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1 Introduction

Since Pigou’s (1932) seminal work, it is well known that in perfectly competitive markets,

the optimal emission tax rate on a harmful emission is equal to the marginal environ-

mental damage caused by the emission, and that this tax policy leads to the first-best

optimality. The tax that internalizes the negative externality of emission is known as

“Pigovian tax.” In imperfectly competitive markets, however, this Pigovian tax is not

optimal (Buchanan, 1969; Barnett, 1980; Misiolek, 1980; Baumol and Oates, 1988). In

a monopoly market, the monopolist’s production level falls short of the optimal. To

mitigate the welfare loss due to suboptimal production level, the emission tax rate in

monopoly markets should be lower than the Pigovian rate. However, this low tax rate

distorts the incentive for the monopolists’ emission abatement activities, and thus re-

duces welfare. Therefore, the first-best optimality is not achieved by the emission tax

(the second-best optimality). Recently, Fowlie et al. (2016) estimated and structurally

simulated the welfare impacts of the Pigovian (first-best) level of carbon pricing in the US

cement industry (a typical imperfectly competitive market), and showed that its impact

on total welfare is negative and substantial.1 This evidence implies that it is important

to mitigate the welfare loss caused by market power when the emission is priced.

The result that the second-best tax rate is lower than its Pigovian counterpart may

not hold in oligopoly markets. Levin (1985) showed that market power can exacerbate

the negative externality in the asymmetric Cournot model and Simpson (1995) showed

that the optimal tax rate can be higher than the Pigovian if firms are asymmetric and

the degree of heterogeneity among firms is large. The latter result was derived because

distribution of production among firms as well as the total production level affect welfare

when firms are asymmetric. A higher tax rate induces production substitution from the

firm with inferior emission abatement technology to the firms with superior emission

abatement technology, thus improving welfare.2 However, whether the optimal tax rate

1Welfare loss occurs when the social cost of carbon is below $40 per ton of CO2; the magnitude is
over $10 billion when the social cost of carbon is $30 (see Fig 4B in their paper).

2For the general principle of welfare-improving production substitution, see also Lahiri and Ono
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is higher or lower than the Pigovian, the optimal level intricately depends on abatement

technologies and the individual demands of firms. Moreover, the first best is not achieved

by the emission tax policy.3

In this study, we propose a new policy solution for oligopoly markets, an emission

pricing policy based on emission intensity targets. Governments impose a firm-specific

emission intensity (emission per output) target on each firm. Firms that fall short of

the target pay the emission tax (or procure emission permits) according to the extent of

shortfall, and firms that overachieve the target receive the subsidy (or can sell emission

permits). We show that the Pigovian tax, whose rate is the marginal environmental

damage, leads to the first-best optimality under imperfect competition when each firm’s

tax base is appropriately adjusted by its emission intensity target. Although the op-

timal target levels will be non-uniform among firms if the firms are asymmetric, they

do not depend on emission functions and can be tested by the market and government

information.

The first-best optimality is shown because this pricing policy can be viewed as the

policy combination of emission tax and emission intensity regulation. Emission intensity

regulation has a production expansion effect (Holland et al., 2009; Ino and Matsumura,

2019).4 The production reduction effect by the Pigovian tax can be offset by choosing

adequate emission intensity targets.5 In other words, our policy provides enough instru-

ments working in combination. An emission tax works to derive pollution levels; setting

each different intensity target is therefore enough to effectively correct each firm’s output

level.

(1988).
3Even if firms are symmetric, the optimal tax rate can be higher and lower than the Pigovian tax in

free-entry markets. See Katsoulacos and Xepapadeas (1995) and Lee (1999). Nonetheless, the first best
is not achieved in their models.

4Holland et al. showed that a limit on the carbon intensity (low carbon fuel standard) may increase
total energy because of the production expansion effect, and calibrated the model to understand the
realistic impacts of the standard. Ino and Matsumura showed that the production expansion effect of
emission intensity regulation is equivalent to the effect of refunding emission tax revenue to consumers
generally.

5For the general property of emission intensity regulation, see Helfand (1991), Farzin (2003), and Lahiri
and Ono (2007). Bőhringer et al. (2017) showed the difficulty inherent to the efficient implementation
of emission intensity regulation.
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Our result suggests that governments can set the tax rate to be the marginal social

cost of the emission (Pigovian tax) without taking into account the competition structure

of each market. The government can consider industry- or firm-specific conditions only

at the stage of imposing emission intensity targets, rather than at the point of choosing

the tax rate.

Both emission pricing policies (such as environmental taxes or tradable permit poli-

cies) and emission intensity regulations are widely observed (Helfand, 1991, Bushnell et

al., 2017). For example, the Japanese government imposes environmental taxes as well as

emission intensity targets in Japanese energy markets, which are typical oligopoly mar-

kets. In addition, several intensity regulations are imposed as per the Energy Conserva-

tion Act, such as the Japanese Act of the Rational Use of Energy enacted in 1979 (Mat-

sumura and Yamagishi, 2017). In the literature, many works have compared emission

pricing policies and emission intensity regulation policies in various contexts such as in

free-entry markets and non-free-entry markets, in open economies and closed economies,

and so on. It is known that under perfect competition, the emission pricing policy leads

to the first-best outcome whereas the emission intensity regulation does not (Holland et

al., 2009; Holland, 2012). However, under imperfect competition, the emission intensity

regulations may be superior to the emission pricing policies for welfare, which become

the second-best policies6 (Besanko, 1987; Helfand, 1991; Montero, 2002; Lahiri and Ono;

2007; Kiyono and Ishikawa, 2013; Amir et al., 2018; Hirose and Matsumura, 2020).

In contrast, we show the first-best optimality of the combination of two such standard

policies.

