. Based on the

belief b(m, vR), he chooses an action a ∈ A(= R). A strategy of the receiver determines the

sender’s payoff as well as his own payoff.

34The principle of indifference, so-named by Keynes (1921), specifies that a uniform prior distribution

should be assumed when nothing is known about the true state of nature before observable data are available.
35Note that we are assuming an improper prior distribution.
36This cheap talk game with a partially informed receiver was first considered by Seidmann (1990), but

his analysis and all the subsequent analyses rely crucially on the assumption of finite or bounded supports of

the information. See, for example, Watson (1996), Lai (2014) and Ishida and Shimizu (2016). The analysis

of this section is unique in that all the noisy variables have unbounded supports.
37Assuming a normal distribution is to avoid shifting support of the distribution. Allowing shifting support

could make the analysis trivial because some signals off the equilibrium support, which cannot occur in

equilibrium, could reveal that S deviated from the equilibrium.
38Since the cheap talk message of the sender, m, is payoff-irrelevant by the definition of cheap talk, the

payoffs of the players (US and UR) which are described below should not depend on m. This is distinguished

from Pitchick and Schotter (1987). In their model, an expert makes a binding recommendation, for example,

about the price, so it is not cheap talk, whereas we consider an unbinding recommendation of an expert

(for example, about the quality) thereby making the payoff of the receiver not directly depend on the

recommendation m.
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The payoff to S is given by a continuously differentiable function US : A → R and

the payoff to R is given by twice continuously differentiable function UR : A × Θ → R.

Specifically, we assume that (1) US(a) = u(a) where u′ > 0, u′′ ≤ 0 and lima→−∞ u(a) = −∞,

and (2) UR(a, θ) = −(a − θ)2. The assumption that lima→−∞ u(a) = −∞ is a sort of [UP]

condition to ensure that punishments are unbounded. The receiver’s utility function implies

that it has a unique maximum in a for all θ and the maximizer of UR, denoted by aR(θ),

is strictly increasing in θ. Independence of the sender’s utility function on θ means that S

has transparent motives, and the utility which is increasing in a means that S has monotone

motives. The monotonic increase of aR(θ) in θ means that the receiver will want to buy more

units of high θ which can be interpreted as quality. A typical example that corresponds to

these assumptions is a situation in which a salesperson gets paid based on the quantity he

sells, so that the salesperson’s utility is increasing with respect to the consumer’s purchasing

choice regardless of θ.

A strategy for S specifies a signaling rule given by a measurable function s : V →M . A

strategy for R is an action rule given by a function α : M×V → A. We will resort to several

equilibrium concepts, perfect Bayesian equilibrium (PBE), ε-perfect Bayesian equilibrium

(ε-PBE) and limit perfect Bayesian equilibrium (limit PBE).

We are mainly interested in whether a fully revealing equilibrium can be possible in this

model in which R has some information about θ. The following proposition says that the

fully revealing equilibrium cannot exist, insofar as we use PBE as our equilibrium concept.

Proposition 5. There is no fully revealing PBE.

The important insight behind this proposition is that any message m is possible in equi-

librium, so that R must believe no matter what message is conveyed by the sender, no matter

how unlikely the message is. There is no way to punish and discipline a sender even if it is

crystal clear that she has an incentive to lie by inflating m, because the concept of PBE is

required to respect any message possible in equilibrium.

