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Abstract

We propose a theory of linking in long-term relationshipsdzhon what infor-
mation becomes self-evident in equilibrium at the end ohgeigame. We obtain
a tight bound on the average per-period efficiency loss thadtrne incurred to
enforce a stage-game outcome throughoilit-geriod repeated game whénis
large. Our results apply to all monitoring structures ametsgy profiles. They
encompass the inefficiency result in Abreu, Milgrom, andr@=#1991), as well
as the approximate-efficiency results in Compte (1998),r®(2009), and Chan
and Zhang (2016).

1 Introduction

In a team moral-hazard problem where it is impossible tordaete which player has

shirked (Holmstrom, 1982; Radner, Myerson, and Maskin6}98ach player has an
incentive to free-ride on the efforts of the other players.aiesult, the Nash equilibri-
um outcome is typically inefficient. The inefficiency petsisven when the players can
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write a binding incentive contract among themselves so &mgo budget deficit is al-
lowed. Efficiency can be restored if the players can contsgtt a third party who can

provide external finance to break the no-budget-deficittaimg. Thus, in his seminal

paper, Holmstrom (1982) notes that “The fact that captialfdms feature separation
of ownership and labor implies that the free-rider probleness pronounced in such
firms than in closed organizations like partnerships.”

Recent research in repeated games, however, suggestsabss &0 external finance
may not be as important as it seems when players are patidrib@mact repeatedly.
Instead of a series of short-term contracts, the playersisama long-term contract that
links incentives across periods. Such long-term contractscommon in reality. For
example, in many business organizations, workers areneted only after performing
poorly in multiple periods. In a highly influential paper, #&o, Milgrom, and Pearce
(1991) show that in a repeated game with imperfect moniggtinking incentives may
reduce the cost of imperfect monitoring if the release of moimg information can
be delayed. Subsequent research shows that similar reamltse obtained in repeat-
ed games of private monitoring under various informationctres (Compte, 1998;
Obara, 2009; Chan and Zhang, 2016).

The existing results are essentially about two polar cga@slic monitoring where
there is no gain from linking, and conditionally independeronitoring where, with
sufficiently patient players, the efficiency loss of impetfeonitoring disappears with
linking as the length of the contract goes to infinity. In mamyations, one would
expect that players observe both private and public sigrads example, members of
a cartel may observe their own sales, which are privatenmétion, as well as a public
estimate of the total industry sales. A natural questiorskogwhat happen then? Will
it be more like public monitoring? Or will it be more like themditionally independent
monitoring?

In this paper we try to provide a general and intuitive exptaon of how linking
can improve efficiency. We consideiTaperiod contracting game between a principal
and a group of players. The principal’s objective is to design a contract to enforce

lwe thank a referee for the suggestion for framing our regultisis way.
20ur results can be readily applied to repeated games wighagments. Working with tHE-period

contracting problem allows us to focus on the mechanismméfrig and abstract away from the problem
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a particular stage-game outcome throughout the game, cubjehe constraint that
the total payments to the players be negative. Since Corip@8yj, this problem has
become a crucial building block in the theory of repeatedguaiith private monitoring.
We characterize the value of linking in the enforcement gf anicomes, correlated or
non-correlated, in games with any monitoring structure®. dutcomes that cannot be
implemented efficiently in the long run, we provide a tightihd on the efficiency loss.
A central concept in our analysis is the notion of self-eatds/ent, which is intro-
duced by Aumann (1976) to describe beliefs in incompletermation games. We use
the concept to capture what is special about an event beingit. In our model, a
state of a period describes the private information of tlaggais about what has hap-
pened in the period. Unlike the model in Aumann (1976), tietridhution of states in
our model depends on the actions of the players. Our inrmvegito apply the notion of
self-evident events to the playeesjuilibriumbeliefs. We show that any efficiency loss
that arises from a one-shot contract can be almost entilielynated in the long-run if
and only it is not “self evident”. To answer our earlier quess, the results suggest, in
a sense to be made precise, that public monitoring is a dpasea, while independent
and correlated private monitoring are similar when the @tayare sufficiently patient.
Our results provide a unified framework to understand theevalf linking. Fol-
lowing Abreu, Milgrom, and Pearce (1991), Compte (1998)af@i(2009), and Chan
and Zhang (2016) apply the linking idea to obtain folk th@ese Taking a different ap-
proach, Fudenberg, Levine, and Maskin (1994), Kandori aatsishima (1998), and
Rahman and Obara (2010) identify conditions under whichudcame can be enforced
by a budget-balanced contract. Our results naturally coehiese two approaches and
connect them to the inefficiency result in repeated games puiblic monitoring. We
discuss the repeated-game literature in Section 6.1.ddsierelying an external bud-
get breaker, members of a partnership may hire a disinestesediator to implement
correlated strategies that virtually enforce an outconth wibudget-balanced contrac-
t (Rahman and Obara, 2010). In our setting, players may uselated strategies to
make incentives non-self-evident. We show that any syrtiforceable outcome, re-
gardless of the monitoring structure, has a correlatedooogcclose to it that can be