Our principle can also apply to portfolio standard policies such as renewable portfolio

standards (RPS), which have been introduced in the electricity markets of many coun-

tries. In an electricity market, the government can regulate the ratio of zero-emission

or renewable power sources, and then open the markets to trading quotas or introduce

6Fowlie et.al (2016) also empirically measured the welfare impacts of the policy that allocates free
permits in proportion to production, and showed that the policy improves welfare substantially. This
result is consistent with the theory of the second best.
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taxes. Similarly, the government can set the ratio of zero-emission or ultra-low emission

vehicles in the vehicle manufacturing industry. If a firm does not meet (overachieves)

the target, the firm must buy (sell) the permits or pay (receive) the tax. If the marginal

social damage due to the use of non-renewable power sources or gasoline and diesel ve-

hicles equals the price of the quotas or tax, the first-best optimum can be achieved with

appropriate targets.7

The remainder of this paper is organized as follows. Section 2 formulates the basic

model in a homogeneous product market. Section 3 presents our main result and derives

the optimal levels of emission tax and intensity targets. Section 4 discusses the two prob-

lems in implementing the policy, the ways in which governments can test the optimality

of the intensity target levels and the possibility that the tax revenue obtained from the

optimal policy is negative. Section 5 presents two applications for the tradable permit

market across industries and for the portfolio standards. Section 6 concludes this paper.

In the appendix, we provide a theoretical extension on quantity and price competition

with product differentiation.

2 The model

We consider an oligopoly market wherein n ∈ N firms choose their outputs (Cournot

competition) and emission abatement levels. This study focuses on the problem between

negative externality and market power and thus assumes a market with no uncertainty

and with no other market distortions such as any pre-existing distortional taxes on

inputs and outputs. For i = 1, . . . , n, qi ∈ R+ is firm i’s output, and ai ∈ R+ is the

level of firm i’s abatement activity. The firms’ products are homogeneous, and the inverse

7The Japanese government set up such schemes in energy markets. The government introduced targets
pertaining to zero-emission power source ratios and a trading quota in the electric power market. It
assigned different targets among firms, and a common price is imposed on all firms in the trading market
(Advisory Committee for Natural Resources and Energy, Ministry of Economy, Trade, and Industry,
2019). The Zero-Emission Vehicle (ZEV) Program in California also uses a similar pricing mechanism.
This program was introduced as part of a California state regulation that requires automakers to sell zero-
emission vehicles such as electric or fuel cell vehicles in California and 10 other states, and the required
number of zero-emission vehicles is linked to the automaker’s overall sales of gasoline and diesel vehicles
within the state (https://ww2.arb.ca.gov/our-work/programs/zero-emission-vehicle-program).
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demand function is p(Q), where Q =
∑n

i=1 qi. We assume that p(Q) is twice continuously

differentiable and p′(Q) < 0 for all Q as long as p > 0. Firm i’s cost function is ci(qi, ai).

We assume that ci(qi, ai) is twice continuously differentiable, ∂ci/∂qi > 0, ∂ci/∂ai > 0,8

and that the function is convex. Firm i’s emission function is ei(qi, ai). We assume that

ei(qi, ai) is twice continuously differentiable, ∂ei/∂qi > 0 and ∂ei/∂ai < 0, and that the

function is convex. The social welfare is defined by

W =

∫ Q

0
p(q)dq −

n∑
i=1

ci(qi, ai)−D

(
n∑

i=1

ei(qi, ai)

)
,

where D(·) is the environmental damage function, which is twice continuously differen-

tiable and convex, and D′ > 0. Note that the first term in this definition includes both

consumer surplus and the revenues of the firms. We assume a unique interior social

optimum and market equilibrium.9

We denote the outcomes at the social optimal by the superscript o. Assuming the

interior solution (i.e., qoi > 0 and aoi > 0), the first-order conditions for the welfare-

maximizing problem are

p(Qo) =
∂ci
∂qi

(qoi , a
o
i ) +D′(Eo)

∂ei
∂qi

(qoi , a
o
i ), (1)

−D′(Eo)
∂ei
∂ai

(qoi , a
o
i ) =

∂ci
∂ai

(qoi , a
o
i ), (2)

where Eo =
∑n

i=1 e
o
i with eoi = ei(q

o
i , a

o
i ). The second-order conditions are satisfied.

3 Optimal policy

We consider the following emission intensity targets, (θ1, . . . , θn) ∈ Rn
+. Firm i’s emission

intensity ei/qi is targeted by the government as θi = ei/qi. If firm i emits over (below)

this level, or in other words, ei > θiqi (ei < θiqi), it pays (receives) the tax (subsidy) for

the difference. Firm i’s profit maximization problem is described as

max
qi,ai

p(Q)qi − ci(qi, ai)− t[ei(qi, ai)− θiqi], (3)

8We relax this assumption in Section 5.2.
9A sufficient condition for the uniqueness is that p′′ ≤ 0, and ei and ci are strictly convex.
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where t ∈ R+ is the tax (subsidy) level.10

We denote the outcomes at the market equilibrium by the superscript ∗. Assuming

the interior solution (i.e., q∗i > 0 and a∗i > 0), the first-order conditions for firm i are

p′(Q∗)q∗i + p(Q∗) + tθi =
∂ci
∂qi

(q∗i , a
∗
i ) + t

∂ei
∂qi

(q∗i , a
∗
i ), (4)

−t
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ). (5)

We assume that the second-order conditions are satisfied.11

By comparing (4)–(5) with (1)–(2), we obtain the optimal levels of the emission tax

and emission intensity targets as

to = D′(Eo) > 0, θoi = −p′(Qo)qoi
D′(Eo)

> 0. (6)

Proposition 1 Suppose the Cournot oligopoly in a homogeneous product market that

is presented here. There exists (θ1, . . . , θn) such that the policy attains the first-best

optimality (i.e., q∗i = qoi and a∗i = aoi ) if and only if the tax rate is Pigovian (i.e.,

t = D′(Eo)).

Proof. For sufficiency, suppose that t = to and set (θ1, . . . , θn) = (θo1, . . . , θ
o
n) as defined

in (6). Substitute (6) into the market conditions (4) and (5). Then, by (1) and (2), we

find that (4) and (5) are satisfied when q∗i = qoi and a∗i = aoi .

To prove necessity, we show the contraposition. Suppose that t ̸= D′(Eo) and take

(θ1, . . . , θn) arbitrarily. Then, by (5) and (2),

∂ci(q
∗
i , a

∗
i )/∂ai

∂ei(q∗i , a
∗
i )/∂ai

= −t ̸= −D′(Eo) =
∂ci(q

o
i , a

o
i )/∂ai

∂ei(qoi , a
o
i )/∂ai

.