We will argue below that this belief is not reasonable in the following sense. Suppose

the sender sends a truthful message in equilibrium. Also, suppose that R who has a private

signal vR finds out that the sender’s message m is too far from his own information (too high

compared to vR). There are two possibilities. One possibility is that S honestly reported

her signal but R happened to receive an exceptionally low value of vR. The other possibility

is that S exaggerated the message above the true value of vS, although the actual value

of vS was low. Unfortunately, the weak consistency condition of PBE requires us to count
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on the first scenario, although it is a very unlikely event in the sense that the likelihood

L(m; vR) ≡ f(vR | m) is very low, i.e., the signal vR is very unlikely to occur if the sender’s

message m is true. It seems reasonable to us, though, to reject the hypothesis that S sent

a truthful message if m is too far from the receiver’s signal vR, because it is very unlikely

(L(m; vR) ≤ ε for some small ε > 0) even though it is possible (L(m; vR) 6= 0). So, if R rejects

the hypothesis that S sent an equilibrium message, the message which R received from the

sender can be regarded as an off-the-equilibrium message, and, therefore, the posterior belief

need not be pinned down by the Bayes’ law; in this case, any arbitrary belief might be

allowed. This is what we call ε-likelihood consistency. We can adapt the definitions of our

equilibrium concepts to this cheap talk game.

Definition 6. An assessment ((s∗(vS)), α∗(b), b̂(m), b(m, vR, ε)) satisfies ε-likelihood consis-

tency iff for any m and vR, b(m; vR) = θ̂(m) ≡ hSm+hRvR
hS+hR

if L(m; vR) > ε, and b(m, vR; ε) ∈ R
can be arbitrary if L(m; vR) ≤ ε, where θ̂(m) is the maximum likelihood estimator for θ.39

Definition 7. An assessment ((s∗(vS)), α∗(b), b̂(m), b(m, vR, ε)) is an ε-perfect Bayesian

equilibrium (ε-PBE), for some ε > 0, if it satisfies sequential rationality and ε-likelihood

consistency, i.e.,

(2-I) s∗(vS) ∈ arg maxm
∫∞
−∞ U

Si(α∗(m))f(vR | vS)dvR,

(2-II) α∗(m) ∈ arg maxa U
R(a, b(m, vR; ε)),

(2-III) b(m, vR; ε) = θ̂(m) if L(m; vR) > ε and b(m, vR; ε) can be arbitrary if L(m; vR) ≤ ε.

Definition 8. An assessment ((s∗(vS)), α∗(b), b̂(m)) is a limit PBE if for any small ε > 0

such that ε ≤ ε̄ for some ε̄ > 0, there exists b(m, vR, ε) such that ((s∗(vS)), α∗(b), b̂(m), b(m, vR, ε))

is an ε-PBE.

Now, we can apply the equilibrium concepts to our model. To see the possibility of a fully

revealing equilibrium, we will concentrate on the following specific form of strategy profile;

(3-I) S with vS announces m = vS.

(3-II) R chooses α(b) = b.

(3-III) R believes b(m, vR) = θ̂(m, vR) ≡ hSm+hRvR
h

if m−vR < ρ and believes b(m, vR) = θ̃

if m− vR ≥ ρ for some ρ > 0 where h = hS + hR and θ̃ < m is some constant in R.

39It is well known that under the normality assumption of error terms, the maximum likelihood estimator

is equivalent to the (generalized) Bayesian estimator minimizing the loss function defined by the mean square

error, which is the posterior mean.
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R’s action rule given by (3-II) together with the belief (3-III) will be called a “crosscheck-

ing strategy”, and ρ will be called permissible deviation between m and vR. Note that there

is no off-the-equilibrium message, because any message can occur even if the sender tells the

truth, as long as εi follows a normal distribution over (−∞,∞).

We will now invoke ε-PBE in this game. Let us first consider the belief and the optimal

strategy of R with private information vR. Given ε > 0, define vεR by L(m, vεR) = ε and ρε

by ρε = m − vεR. Then, it turns out that the belief given in (3-III) with ρ = ρε satisfies ε-

likelihood consistency defined by (2-III), because m−vR ≥ ρε (vR ≤ vεR) implies L(m, vR) ≤ ε

so that it is not necessary that b(m, vR) = θ̂(m, vR).

Since it is obvious that (3-II) is R’s optimal decision, it is enough to focus on the optimal

decision of the sender.