of implementing transfers through continuation strategie



enforced almost efficiently in the long run.

Beyond repeated games, the idea of linking also plays anriamtarole in the liter-
ature of relational contracting and organizational ecoiesrfFuchs, 2007; Zhao, 2008;
Ke, Li, and Powell, 2018). While these models focus on a lterg: principal-agent
relationship given a fixed discount factor, we deal with anpenship problem when the
discount factor goes to one.

The rest of the paper is organized as follows. The next sedticstrates the main
ideas behind our results in a repeated Prisoners’ Dilemmeeg&ection 3 introduces
the formal model. Section 4 introduces the notion of seiflent events and establishes
a key lemma that is crucial for our results. Section 5 givasnoain results. Section 6
characterizes the value of linking in terms of the primitbfehe model and discusses
the literature of repeated games with private monitoringct®®n 7 shows that any
strictly enforceable outcome is virtually enforceablehnatmost no long-run efficiency
loss. Section 8 concludes.

2 Example

In this section we motivate our results by consideriAgperiod two-person noisy Pris-
oners’ Dilemma game. In each peribe- 1, ..., T, each player = 1,2 independently
choose<C or D. The expected stage-game payoff is given in Table 1. If btakgus
chooseC, then each player obtains a payoff of 1. If one player choGsasd the other
choose®, then the player who playB receiveg1-+d), while the player who play€
receives—h, whered, h > 0. The unique stage-game Nash equilibriurtOsD).

C D
C 1,1 —h,1+d
D |1+d,—h 0,0

Table 1. Payoff matrix.

At the end of each period, each play@abserves a private signale {H,L}. Table
2 describes the signal distributions conditional on th@agrofiles(C,C), (C,D), and
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(D,C).

H L
H p—pp(1—p) pp(l—p)
L pp(1—p) (1—p)—pp(l—p)

Signal distribution undefC,C)

H L
H q-pq(l-q) pq(l—aq)
L pq(1—-q) (1-q)—pq(l—q)

Signal distribution undefC, D) or (D,C)

Table 2: Signal distributions.

If both players playC, theny; = H with probability p. If one player chooses and
the other chooseb, theny; = H with probabilityq < p. The correlation between the
players’ signals depends on the paramgtetWhenp = 0, the signals are perfectly
correlated. In this case the players are effectively obisgra public signaf When
p = 1, the signals are conditionally independent and a playenaialearn about the
other player’s signal from his own. Wheme (0,1), the signals are positively and
imperfectly correlated conditional on the action profile.

A principal, without access to external funding, tries tside a contract to enforce
(C,C) in every period. At the end of periof, the principal asks the players to report
their signals. Writg/" for (y],y}), wherey! = (vi(1),...,yi(T)) is aT-period profile
of playeri’s signal. AT-period contractv™ = (w],wJ ) is a function that maps each
y' to a payment to each player, subject to the constraint tleaitial payment be non-
positive. To simplify exposition, we assume in this sectibat the players’ discount
factor is one so that the utility of a player is equal to thaltstage-game payoffs plus
the contract payment.

3In our model, there is no difference between a public signal a vector of perfectly correlated
private signals.



The assumption that the total payment must be negativeasigiiat incentives are
costly. Consider the one-period case. et (wp,w») denote a one-period contract.
With a slight abuse of notation, let(H) andw;(L) denote playei’'s payment when
player j’s signal isH andL, respectively. It is straightforward to see that it is o@lm
for playeri to chooseC if and only if

(p—a) (Wi(H) —wi(L)) >d.*

Since a player’'s payment depends only on the report of ther gilayer, the players
have no incentive to lie about their reports. Given the aaiirstw;(H),w;(L) < 0, the
most efficient way to enforcéC,C) is to set

wi(H) = 0
wi(lL) = ———.