Therefore, (q∗i , a
∗
i ) never equates to (qoi , a

o
i ) since the first and last terms are not equal.

Q.E.D.

10Alternatively, the government may measure the obedience of the firm based on its emission intensity.
If firm i’s realized emission intensity ei/qi is above (below) the regulated level θi, i.e., ei/qi > θi (ei/qi <
θi), it is penalized (rewarded) by the rate tqi (i.e., t per production qi) for the difference ei/qi − θi.

11A sufficient condition for it is p′′ ≤ 0.
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The emission pricing policy based on emission intensity targets attains the first-

best outcome in an oligopoly market. Moreover, the optimal tax rate is the traditional

Pigovian level, that is, the marginal environmental damage at the optimal level of total

emission. Emission intensity regulation gives producers an incentive to expand their

production to relieve the regulatory constraint (Ino and Matsumura, 2019). Adjusting

for this production expansion effect, the firm-specific emission intensity target can cancel

out the effect of each firm’s market power (and as a result, promote consumption). Thus,

the emission tax can uniformly correct the negative externality at the Pigovian level. In

the appendix, we show that this result is robust even under more general oligopoly

markets including product differentiation and price competition.

As an important application of the intensity-based emission tax provided here, we can

replace the emission tax with tradable emission permits. If a market exists for tradable

permits across industries, the government can achieve the first best as long as firms

are price takers in the tradable permit market. We formally discuss this application in

Section 5.1. As stated in Introduction, our principle can also apply to portfolio standard

policies. We formally discuss this application in Section 5.2.

We should remark that it is not as easy to implement our policy as the theory suggests.

In discussing this problem, it is useful to clarify the advantages and disadvantages of the

intensity-based emission tax to the second-best emission tax policy. The second-best

emission tax policy is given by solving12

max
t

W ∗ =

∫ Q∗

0
p(q)dq −

n∑
i=1

ci(q
∗
i , a

∗
i )−D

(
n∑

i=1

e∗i

)
,

with assuming θi = 0, where e∗i = ei(q
∗
i , a

∗
i ). From the first-order condition of this

12We assume a uniform tax t, that is, we do not allow firm-specific emission tax ti. In this sense, the
optimal emission tax considered here may be the third best. Note that for the intensity-based emission
tax, the optimal tax level is uniform, i.e., ti = D′ for all i, even if we take firm specific emission taxes
into consideration.
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problem, the second-best emission tax too must satisfy13

too = D′ (E∗) + p′(Q∗)

∑n
i=1 q

∗
i dq

∗
i /dt∑n

i=1 de
∗
i /dt

, (7)

where E∗ =
∑n

i=1 e
∗
i .
14

Remark 1 When firms are asymmetric, the government should set n emission intensity

targets. This is because in order to attain the first-best outcomes, the policy requires n+1

policy instruments for fixing one negative externality and the market power of n firms.

Thus, if too many and too wide a variety of firms are in the market, the government faces

an informational problem for setting intensity targets. However, we have to note that

this informational problem is not unique to our policy since the required informational

components in (6), D′, p′, and qi, are also included in the second-best policy (7). Further,

our policy does not require the estimation of dq∗i /dt and dE∗/dt as in (7). Thus, the

optimal levels of the targets may be tested more easily than the second-best policy in

some methods, even in asymmetric cases. We discuss these methods in Section 4.1.

Remark 2 To correct the market power along with the externality, the government

must provide some subsidy to mitigate the penalty to consumers. However, institution-

ally and politically, it is difficult to explicitly subsidize monopolists.15 The second-best

emission tax could avoid this problem by reducing the tax level from the first and im-

plicitly subsidizing the firms by this reduction, which is equal to the second term in the

left-hand side on (7). Similarly, intensity-based emission tax could avoid the problem

by reducing the tax base from the first. This reduction is expressed by θiqi in (3) and

13If the firms are identical, the expression is reduced to

too = D′ (E∗) + p′(Q∗)q∗i
dq∗i /dt

de∗i /dt
,

which is the well-known formula in the literature. See Barnett (1980) for the monopoly case (i.e., n = 1
and thus, q∗i = Q∗). See Ebert (1991/2) and Katsoulacos and Xepapadeas (1996) for the extension to
the symmetric oligopoly case.

14Note that this equation is not an explicit solution for too since the market equilibrium outcomes
on the right-hand side also depend on too. In contrast, for the intensity-based emission tax, (6) is the
explicit solution evaluated by the social optimal outcomes.

15“The environmental agency, however, will typically have neither the authority nor the inclination to
offer subsidies to monopolists” (Baumol and Oates, 1988, p.82).
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implicitly subsidizes the firms by tθiqi. However, even in these policies, if the tax revenue

becomes negative, the included subsidy is no more “implicit” and would be difficult to

implement institutionally and politically. In particular, because our policy attains the

first-best outcomes, it is expected that the tax revenue is smaller than the second-best

policy. We discuss this problem in Section 4.2 by simulating the tax revenue of our pol-

icy. Consequently, if the abatement cost is low, the market is highly concentrated, and

the environmental damage is insignificant, then the tax revenue might be negative.

These two remarks suggest to us that our intensity-based policy would work well

in the industries in which the number of firms is neither too large (i.e., not close to a

perfectly competitive market) nor too small (i.e., not close to a monopoly market), such

as the cement, automobile, and electric power industries.

4 Consideration for implementation

4.1 Testing the optimal levels of emission intensity

The government may be aware of the optimal emission price, d = D′(Eo), and imposes

the emission tax according to this level (t = d). However, the government needs to set

the optimal target levels of emission intensity (θo1, . . . , θ
o
n). In order to test whether the

targets are optimal or not, two approaches may be used: (i) the conventional approach

following Lerner’s (1934) rule, which relates to the demand elasticity, and (ii) the new

approach following Weyl and Fabinger’s (2013) idea, which relates to the pass-through

rate. The government can check the optimality of θi by testing whether Eq. (8) or (9)

is satisfied or not.