S will maximize

US(m; vS) =

∫ m−ρε

−∞
u(θ̃)f(vR | vS)dvR +

∫ ∞
m−ρε

u(θ̂(m, vR))f(vR | vS)dvR. (17)

The economic reasoning behind this formula goes as follows. The first term represents the

punishment that the sender would get when vR is very low (vR ≤ m− ρε). The second term

indicates her utility when vR falls into a normal confidence region (vR > m− ρε). Thus, the

effect of inflating the message on the sender’s utility is

∂US

∂m
= u(θ̃)f(m− ρε | vS) +

∫ ∞
m−ρε

u′(θ̂(m, vR))
∂θ̂

∂m
f(vR | vS)dvR − u(θ̂(m,m− ρε))f(m− ρε|vS)

=
hS
h

∫ ∞
m−ρε

u′(θ̂(m, vR))f(vR|vS)dvR + (u(θ̃)− u(θ̂(m,m− ρε)))f(m− ρε|vS), (18)

since ∂θ̂
∂m

= hS
h

. The first term is the effect of utility increases in normal cases due to the

inflated announcement and the second term is the utility loss that she is expected to bear

due to an increase in the punishment probability by increasing his announcement marginally.

The incentive compatibility condition requires ∂US

∂m
|m=vS = 0, implying that

u(θ̂(vS, vS − ρε))− u(θ̃) =
hS
h

∫∞
vS−ρε

u′(θ̂(vS, vR))f(vR|vS)dvR

f(vS − ρε)
. (19)

The left hand side is a gain from inflating m, while the right hand side is the loss due to an

increase in the expected penalty. Therefore, we have

u(θ̃) = u(θ̂(vS, vS − ρε))−
hS
h

∫∞
vS−ρε

u′(θ̂(vS, vR))f(vR|vS)dvR

f(vS − ρε)
. (20)
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Since u is continuous, u′ > 0 and lima→−∞ u(a) = −∞, for any vS, there exists θ̃ < θ̂(vS, vS−
ρε) that satisfies equation (20). Since S has no incentive to lie, the above strategy is ε-PBE.

Also, since θ̃(ε) exists for any ε > 0, the fully revealing outcome is a limit PBE.

Proposition 6. A fully revealing outcome with the crosschecking strategy and the belief given

by (3-II) and (3-III) satisfies ε-PBE if ρε = m− vεR where L(m, vεR) = ε, and furthermore it

is a limit PBE.

The proof is omitted, since the incentive compatibility condition of the sender and the

ε-likelihood consistency condition of ε-PBE are all checked above.

This result implies that truth-telling is possible in equilibrium even in this cheap talk

game with transparent and monotone motives and with unbounded support of all signals,

if the receiver is somewhat informed. The main message of this proposition is that honesty

is not contradictory with the Bayesian approach, because the fully revealing outcome is

supported as an ε-PBE for any arbitrarily small ε > 0.

6 Conclusion

In this paper, we introduced two equilibrium concepts, ε-PBE and limit PBE that slightly

weaken the consistency requirement of PBE. These concepts turned out to be useful in

dynamic games with noisy signals that have unbounded supports. We showed that the first

mover advantage that disappeared in those games could be recovered by invoking those

equilibrium concepts.

However, we admit that our result of the existence of a limit PBE depends crucially

on [UP] condition which makes the “boiling-in-oil” strategy feasible. The “boiling-in-oil”

strategy is optimal given the extremely pessimistic belief, but the punisher can be also

severely penalized by the belief. We believe that it is indeed a strong sufficient condition but

not necessary for the existence of a limit PBE, and thus believe that a milder condition could

guarantee its existence. We hope to see more developments in those equilibrium concepts in

a near future.