The per-player efficiency loss is thys— p)d/(p—q); see Figure 1. The inefficiency

_(1-pd
p—q
/\

0 __d
p—q

Figure 1: The one-period contract and efficiency loss.

arises because a player has to destroy an amount eqda(po- q) when the other
player reports ah signal. The value cannot be transferred to the other plagesulse
doing so will interfere with the incentives of the other maylin our example, if player
1 has to pay player &/ (p— q) when player 2's report ik, player 2 will always report
L.

When the contract lasts for multiple periods, the principah still use the one-
period contractw; (H),w; (L)) = (0,—d/(p—q)) to enforce(C,C) period by period.

4Because the stage game is symmetric, we can consider oniyistyio contracts whens; = w;, < 0.
The single-period optimal contract does not depeng.on
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The question is whether the principal can do better by usimgralinear contract. The
existing literature has largely focused on two polar ca¥élsenp = 0, linking has no
value and the linear contract is the best that one could dowbenp = 1, linking is
useful and the per-period efficiency loss disappears Whgoes to infinity. Our results
are about what happens in between wpen(0, 1). In the following, we briefly recount
the two polar cases before explaining our results.

2.1 Caselp=0.

We can use the two-period case to illustrate why linking lasalue when the signals
are perfectly correlated. To indu¢€,C) in both periods, three incentive-compatibility
constraints must be satisfied; namely, the first period,ehersd period after the players
observeH, and the second period after the players obsengee Figure 2.

Figure 2: The two-period case.

Letw? denote a contract that enforge C) for two periods, and Ie [w?|y(1),CC]
denote the expected payment to playeonditional on the first-period signg{1) and
the second-period action profil€,C).> Since enforcingC,C) in the second period

aftery(1) = H is the same as enforcir{@,C) in a single-period game,
d
E [wf|H,CC] S—(l—p)ﬁ~ 1)

The incentive-compatibility constraint in period 1 recsrthat

(p—q) (E [Wf|H,CC] — E [w?|L,CC]) > d. 2)

5Since the signals are perfectly correlated, we will menti@ncommon signal.
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Combining (1) and (2), we have

d
E [W|L,CC] < —(2—p)——.
Wi |L,CC] < —( P g
It follows that

PE [WZ|H,CC| + (1 p)E [W|L,CC| < —2(1— p)ﬁ.
Intuitively, since the continuation game aftdris completely separated from the con-
tinuation game aftek, the incentives in these subgames cannot be linked. Henee, e
forcing (C,C) in the continuation game following must incur a one-period efficiency
loss. This, together with the fact that the value of the cardtion game aftdr must be
lower than that afteH, implies that the two-period efficiency loss must be no laasit

twice the one-period efficiency loss.

2.2 Case2p=1.

Let —i denote the player who is not playerLet f_; (L|yT) denote the number df
signals that player-i observes in the signal profilé . Consider a “linear” contract’',
where fori = 1,2

W (y") =—(f5i(Lly") =T (1-p-v))(d/(p-0a)+e),

wheree andv are small positive constants. The contract punishes pldygid/ (p—q) + €)
for everyL signal player—i observes. It strictly enforce€,C) but violates the con-
straint that the total payment be non-positive. When botlygrs observe fewer than
T (1- p—v) L signals, each player will receive a strictly positive payme

To satisfy the non-positive-payment constraint, we trtm@a at zero to obtain a
“truncated” contractv’, where

W' (y") = —max(f_ (Lly") =T (1—p—v),0)(d/(p—a)+e). 3)

If both players choos€, the average number bfsignals that playeri should observe
isT (1— p). Thus, the truncated contract punishes playfer L signals in excess of a



threshold set below the mean by. The truncated incentives, the difference between
W andw, are equal to

R (y') =—min(f(Lly")-=T(1—p—v),0)(d/(p—q)+e).

The distortionary effect of the truncation on playsrincentives, however, is very
small whenT is large. Assuming that players choosingC in every period, by the law
of large number, the probability that the fractionlosignals is lower than % p, the
ex ante mean, by is exceedingly small whem is large. Since playdardoes not learn
abouty”; from his own signals, the distortionary effect of the trutima remains very
small throughout the contract and is compensated by thd sxted punishment.