Lerner’s approach If θi is optimal for i = 1, 2..., n, the market outcomes are consistent

to the social optimal, q∗i = qoi and a∗i = aoi , as seen in Proposition 1. Thus, using the

well-known Lerner’s rule, (6) yields

θi = −p∗

d

(
dp

dQ

Q∗

p∗

)
q∗i
Q∗ = −p∗

d

s∗i
ϵ∗
, (8)
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where p∗ = p(Q∗) is the market price, ϵ∗ = (p∗/Q∗)/(dp/dQ) is the market demand

elasticity, and s∗i = q∗i /Q
∗ is the market share of the firm i at equilibrium. Note that the

data for p∗ and s∗i are available in the current market, and ϵ∗ can be estimated under a

sufficient volatility in market prices and quantities.

If all firms are symmetric, then si = 1/n. Then, the above equation implies that

limn→∞ θoi = 0. In other words, if the market is sufficiently competitive, the optimal

policy converges to traditional Pigovian tax.

Weyl and Fabinger’s approach Weyl and Fabinger (2013) argued that the pass-

through rate of tax is an important and a tractable welfare indicator under imperfect

competition. The pass-through rate is observed or estimated by measuring the change

in the market price (market information) when a tax rate (government information) is

altered. Therefore, from an empirical point of view, it is useful to characterize the eco-

nomic effects using such measurable indicators.16 Following their spirit and decomposing

the second equation in (6), if the given levels of θi’s are optimal, it must be satisfied that

θi = −dp∗/dt

t

q∗i
dQ∗/dt

, (9)

where dp∗/dt and dQ∗/dt approximate the ratio of the differences in the market price

and the market size (market information) to the difference in our tax level (government

information), respectively.17 Thus, if we have sufficient experience in policy alteration or

related data, we can test whether (9) is satisfied.

4.2 Tax revenue

To discuss whether the tax revenue generated by our intensity-based emission tax is pos-

itive or negative, we provide a simulation by specifying the functions in this subsection.

Suppose that p(Q) = Y − Q and D(E) = dE where Y > 0, d > 0, and Y > d.

Consider that the firms are symmetric and assume ci(qi, ai) = nαa2i /2 where α > 0 and

16Using this idea, Weyl and Fabinger (2013) investigated tax incidence, and Häckner and Herzing
(2016) studied the marginal cost of public funds. Adachi and Fabinger (2017) extended these ideas to
quite general oligopoly models.

17If we adopt the tradable permit scheme, the tax level is replaced by the price of the permits.
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social optimal market equilibrium

output qo = Y−d
n q∗ = Y−t(1−θ)

n+1

abatement ao = d
nα a∗ = t

nα

Table 1: Optimal and Market outcomes

ei(qi, ai) = qi − ai. In other words, the marginal cost of production ∂ci/∂qi is constant

and normalized to zero. Each firm’s abatement cost is proportional to the number of

firms, n. We adopt this setting because in this formulation, the industry abatement cost,

nci(q, a) = αA2/2 (and thus its marginal cost αA), is independent of n and depends on

the aggregate abatement A = na only.

Denoting (qoi , a
o
i ) = (qo, ao) and (q∗i , a

∗
i ) = (q∗, a∗) under θi = θ by symmetry, we have

the social optimal and market equilibrium outcomes as in Table 1. By (6), the optimal

policy levels are

to = d, θoi =
Y − d

nd
.

Under this optimal policy set, we obtain (q∗, a∗) = (qo, ao) as shown in Proposition 1.

The tax revenue under this optimal policy set, TRo, is calculated as

TRo =

n∑
i=1

to[ei(q
∗
i , a

∗
i )− θoi q

∗
i ]

= nto[ei(q
o, ao)− θoi q

o]

= d

[
Y − (α+ 1)d

α
− (Y − d)2

nd

]
.

(10)

In the last line, the sign of the terms in the brackets determines whether TRo is positive

or negative. Thus, what reduces the tax revenue is represented by the second and third

terms in the brackets. The second term is related to the abatement cost α, the third

term is related to the number of firms n, and both terms are affected by d.

Abatement cost Because the term (α+1)d/α in (10) decreases in α, the tax revenue

increases in α. Panels A, B, C, and D in Figure 1 depict the cases when n = 1, n = 2,

n = 3, and n = 4, respectively. As seen here, the tax revenue is more likely to be positive

when the abatement is less efficient (i.e., α is larger).
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Note that when α → ∞, the tax revenue under our intensity-based policy converges

to that under the second-best emission tax too. More concretely, from (7), too satisfies

too = d− Y − too

n+ 1

nα

nα+ n+ 1
, (11)

since q∗ = (Y − t)/(n + 1) and a∗ = t/(nα) are derived by assuming θ = 0 in Table 1

and e∗i = q∗ − a∗. This yields the second-best level too as

too =
{nd− (Y − d)}nα+ d(n+ 1)2

n2α+ (n+ 2)n+ 1

→ d− Y − d

n
(as α → ∞).

Thus, it can be seen that the tax revenue under the second-best emission tax, TRoo =∑n
i=1 t

ooe∗i converges as

TRoo = ntoo
(
Y − t

n+ 1
− too

nα

)
→ d

[
Y − d− (Y − d)2

nd

]
(as α → ∞),

where the last expression is equal to limα→∞ TRo by (10).

Figure 2 depicts how TRo converges to TRoo by extending the rage of α (horizontal

axis) of Figure 1. The dotted lines are the graphs of TRoo. If α is large, then TRo is close

to TRoo. In this respect, if the second-best taxation is realistic, so is the intensity-based

taxation. However, it should be noted that when α is small, as seen in the figure, TRo

can be substantially smaller than TRoo. As a result, we have a case where TRoo is not

but TRo is negative.

The number of firms Because the term (Y −d)2/nd in (10) decreases in n,18 the tax

revenue increases in n. Panels A, B, C, and D in Figure 3 depict the cases when α = 2,

α = 4, α = 6, and α = 8, respectively.19 As seen here, the tax revenue can be negative; it

is more likely to be positive when the market is more competitive (i.e., n is larger). For

instance in the simulation results, duopoly or triopoly is enough to make TRo positive.