Appendix

Proof of Proposition 1: (i) If a∗1 is a limit PBE, for any ε > 0 such that ε < ε̄ for some ε̄ > 0,

there exists b(y; ε) such that (a∗1, a
∗
2(b), b(y; ε)) is an ε-PBE. So, the proof is done.
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(ii) If (a∗1, a
∗
2(b), b(y)) is a PBE, it is sufficient to show that for any ε > 0, one can

take b(y; ε) satisfying ε-PBE. For any ε > 0, take b(y; ε) = b(y). Then, (a∗1, a
∗
2(b), b(y; ε)) =

(a∗1, a
∗
2(b), b(y)) is an ε-PBE, because b(y; ε) = b(y) satisfies consistency, implying ε-likelihood

consistency. Since this holds for any ε > 0, a∗1 is a limit PBE. �

Proof of Proposition 2: (i) (⇐=) The proof is similar to the proof of Proposition 1(ii). If

(a∗1, a
∗
2(b), b(y)) is a PBE, for any εn such that εn → 0, take b(y; εn) = b(y). Then, by

Proposition 1, (a∗1, a
∗
2(y; εn), b(y; εn)) = (a∗1, a

∗
2(b), b(y)) is εn-PBE. Since it is obvious that

limn→∞ b(y; εn) = b(y), it is a strong limit PBE.

(ii) (=⇒) If (a∗1, a
∗
2(b), b(y)) is a strong limit PBE, for any ε(> 0), there exists b(y; ε) such

that limε→0 b(y; ε) = b(y) and a∗2(b) is a BR to a∗1 given b(y; ε), i.e.,

U II(a∗1, a
∗
2(b(y : ε)) ≥ U II(a∗1, a2),∀a2 ∈ A2. (21)

Since this holds for any ε > 0, we take limits to get

lim
ε→0

U II(a∗1, a
∗
2(b(y; ε)) = U II(a∗1, lim

ε→0
a∗2(b(y; ε))) (by continuity of U II)

= U II(a∗1, a
∗
2(lim
ε→0

b(y; ε)), (by continuity of a∗2(b) in b)

= U II(a∗1, a
∗
2(b(y))) (∵ lim

ε→0
b(y; ε) = b(y))

≥ U II(a∗1, a2),∀a2 ∈ A2. (by Inequality (21))

(Note that a∗2(b) is continuous in b because a∗2(·) = aBR2 (·).) Hence, (a∗1, a
∗
2(b), b(y)) is a

PBE. �

Proof of Proposition 3: For any ε > δ, let a∗1 ∈ A∗ be player 1’s action of ε-PBE. By sup-

pressing the subscript of player 1 in the payoff function, we can compute the equilibrium

payoff of player 1 as

Π∗ ≡ (1− δ)π∗ + δπ(a∗1),

where π∗ = π(a∗1, a
BR
2 (a∗1)), since ε-likelihood consistency allows b(y) = a1 if y 6= a∗1 with

probability δ. Her payoff from the most profitable deviation is

max
a′1 6=a∗1

Π ≡
[(

1− δ

n− 1

)
π(a′1, a

BR
2 (a1)) +

δ

n− 1
π(a′1, a

BR
2 (a∗1)),

]
because player 2 observes y = a∗1 with probability δ

n−1 if a1 6= a∗1.

We have πN > π since a∗1 ∈ A∗. Therefore, π∗ > π(a′1, a2(a1)) for any a′1 6= a∗1. This

implies that there exists small δ > 0 such that Π∗ > Π. Take such δ and denote it by δ̄.
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Then, for any δ ≤ δ̄, (a∗1, a
BR
2 (b(y))) is an ε-PBE, since ε > δ, where b(a∗1) = a∗1 and b(y) = a1

if y 6= a∗1. �

Proof of Proposition 4: Without loss of generality, assume that limb→−∞ U
I(as1, a

BR
2 (b)) =

−∞.

Lemma 1. aBR2 (a1) is surjective.