The expected per-player per-period efficiency loss cauyev?ijbs approximately

v(d/(p—q)+e).

As T becomes largey ande can be chosen so that the per-player per-period efficiency
loss goes to zero.

It is important to note that the truncated contract does nfatree(C, C) whenp = 0.
Although ex ante the probability thét; (L|y") is less thar{l— p—v)T is very small,
playeri will come to believe that this probability is large after ebgang very fewL
signals.

2.3 Case 3p € (0,1).

In this case, as the signals are correlated, the continugames after different signal
realizations are not separated as in Case 1. Neverthelagsr p after observing very
few L signals, will come to believe that it is likely that player has observed very few
L signals as well. One may, therefore, expect that linkingiives would become less
effective asp decreases. It turns out that= 0 is a special case. So long@as> 0, the
per-player per-period efficiency loss can be reduced to stlzeryo ag goes to infinity.
The idea is to distribute the truncation effect among thgeagin a way that distorts
each player’s incentive minimally. Conditional on bothy#es choosingC in every
period, each player, on average, should observe thesignal inT (1— p) periods.



Denote the “excesd” signals that playerobserves iry’ by
T (Lly") = fi(LIy") =T (1-p).
Using this notation, we can restate the payment to playader the truncated contract
W' as
W (y') = —max(t—i (Lly") +Tv,0) (d/(p—0q) +¢).
The incentive is truncated whem; (L|y") < —Tv.

We decompose; (L|y") into three components. For agy, let fi (yi,y—ily") de-
note the number of periods il in which playeri observes; and player—i observes
y_i. Conditional on(C,C), player—i expects player to observel with probability
p (1— p) when he observes. Hence, he expects playigo observep (1 — p) f_; (H |yT)

L signals in thef_; (H |yT) periods in which he observés. The number of “excesd”
signals that playerobserves in the periods player observed is, therefore,

T (L', H) = fi (LH)Y") —p(1—p) f_i (H]y") .

Similarly, denote the number of “exceds’signals player observes among the periods
player—i observed by

T (Lly",L) = fi (LLy") — (1—pp) fi (LIy").

Using the fact that
foi (Lly") + i (Hly") =T,

it is straightforward to verify that

n(Ly') = (@-p)r2(Lly")+1a(Lly",H) + 1 (L', L); 4)

(L") = A—p)ra(Lly") +12(Lly . H) + 12 (LIy",L). (5)
Equations (4) and (5) decomposéyT) into (1) the excesk signals observed by player
—1i, (2) the excesk signals player observes in the periods player observedd, and
(3) the excesk signals player observes in the periods player observed..

Player—i can observe only the first component. By the law of iteratgzeetation,

player—i always expects; (L|y",H) andt; (L|y",L) to be zero. That s,

Eyr (1 (L' H) y5i] =Eyr [1 (L', L) y5] =0 forally’;.
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Hence,

By (L) VL] = (1—p)Ey [T (Lly") IyL]
= (1-p)Ti(Lly"). (6)
That is, wherp > 0, player—i’s expectation ofij (L|y") is less tharr_; (L|y").
Combining (4) and (5), we have when> 0,
T (LI, H) + 1 (L', L) + (1—p) (i (LIy",H) + 7 (L[y",L))
1-(1-p) '
Equation (7) means that(L|y" ) can only be negative if one af (L|y",H), 7i (L|y", L),

T (Lly") = (7)

T_i (L|y",H), andt_; (L|y",L) is negative. (Note that the argument critically relies on
p > 0.) Recall that for everyL, player—i expectsr; (L|yT,y_i) to be zero. Hence,
anyy" with 7 (L|y") < 0 is “unexpected” to either play&or player—i.

Fix anyv > 0. Itis possible to piclg > 0 such that for any’, 7j (Lly") < —Tv
implies

min (7 (Lly",H), 7 (Lly",L), 7 (Lly",H), 7= (L)y",L)) < -Tg.
Start with the truncated contragf in Case 2. Add a side-bet contragt= (z],2}).
Fori=1,2,
Z () =RY")@-1(") R (y)i("),

where

() = 0 ifmin(7_ (L|y",H), 1 (L)y",L)) > —Tg,
W= 1 otherwise.