18Note that when n → ∞, this term converges to 0 and thus, TRo converges to d[(Y − d)− d/α]. This
is consistent with the first-best tax revenue that is obtained from the perfectly competitive market under
t = d and θ = 0.

19In these cases, the ratio of abatement given by ao/qo are approximately 33%, 17%, 11%, and 8%
(75%, 38%, 25%, and 19%) when d = 2 (d = 3), respectively.

13



Therefore, both abatement cost and competition positively affect tax revenue. Be-

cause of the latter effect of competition, the graphs of TRo shift upward when we compare

Panels B to A, C to B, and so on in Figure 1. Similarly, because of the former effect of

the abatement cost, the graphs of TRo shift upward when we compare Panels B to A, C

to B, and so on in Figure 3

Environmental damage Interestingly, as for the environmental damage d, the term

(α + 1)d/α in (10) increases in d but the term (Y − d)2/nd decreases in d. While

environmental damage amplifies the effect of the abatement cost, it diminishes the effect

of competition. Thus, whereas the graphs in Figure 1 shift upward (downward) for

higher d when α is relatively large (small) given n, the graphs in Figure 3 shift upward

(downward) for lower d when n is relatively large (small) given α.

Hence, as seen in Figure 4, the tax revenues are not monotone but are inverted U-

shaped in d. On the one hand, if d is close to 0, since the tax payment of a firm is t(ei −

θiqi) → p′qi under the optimal policy, our policy becomes a set of pure subsidies fixing

the market power of oligopolists. Thus, when environmental damage is insignificant,20

the tax revenue is small and tends to be negative. On the other hand, if d is close to Y ,

since t(ei − θiqi) → −dai by qi → 0 under the optimal policy, our policy becomes pure

subsidy for abatement activity. Thus, when environmental damage is significant,21 the

tax revenue also tends to be negative.

5 Applications

5.1 Tradable permit market based on emission intensity targets

In this subsection, we replace the emission tax with the tradable emission permits.

There are N ∈ N industries, each of which replicates22 the Cournot competition

20For instance, when d = 1, the ratio of abatement ao/qo are approximately 12.5% for α = 2, 6.3% for
α = 4, 4.2% for α = 6, and 3.1% for α = 8.

21For instance, when d = 4, the ratio of abatement ao/qo are about 200% for α = 2 (including
absorption), 100% for α = 4, 67% for α = 6, and 50% for α = 8.

22This assumption is for notational simplicity, and we can easily extend the analysis here to the case
with asymmetric industries.
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of n firms, which is presented in Section 2. We denote each variable in the industry

j = 1, 2, . . . , N by superscript j. The social welfare is modified by

W =
N∑
j=1

(∫ Qj

0
p(q)dq −

n∑
i=1

ci(q
j
i , a

j
i )

)
−D

 N∑
j=1

n∑
i=1

ei(q
j
i , a

j
i )

 .

Since the outcomes at the social optimal are the same across the industries by symmetry,

we drop superscript j from them. The first-order conditions for the welfare-maximizing

problem are (1) and (2), where Eo = N
∑n

i=1 e
o
i with eoi = eoi (q

o
i , a

o
i ). The second-order

conditions are satisfied.

Consider the market for tradable permits across industries. We assume that the

number of firms n×N is sufficiently large for the behavior of each firm to approximate

a price taker in the permit market. The government sets emission intensity targets,

(θ1, . . . , θn) ∈ Rn
+, and if a firm does not meet (overachieves) its target, the firm must

purchase (can sell) permits. The profit maximization problem of firm i in industry j is

described as

max
qji ,a

j
i

p(Qj)qji − ci(q
j
i , a

j
i )− r[ei(q

j
i , a

j
i )− θiq

j
i ],

where r ∈ R+ is the price of the permits.

Dropping superscript j by symmetry, the first-order conditions for firm i are

p′(Q∗)q∗i + p(Q∗) + rθi =
∂ci
∂qi

(q∗i , a
∗
i ) + r

∂ei
∂qi

(q∗i , a
∗
i ), (12)

−r
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ). (13)

Further, the market clear condition of the permit market is

N
n∑

i=1

[ei(q
∗
i , a

∗
i )− θiq

∗
i ] = EG, (14)

where EG ∈ R is the amount of permits that the government sells.23 We assume a unique

equilibrium price for the permit market.

23If EG is negative, the government purchases −EG from the market. If EG is positive, the government
may allocate EG among firms instead of selling quota in the permit market. As for the sign of EG at the
optimal level, see Remark 3 below.
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Suppose that the government sets the level of θi as

θoi = −p′(Qo)qoi
D′(Eo)

> 0, (15)

and adjusts EG as

Eo
G = N

n∑
i=1

(eoi − θoi q
o
i ) = N

[
Eo +

n∑
i=1

p′(Qo)(qoi )
2

D′(Eo)

]
. (16)

We show that this policy combination makes the equilibrium price of permits r∗ equal

to the social marginal cost of emission and achieves the first-best outcome.

Proposition 2 Suppose the N Cournot oligopolies in homogeneous product markets that

are presented here. Assume that the firms are price takers in the tradable permit market.

Then, the tradable permit market based on the emission intensity target presented by

(15)–(16) attains the first-best optimality (i.e., q∗i = qoi and a∗i = aoi ) under r
∗ = D′(Eo).

Proof. Suppose that r = D′(Eo) > 0 under the targets (15). Then, by the optimal

conditions (1)–(2), the market conditions (12)–(13) are satisfied with q∗i = qoi and a∗i = aoi .

Hence, if r = D′(Eo), we have q∗i = qoi and a∗i = aoi , and thus, e∗i = eoi . Then, it must be

held that

N

n∑
i=1

[ei(q
∗
i , a

∗
i )− θiq

∗
i ] = N

n∑
i=1

(eoi − θoi q
o
i ) = Eo

G,

where the first equality is derived from θi = θoi and e∗i = eoi , and the second one, from

(16). Therefore, if r = D′(Eo), the market clear condition (14) is satisfied, that is,

r∗ = D′(Eo). Q.E.D.

The key assumption of this result is that firms are price takers in the permit market.