Proof. It is enough to show that aBR2 (a1) is not bounded by K for some K ∈ (0,∞), i.e.,

|aBR2 (a1)| ≤ K. Suppose aBR2 (a1) is bounded. By [UP] condition, limb→−∞ U
I(as1, a

BR
2 (b)) =

−∞. Then, by continuity of U I , we have limb→−∞ U
I(as1, a

BR
2 (b)) = U I(a1, limb→−∞ a

BR
2 (b)) =

−∞. This is not possible, because U I(a1, a2) is continuous for all a2 ∈ R and aBR2 (b) is

bounded. Therefore, aBR2 (a1) must be not bounded. The case that limb→∞ U
I(as1, a

BR
2 (b)) =

−∞ is similar, so we omit the proof for the case. �

For any fixed ε > 0, take yε such that L(as1, yε) = f(yε | as1) = ε where yε < as1. Then,

ε-PBE allows that player 2 punishes player 1 if he observes y < yε by assigning the posterior

belief b(a1 | y) = aε1 < as1 and otherwise (if he observes y ≥ yε) b(a1 | y) = as1. Let

δ ≡
∫ yε
−∞ f(y | as1) = P(y ≤ yε | as1).

Suppressing the superscript I of U I , we can compute player 1’s expected utility as

E[U ] = U(a1, a
BR
2 (aε1))

∫ yε

−∞
f(y | a1)dy + U(a1, a

BR
2 (as1))

∫ ∞
yε

f(y | a1)dy. (22)

The first order condition requires

∂E[U ]

∂a1

∣∣∣∣∣
a1=as1

= ϕ1 + ϕ2 = 0, (23)

where

ϕ1 = U1(a
s
1, a

BR
2 (aε1))

∫ yε

−∞
f(y | as1)dy + U1(a

s
1, a

BR
2 (as1))

∫ ∞
yε

f(y | as1)dy,

ϕ2 = U(as1, a
BR
2 (aε1))

∫ yε

−∞
fa1(y | as1)dy + U(as1, a

BR
2 (as1))

∫ ∞
yε

fa1(y | as1)dy.

By using as2 = aBR2 (as1), a
ε
2 = aBR2 (aε1),

∫ yε
−∞ f(y | as1)dy = δ and

∫ yε
−∞ fa1(y | a

s
1)dy = −ε

from (13) and (14), we can simplify equation (23) into

ε(U(as1, a
s
2)− U(as1, a

ε
2)) = δ(U1(a

s
1, a

s
2)− U1(a

s
1, a

ε
2))− U1(a

s
1, a

s
2). (24)
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The left hand side (LHS) of (24) is a reduction in the penalty probability (ε) due to a

marginal increase in a1 times the magnitude of the penalty (U(as1, a
s
2) − U(as1, a

ε
2)), which

is a reduction in the expected cost from a marginal increases in a1. The right hand side

(RHS) of (24) is a reduction in the expected gain due to a marginal deviation from as1. It is

straightforward to see that (25) follows from (24).

U(as1, a
s
2)− U(as1, a

ε
2) =

δ

ε
(U1(a

s
1, a

s
2)− U1(a

s
1, a

ε
2))−

U1(a
s
1, a

s
2)

ε
. (25)

Note that

lim
ε→0

δ

ε
= lim

yε→−∞

∫ yε
−∞ f(y | as1)dy
f(yε | as1)

= lim
z→−∞

∫ z
−∞

1√
2π
e−

x2

2 dx

1√
2π
e−

z2

2

(∵ by letting z =
yε − as1
σ

)

= lim
z→−∞

1√
2π
e−

z2

2

− z√
2π
e−

z2

2

(∵ by L’Hospital’s rule)

= lim
z→−∞

−1

z
= 0. (26)

Since δ
ε
→ 0, |U1(a

s
1, a

ε
2)| ≤ M for some M > 0 and

U1(as1,a
s
2)

ε
is finite for any ε > 0, RHS

of (25) is bounded, so there must exist aε2 ∈ R that satisfies (24) by the intermediate value

theorem, due to continuity of U with respect to a2, [UP] condition and Lemma 1.