Under this side-bet contract, playiaeceives the extra incentiv& when
min (i (Lly".H), i (Lly',L)) = ~Tg;

otherwise, he payR_j, the extra incentives for playeri. Under the truncated contract
W', the distortionary effect of the truncation of play&rpayment is entirely borne by
playeri. The side-bet contract reallocates the distortionarycetiea player who does
not expect the distortion to occBiThe total payment of this side-bet contract is always

6In simple words, the side-bet contract says that a playet bress the truncation effect if the distri-
bution of the other player’s signal deviates significanttyni what the player expects given what he has
observed.
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negative. Whem > 0, eitherl; orl_; must be equal to 1. Hence, when playerceives
a strictly positive amount through the side-bet contraletygr —i must pay for it.

WhenT is large, playei believes that the probability th&t= 0 is very close to
one throughout the contract. As a result, playeglieves, regardless of what signals he
may observe during the contract, that he will almost alwaygeive the extra incentives
R, and almost never need to pRy;. This means that wheh is large the difference
between the truncated-cum-side-bet contract and therlawgdract ', is small. Since
W' strictly enforcegC,C), so does the truncated-cum-side-bet contfact.

The efficiency loss of the side bets is very small wheis large becausi; andR»
are almost always equal to zero. We have already shown thafficiency loss of the
truncated contract is small. Hend€, C) can be enforced almost efficiently whéns
sufficiently large.

Recall in the single-period case, a third-party is neededtdract efficiently. What
we show is that, a§ becomes large, it is possible for one player to partially pensate
another player without distorting the incentive of the fpktyer. The key observation
behind this result is that whem > 0, anyy' that involves any player observing very
few L signals must be “unexpected” to some player. In Sectionwelgeneralize this
observation to all stage games.

We are not the first to exploit the differential beliefs beénglayers. Fong, Gossner,
Horner, and Sannikov (2011), in a repeated Prisonershiii@ similar to our example,
make use of the fact each player expects the other playergerad fewer exceds
signals than he does to support an approximately efficientiequm. As Eq. (6)
makes clear, our approach can be viewed as a generalizétiogiis.

"Although, with the side-bet contract, each player may wamnis-report his own signals, the incen-
tive is small and the side-bet contract can be slightly medifo maintain truth-telling.
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3 Model

3.1 Stage game

Consider a finite stage game endowed with a correlating devietN = {1,2,...,n}
denote a set of playerdy = A; x --- x A, a finite set of action profilesy € A(A)

a distribution overA, andg = (g1,...,0n) : A — R" a profile of stage-game payoff
functions. In each period, the correlating device draws (a,...,a8,) € A accord-
ing to n and privately recommends to each player. After learninga;, each player
i € N privately chooses; € A;. Playeri’s expected stage-game payoffgiga), where
a=(a1,...,an). The players do not directly observe the stage-game payloisead,
each player observes a signat. The signal profiley = (yi,...,¥n) is drawn from a
finite setY =Y; x --- x Y, according to a distributiop(-|a) € A(Y).

Since the only function of the correlating device is to allthe players to play;,
modeling the correlating device as private recommendai®without loss of general-
ity.2 Whenn is a pure or uncorrelated mixed outcome, the correlatioficdesan be
dispensed with. To avoid extra notations we shall assumathsignals are associated
with distinct posterior beliefs. All results go through fadtut this assumption, although
some may have to be rephrased to allow for the possibilitgdfindant signals.

Assumption 1. For eachi € N, a€ A, andy;, ¥/ € Yi, p(y-ila,yi) # p(y-ila,y)) for
somey_j € Y_j.

We impose no further restriction on the correlation streesteeyond Assumption 1.
In general, the players’ signals may be correlated@nh) may not have full support.
Hence, our model includes public monitoring as a specia tas

8As is well known, the correlating device can be replaced lsgame communication when there are

more than five players (Gerardi, 2004).
9The game becomes one of public monitoring wNee= - -- = Y, and for alla € A, p(y|a) > 0 only

fy1="=Yn
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3.2 T-period contracting problem

In period 0O, a principal proposes a contract. After obseytire contract, the players
play the stage game fdr periods. At the end of period, the players report the private
signals observed, and the correlating device reports ttemmendations made during
theT periods. In addition to the stage-game payoffs, at the erldedf -period game,
each player receives a payment as stipulated by the cantvabile the correlating
device always reports honestly, players may lie.