To restrict the market power in the permit market, it is important to create a common

permit market across industries and/or regions and provide incentives for a sufficiently

large number of firms to join this market. One idea for that is making an oligopoly

industry to which our intensity-based permit trading is applied join in the general permit

market where the other firms have already been trading competitively. Another idea

relates to government monitoring, which restricts firms’ market power in the permit

market.
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Remark 3 At the optimal policy levels, the government’s revenue obtained from selling

the permits is (r∗Eo
G)/N =

∑n
i=1 d(e

o
i − θoi q

o
i ) per industry by (16) and r∗ = d, where

d = D′(Eo). This revenue is equal to that obtained from the optimal intensity-based

emission tax discussed in Sections 3. Since the sign of Eo
G follows the sign of the revenue,

it can be negative as discussed in Section 4.2. If Eo
G is negative, the government has to

commit to purchase the amount −EG from the market to induce firms to overachieve.

5.2 Portfolio standards

As stated previously, our principle can apply to portfolio standard policies. Examples of

portfolio standard policies are RPS, which was introduced in many countries, the zero-

emission power plant regulation in the Japanese electricity market, and the ZEV Program

in California. To show the efficiency and limitation of portfolio standard policies, we

investigate a green portfolio standard in the electricity market.

Suppose the electricity that each firm i produces, namely qi, is decomposed into the

brown output bi ≥ 0 and the green output gi ≥ 0 as qi = bi+gi. The brown output is the

electricity produced by non-green power sources such as fossil-fired power plants. Green

output is the electricity produced by green power sources such as renewable power plants.

We assume that the brown power sources yield negative externality, and the welfare loss

is denoted by D(B) with D′ > 0 and D′′ ≥ 0, where B =
∑n

i=1 bi.

The government regulates the ratio of green output as

gi
qi

≥ 1− θi ⇔ bi
qi

≤ θi ∴ (1− θi)bi ≤ θigi.

Firms that fall short of the green output targets pay the fee (or procure permits) accord-

ing to the level of shortage, and firms that overachieve the targets receive the subsidy

(or sell permits). Firm i’s profit is

p(Q)qi − γi(bi, gi) + βi(bi, gi)− t((1− θi)bi − θigi),

where γi is the production cost function, which is convex and satisfies ∂γi/∂bi > 0 and

∂γi/∂gi > 0. βi is the private benefit function from the green output. We assume that

17



βi(bi, gi) is concave and satisfies ∂βi/∂bi ≤ 0 and ∂βi/∂gi ≥ 0. A firm may be able to sell

green electricity at a price higher than the market price (the green electricity premium).24

If the green electricity premium is β > 0 per green power output, then βi(bi, gi) = βgi.

If we regard ai = gi, ei(qi, ai) = qi − ai = bi, and ci(qi, ai) = γi(bi, gi) − βi(bi, gi),

the framework presented here becomes a special case of our basic model except for three

minor points. Then, the analyses in the previous sections can be applied to this portfolio

standard policy, and the first best is achieved by the policy. The three differences between

the model in this subsection and the basic model are discussed below.

First, regarding the cost function, we drop the assumption that ∂ci/∂ai > 0 when

ai is small, and assume that ∂ci/∂ai > 0 only for a sufficiently large ai. Indeed, even

under this extension, our analyses in the previous sections are robust.25 The assumption

∂ci/∂ai > 0 is not natural for the portfolio standards model. Because ci(qi, ai) = γi(qi −

ai, ai)− βi(qi − ai, ai), we obtain ∂ci/∂qi = ∂γi/∂bi − ∂βi/∂bi > 0 and

∂ci
∂ai

=

(
∂γi
∂gi

− ∂γi
∂bi

)
−
(
∂βi
∂gi

− ∂βi
∂bi

)
.

Thus, ∂ci/∂qi is positive but ∂ci/∂ai can be negative if ∂βi/∂gi − ∂βi/∂bi > 0 is large.

Moreover, even if βi = 0, ∂ci/∂ai can be negative, especially for small ai. The first

parenthesis can be negative if γi is strictly convex, because for a given qi, a marginal

shift from bi to gi saves a cost if ∂γi/∂gi < ∂γi/∂bi. Therefore, we should allow that

∂ci(qi, ai)/∂ai < 0, especially when ai/qi or gi/bi is small.

Second, in this subsection’s model, we must assume that gi ≤ qi (i.e., ei = bi ≥ 0).

If limgi→qi ∂(γi − βi)/∂gi is sufficiently large, this constraint does not bind, and the

earlier analyses can be applied as well. However, this case excludes the possibility of a

100% renewable electricity player, and it might be too restrictive.26 If ∂(γi − βi)/∂gi is

small for any gi, it is possible that gi = qi (i.e., bi = 0) is the optimal abatement level.

24For example, Tokyo Electric Power Company sells the electricity produced from hydropower at a
premium.

25This is because it is necessary to satisfy ∂ci/∂ai > 0 at the interior equilibrium by the first-order
condition with respect to ai. Thus, the range ∂ci/∂ai < 0 is irrelevant to the analyses.

26Electricity markets contain 100% renewable electricity players. The vehicle manufacturing industry
contains companies that only manufacture electrical vehicles, such as Tesla and many small Chinese
manufactures.
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Thus, we should consider the possible corner solution. The first-order conditions for the

welfare-maximizing problem under the constraint ai ≤ qi are
27

p(Qo)− ∂ci
∂qi

(qoi , a
o
i )−D′(Eo) + λo

i = 0, (17)

D′(Eo)− ∂ci
∂ai

(qoi , a
o
i )− λo

i = 0, (18)

λo
i ≥ 0, qoi − aoi ≥ 0, λo

i (q
o
i − aoi ) = 0, (19)

where we use ∂ei/∂qi = 1 and ∂ei/∂ai = −1 in this model. The first-order conditions

for a profit-maximizing problem of firm i under the constraint ai ≤ qi are
28

p′(Q∗)q∗i + p(Q∗) + tθi −
∂ci
∂qi

(q∗i , a
∗
i )− t+ λ∗

i = 0, (20)

t− ∂ci
∂ai

(q∗i , a
∗
i )− λ∗

i = 0, (21)