Since aBR2 (a1) is surjective by Lemma 1, we can define aε1 ∈ (−∞,∞) such that aε2 =

aBR2 (aε1) for any aε2 ∈ R. Then, for any ε > 0, (as1, a
BR
2 (b), b(y; ε)) is an ε-PBE where

b(y; ε) =

{
as1 if L(as1; y) > ε

aε1 if L(as1; y) ≤ ε,

aBR2 (b(y; ε)) =

{
as2 if L(as1; y) > ε

aε2 if L(as1; y) ≤ ε,

Since there exist aε1 and aε2 for any ε, as1 is a limit PBE.

�

Lemma 2. In the price competition model, the Stackelberg price p∗1 satisfies the second order

condition of optimization, i.e., ∂2E(πI)

∂p21

∣∣∣
p1=ps1

< 0.
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Proof. The second order condition requires

∂2E(πI)

∂p21
= ψ1 + ψ2 + ψ3,

where

ψ1 = π11(p
s
1, p

ε
2)

∫ yε

−∞
f(y | p1)dy + π11(p

s
1, p

s
2)

∫ ∞
yε

f(y | p1)dy,

ψ2 = 2

[
π1(p

s
1, p

ε
2)

∫ yε

−∞

∂f(y | p1)
∂p1

dy + π1(p
s
1, p

s
2)

∫ ∞
yε

∂f(y | p1)
∂p1

dy

]
,

ψ3 = π(ps1, p
ε
2)

∫ yε

−∞

∂2f(y | p1)
∂p21

dy + π(ps1, p
s
2)

∫ ∞
yε

∂2f(y | p1)
∂p21

dy.

Tedious calculations yield

ψ1 = −2β

∫ ∞
−∞

f(y | p1)dy = −2β < 0,

ψ2 = 2γ(pε2 − ps2)
∫ yε

−∞
fp1(y | ps1)dy = −2εγ(pε2 − ps2) < 0,

ψ3 = π(ps1, p
s
2)

∫ ∞
−∞

∂2f(y | p1)
∂p21

dy + γps1

∫ yε

−∞

∂2f(y | p1)
∂p21

dy

= π(ps1, p
s
2)

∂

∂p1

∫ ∞
−∞

∂f(y | p1)
∂p1

dy + γps1
∂

∂p1

∫ yε

−∞

∂f(y | p1)
∂p1

dy.

Since
∫∞
−∞

∂f(y|p1)
∂p1

dy =
∫∞
−∞ f(y | p1)

(
y−p1
σ

)
dy = E[y − p1 | p1]/σ = 0, ψ3 is simplified to

ψ3 = γps1
∂

∂p1

∫ yε

−∞
f(y | p1)

(
y − p1
σ

)
dy

= γps1
∂

∂p1

∫ yε−ps1
σ

−∞
zφ(z)dz

= γps1
∂

∂p1
P[z ≤ yε − ps1

σ
]

< 0,

where z follows the standard normal distribution and φ(z) is the standard normal distribution

that z =
yε−ps1
σ

follows. This completes the proof. �
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Proof of Proposition 5: Suppose there is a fully revealing PBE in which s∗(vS) = vS for all

vS. Then, the weak consistency condition of PBE requires that b̂(vS) = vS and b(m, vR) =

θ̂(m) ≡ hSm+hRvR
h

, since any m is possible in equilibrium due to the assumption of the

unbounded support of εS and so any m must be taken seriously to update the belief of

θ. Based on this belief, the optimal response of R is α∗ = θ̂(m) = hSm+hRvR
h

. This is

a contradiction to the optimality of m = vS, because S would benefit from deviating to

m′ = m+ ε for ε > 0 due to the monotone motive assumption, i.e., u′(a) > 0. �
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Figure 2. Extensive Form of Bagwell’s Example
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