For each variablg, we usex(t) to denote the periotlvalue ofx andxt = (x(1),...,X(t))
to denote the history of up to periodt. Hencea' = (a(1),...,a(T)) is the history of
recommendations and the report of the correlating devieeyL= (%i(1),...,%(T))
denote theT -period signal-report of playérandy’ = (y1,...,9}) denote the signal-
report profile. AT-period contract consists of functionsw’ = (w],...,w/ ), where
eachw! maps eaclia’,y") € AT x YT into a payment® The total payment must be
weakly negative; i.e.,

iwr(aT,yT) <0, v(@,y") e AT xYT.
i=1

Playeri’s total discounted payoff is

1-3 (¢ 51 T/ aT o
— (t;(s gi(a(t) +w (&9 >>,

whered € (0,1) is a common discount factor for the playéts.

SinceN, A, andg are fixed in our analysis, we denote tfeperiod game by
F(n,T,5,w"). A pure strategy of playeir consists of two components: an action s-
trategy o that maps eacfd,a 1, yi 1) € UL, (A x AS 1 x Y1) into an action
ai € A and a reporting strategy’ that maps eackd,al,y") € AT x AT x YT into a

10The contracts in our model can be viewed asThgeriod version of the ones in Rahman and Obara
(2010). The only difference is that in Rahman and Obara (P@l€bntract must be budget belanced,

whereas in ours the total payment can be strictly negative.
11The restriction to negative total transfer arises natyialdifferent contexts. For example, if bonus

contracts are not legally enforceable, then the principay imave to commit to “burn” the difference
between a lump sum and the actual bonus (MacLeod, 2003; F2883%). In repeated games, players
can enforce cooperation only by switching to inefficienttommation paths.
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reporty’ € Y,T.12 A mixed strategyo;’ is a probability distribution over the set of pure
strategiega.”, pT). Let =T denote the set of mixed strategies for plaiyer

|
GT] ,

where the expectation is taken ov@' ,a',y",y") with respect to the distribution in-

Playeri’s expected payoff conditional oo™ = (o7 ,..., 0, ) is

T (@) = e | 5 8 taian) i @5

duced byo T, n, andp.

The contracting problem is to choos@ to enforce the correlated outcomehrough-
out the contract. By the revelation principle, we can focasreechanisms where play-
ers play the obedient strategies that follow recommendsiioevery period and report
signals truthfully. Letoy"* = (a"*,p*) denote the obedient strategy of playemd

o™ =(a*,...,00%).

Definition 1. A contractw’ enforces for T periods ifa"* is a Nash equilibrium in
r(n,T,5,w"). Thatis, if for alli ¢ N andg;” € =T,

v (a™5wh) >V (o, 05w

The enforcement is strict if the inequality is strict fgf that deviates from the recom-
mendations with positive probability. An outcomas (strictly) enforceable if it can be
(strictly) enforced by some'.

Obviously, if n cannot be enforced wheéh = 1, then it cannot be enforced when
T > 1. Conversely, il can be enforced wheh = 1 byw, then it can be enforced for
any T by applyingw period by period. Thus, it is sufficient to consider the case 1
to determine the enforceability of.13

In the following we writeo for o andw for w! for convenience. Lett denote the
distribution over(@,y) induced byn andp. For all(a,y) € AxY,

p@y) = p(ylan(a.

12ps usual,a® denotes the null history 0 am denotes the set whose only elemenalis Similar

notations apply for signal.
13same for strict enforceability.
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With a slight abuse of notation, we also ysé denote the distribution @&, y) induced
by the obedient strategy profite*. Let 1% denote the distribution df, y) when player
i deviates tag;, while other players choose*;. For any(a,y) € AxY,
@y = 5y alaip) > p(yi, ¥-ilai, ai (&)) n(a).
(ai,pi) i:pi(&,0i(@).yi)=Yi
Definition 2. A deviating strategy; is undetectabléf % = p.

The following result due to Rahman (2012) provides a necgssal sufficient con-
dition for enforceability.