λ∗
i ≥ 0, q∗i − a∗i ≥ 0, λ∗

i (q
∗
i − a∗i ) = 0. (22)

Note that λo and λ∗ are the Lagrange multipliers. Comparing (17)–(19) and (20)–(22),

we find that the first best is achieved if the government chooses

to = D′(Eo) > 0, θoi = −p′(Qo)qoi
D′(Eo)

> 0. (23)

The final difference relates to the range of θi. In the portfolio standard case, it is

realistic to assume that θi ∈ [0, 1], not ∈ [0,∞). From the expression θoi in (23), as long

as D′(Bo) ≥ −p′qoi for all i (i.e., the negative externality of non-green sources is large,

or the output of each firm is small), this constraint is not binding, and the portfolio

standard policy yields the first-best outcome. However, if the negative externality of

non-green sources is small, or there exists a dominant firm with a large qoi in the market,

this constraint can bind, and thus, the efficient outcome is not achieved by the portfolio

standard policy. Therefore, the portfolio standard policy might not be optimal if the

negative externality is insignificant and the market is highly concentrated.

27From the concavity of welfare, these are necessary and sufficient conditions for the global maximum.
28Since the (global) second-order condition in the unconstrained case implies the concavity of the profit,

these first-order conditions are necessary and sufficient conditions.
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6 Concluding remarks

In this study, we showed that the first-best optimality is achieved by the combination

of two traditional and standard policy tools, emission tax (or tradable permit) and

emission intensity targets. In other words, uniform emission pricing policies based on

non-uniform emission intensity targets yield the first-best outcomes. The literature on

environmental tax shows that Pigovian tax internalizing the negative externality yields

the first best under perfect competition, whereas it does not under imperfect competition.

We proposed a new policy solution under imperfect competition, a tax on emissions

intensity above targets, leading to the first best. We also showed that the first-best tax

rate will never be other than the Pigovian tax rate in our policy.

Emission taxes and tradable permits were intensively discussed in the context of

carbon pricing, and many countries have introduced one of the two to mitigate global

warming. Emission intensity regulations are also widely observed. Emission taxes raise

the marginal cost of production and increase the distortion of suboptimal production un-

der imperfect competition. Emission intensity regulation serves to stimulate production

and mitigates the problem of insufficient production. Thus, the policy combination of

two standard and widespread environmental policies is ideal.

Our model assumed that the number of firms is exogenous. If we consider the free-

entry market, the first best will not be achieved by the combination of emission tax and

emission intensity targets. However, if we introduce the appropriate level of entry license

tax, the first-best optimality will be achieved by our policy.

In this study, we focused on imperfect competition and ignored other possible dis-

tortions that would put the economy back into a second-best world. For instance, we

did not consider pre-existing distortions from other taxes on labor, capital, or output,

which are intensively discussed in the literature. We also did not consider any kind of

uncertainty. However, in the context of global warming, uncertainties with regard to the

supply side, demand side, and social costs of emissions are quite important. Our analysis
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should be extended in these directions in future research.29

Appendix

Product differentiation and Bertrand competition

We extend the basic model in Section 2 by considering an oligopoly market wherein each

firm i = 1, . . . , n produces differentiated products and chooses its output qi (Cournot

competition) or its price pi (Bertrand competition) along with its abatement level ai.

Let q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn). Again, we assume a unique interior

social optimum and market equilibrium.

Demand system Following Vives (1999),30 we formulate the demand system, which

is obtained by the representative consumer’s problem, as follows:

max
q

U(q)− pq,

where U is the sub-utility function for these n products. We assume that the Hessian of

U is negative definite (U is strictly concave). From the first-order conditions for qi > 0,

pi =
∂U

∂qi
(q) i = 1, . . . , n, (24)

that is, we obtain the inverse demand system, p(q) = (p1(q), p2(q), . . . , pn(q)). From

the strict concavity of U , the demands are downward-sloping (i.e., ∂pi/∂qi < 0 for all i),

and the system can include both the substitute goods case (i.e., ∂pi/∂qj ≤ 0 for j ̸= i)

and the complement goods case (i.e., ∂pi/∂qj ≥ 0 ). Because the Jacobian of p(q) (the

Hessian of U), which is denoted as Dp, is negative definite, p(q) is one-to-one by the

29Ellerman and Sue Wing (2003) established an important contribution in this context. They consid-
ered a macro-level emission cap and considered absolute and intensity-based emission caps, which were
indexed to the gross domestic product (GDP). They showed the equivalence of absolute and intensity-
based emission caps without the uncertainty in the GDP, and the equivalence result did not hold with
uncertainty. Their results suggest the importance of uncertainty. Their result differs from ours because
they examined macro-level caps and considered efficient carbon pricing policies to achieve this goal under
perfect competition. However, we discussed how an efficient outcome may be achieved under imperfect
competition.

30See Chapter 6. The model is a partial equilibrium model based on quasi-linear utility.
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Gale–Nikaido theorem. Thus, as the inverted system of p(q), we can obtain the direct

demand system q(p) = (q1(p), q2(p), . . . , qn(p)).

Social optimal The social welfare is defined by

W = U(q)−
n∑

i=1

ci(qi, ai)−D

(
n∑

i=1

ei(qi, ai)

)
.

Assuming the interior solution (i.e., qoi > 0 and aoi > 0), the first-order conditions for the

welfare-maximizing problem are

∂U

∂qi
(qo) =

∂ci
∂qi

(qoi , a
o
i ) +D′(Eo)

∂ei
∂qi

(qoi , a
o
i ), (25)

−D′(Eo)
∂ei
∂ai

(qoi , a
o
i ) =

∂ci
∂ai

(qoi , a
o
i ), (26)

where qo = (qo1, q
o
2, . . . , q

o
n) and Eo =

∑n
i=1 ei(q

o
i , a

o
i ). The second-order conditions are

satisfied. Let po = p(qo) and then, q(po) = qo by the definition of inverse demand.

Cournot competition First, we consider the Cournot competition. Under the emis-

sion intensity targets, (θ1, . . . , θn) ∈ Rn
+, firm i’s profit maximization problem is

max
qi,ai

pi(q)qi − ci(qi, ai)− t[ei(qi, ai)− θiqi].

Assuming the interior solution (i.e., q∗i > 0 and a∗i > 0), the first-order conditions for

firm i are

∂pi(q
∗)

∂qi
q∗i + pi(q

∗) + tθi =
∂ci
∂qi

(q∗i , a
∗
i ) + t

∂ei
∂qi

(q∗i , a
∗
i ), (27)

−t
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ), (28)

where q∗ = (q∗1, q
∗
2, . . . , q

∗
n). We assume that the second-order conditions are satisfied.

Note that pi(q
∗) = ∂U(q∗)/∂qi by (24). Thus, by comparing (27)–(28) with (25)–(26),

we obtain the optimal policy levels as

to = D′(Eo) > 0, θoi = − qoi
D′(Eo)

∂pi(q
o)

∂qi
> 0. (29)
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Bertrand competition Next, we consider the Bertrand competition. Under the emis-

sion intensity targets, (θ1, . . . , θn) ∈ Rn
+, firm i’s profit maximization problem is

max
pi,ai

piqi(p)− ci(qi(p), ai)− t[ei(qi(p), ai)− θiqi(p)].

Assuming the interior solution (i.e., p∗i > 0 and a∗i > 0), the first-order conditions for

firm i are

qi(p
∗) + [p∗i + tθi]

∂qi(p
∗)

∂pi
=

[
∂ci
∂qi

(qi(p
∗), a∗i ) + t

∂ei
∂qi

(qi(p
∗), a∗i )

]
∂qi(p

∗)

∂pi
, (30)

−t
∂ei
∂ai

(qi(p
∗), a∗i ) =

∂ci
∂ai

(qi(p
∗), a∗i ), (31)

where p∗ = (p∗1, p
∗
2, . . . , p

∗
n). We assume that the second-order conditions are satisfied.

By denoting q∗i = qi(p
∗), (30) and (31) are rearranged as

q∗i
∂qi(p∗)/∂pi

+ p∗i + tθi =
∂ci
∂qi

(q∗i , a
∗
i ) + t

∂ei
∂qi

(q∗i , a
∗
i ), (32)

−t
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ). (33)

Note that p∗i = pi(q(p
∗)) = ∂U(q(p∗))/∂qi by the definition of inverse demand and (24).

Thus, regarding (32)–(33) as the system of 2n equations with respect to 2n variables of

(q∗1, . . . , q
∗
n) = (q(p∗)) and (a∗1, . . . , a

∗
n), the system coincides (25)–(26) when we set

to = D′(Eo) > 0, θoi = − qi(p
o)

D′(Eo)

/
∂qi(p

o)

∂pi
> 0. (34)

Note that by the inverse function theorem, ∂qi(p)/∂pi is the same as the i-i’th element

of Dp−1 (the inverse matrix of Jacobian Dp).

Result Consequently, we obtain an extended result of Proposition 1.

Proposition 3 Suppose the Cournot or the Bertrand oligopoly in a differentiated product

market that is presented here. There exists (θ1, . . . , θn) such that the policy attains the

first-best optimality (i.e., q∗i = qoi and a∗i = aoi ) if and only if the tax rate is Pigovian

(i.e., t = D′(Eo)).
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Proof. For sufficiency, suppose that t = to and set (θ1, . . . , θn) = (θo1, . . . , θ
o
n) as defined

in (29) in the Cournot case or (34) in the Bertrand case. Substitute (29) or (34) into Eqs.

(27)–(28) or (32)–(33). Then, by (25)–(26), we find that Eqs. (27)–(28) or (32)–(33) are

satisfied when q∗i = qoi or p∗i = poi and a∗i = aoi . Note that in the Bertrand case, p∗i = poi

implies that q∗i = qi(p
o) = qoi .

To prove necessity, we show the contraposition. Suppose that t ̸= D′(Eo) and take

(θ1, . . . , θn) arbitrarily. Then, by (28) or (33) and (26),

∂ci(q
∗
i , a

∗
i )/∂ai

∂ei(q∗i , a
∗
i )/∂ai

= −t ̸= −D′(Eo) =
∂ci(q

o
i , a

o
i )/∂ai

∂ei(qoi , a
o
i )/∂ai

.

Therefore, (q∗i , a
∗
i ) never equates to (qoi , a

o
i ) since the first and last terms are not equal.

Q.E.D.

This result suggests that our main principle (Proposition 1) does not depend on the

assumption of a homogeneous product market and/or Cournot competition. However,

it must be noted that in the case of differentiated products, the optimal policy requires

the estimation of the individuals demands, ∂pi/∂qi or ∂qi/∂pi.
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Figure 1: Tax revenue (vertical axis) under the optimal policy with Y = 5 and d = 2, 3.
Panel A depicts the revenue in the case where n = 1 for 1.5 < α < 10 (horizontal axis).
Panel B depicts the revenue in the case where n = 2 for 1.5 < α < 10 (horizontal axis).
Panel C depicts the revenue in the case where n = 3 for 1.5 < α < 10 (horizontal axis).
Panel D depicts the revenue in the case where n = 4 for 1.5 < α < 10 (horizontal axis).

Figure 2: Tax revenues (vertical axis) from the intensity-based emission tax and the
second-best emission tax with Y = 5 and d = 2, 3. The real (dotted) line depicts the
former (latter) revenue for various α up to 40 (horizontal axis).
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Figure 3: Tax revenue (vertical axis) under the optimal policy with Y = 5 and d = 2, 3.
Panel A depicts the revenue in the case where α = 2 for 1 ≤ n ≤ 10 (horizontal axis).
Panel B depicts the revenue in the case where α = 4 for 1 ≤ n ≤ 10 (horizontal axis).
Panel C depicts the revenue in the case where α = 6 for 1 ≤ n ≤ 10 (horizontal axis).
Panel D depicts the revenue in the case where α = 8 for 1 ≤ n ≤ 10 (horizontal axis).

Figure 4: Tax revenue (vertical axis) under the optimal policy with Y = 5 and n =
1, 2, 3, 4. Panel A, B, C, and D depict the revenue in the case where α = 2, α = 4,
α = 6, and α = 8, for 0 < d < 5 (horizontal axis), respectively.
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