Lemma 1 (Theorem 1, Rahman, 2012An action profilen is enforceable if and only
if forall i € N and all undetectable;,

> aiai,p) Y gi(ai@),ai)n@ <y g@n.
(ai,pi) acA acA

Because the total payment must be negative, enforcing astage-game Nash e-
quilibrium may come with a cost. The per-period efficiencgd®f enforcing; with
whinl(n,T,5,w")is

W (n,T,6,w")

- 1-9 5T T[T
_ZlﬁE[wi(a y)lo].
i=

Let # (n,T,0) be the set ofv" that enforces). The minimum per-period efficiency
loss to enforce) is

W*(n.T.8)= min W(n.T,ow").
(n.T,8)= ; min_~ (n,T,6,w")

Our objective is to characterid®* (n, T, d) asT goes to infinity and goes to 1.

In the following, we often deal with the cage= 1. As é does not matter, for
convenience we writ¢# (n) for # (n,1,96), W(n,w) for W(n,1,5,w) andW* (n)
forw*(n,1,9).

Before we proceed, a comment about the solution conceptasdier. As is well
known, Nash equilibrium imposes no restriction on playeesponses off the equilib-
rium path. In our model, it is consistent with Nash equilifoni for players who observe
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signals inconsistent with the equilibrium actions to regmmestly. Theorem 1, which
establishes a lower bound on efficiency loss, continues ld ihthe stronger notion
of sequential equilibrium is used instead. Following Kam@nd Matsushima (1998),
Theorem 2, which establishes the tightness of the boundheanade consistent with
sequential equilibrium by assuming that the support of tgead distribution is invari-
ant witha. Extending the result without invariant support would regspecifying and
keeping track of the players’ diverging beliefs (as welllast beliefs about other play-
ers’ continuation strategies) after one or multiple play&bserve inconsistent signals.
We do not pursue this issue in this paper.

4 Self-Evident Events

In the example in Section 2, the key property of a public diggwhat no one could miss
it. If a player observes that a public signalishe knows that every player obsentes
and that every player knows that every player obseky@sd so on. It is only then that
the continuation game aftéris entirely separated from the continuation game after
In a stage game with private signals, although the playerstdirectly observe the
recommendations to and signals of the other players, they beliefs about them on
the basis of their own. Conditional on the correlated sgrafgofile np, the recommen-
dation and signal paf@d,y) is distributed according ta. Write supg i) for the support
of u. LetPR denote player's information partition of supfu) C AxY. Denote the ele-
ment ofR that containga,y) by B(a,y). Foranyi € N and any(a,y), (2,Y) € supd ),

(@,y) eR(ay) ifandonlyif (a,y) = (&,yi)-

The vector(Py, . .., P,) describes the players’ knowledge structure wheéschosen.
Conditional on observinga;, i), playeri believes that the realize@, y) must belong
to B(ay). In the terminology of interactive epistemology, a sulisetf supd ) is an
event. Player “knows” thatE occurs ata,y) if

R(ay) CE. (8)

That playeri knowsE is itself an event that consists of &l y) where (8) is true. Thus,
we can talk about playgrknows that player knowsE. An eventE is common belief
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among the players d8,y) if, when (a,y) occurs, every player knows, knows that
everyone knowg&, and so on. An evert is self-evident if it is common belief at every
(ay) € E.

A self-evident event is called irreducible if it contains pr@per subset that is self-
evident. LetP denote the meet af, ..., P,) (i.e., the least common coarsening). It is
well known that any element & is self-evident and irreducible (Chapter 5 of Osborne
and Rubinstein, 1994).

In the noisy Prisoners’ Dilemma example in Section 2, theest@&o irreducible
self-evident events{(HH)} and{(LL) } when the signals are perfectly correlated. Oth-
erwise there is only one irreducible self-evident eveitiiH), (HL),(LH),(LL)}. In
general, every realization of a public signal is self-emideonditional onany stage-
game strategy’ However, a self-evident event may not be related to any psiginal,
and an event may be self evident conditional on one stage gaategy but not self ev-
ident conditional on another. In the following, when we dagttan event is self-evident,
it is always with respect to the equilibrium correlated &gy profilen.

4.1 Akeylemma

In Section 2, we show that when the players’ signals are ndegity correlated, any
y' that deviates from the ex ante distribution must “surprisefne player (given the
player’s information). In this section, we generalize tasuit.

Write P(a,y) for the element of to which (&,y) belongs. For anya’,y"), let
f(ayla,y"), f(&,y|a’,y"), andf(P(ay))|a",y") denote, respectively, the numbers
of times(&,y), (&,Yi), andP (& y) occurin(@",y").

Consider an observer who in each period observes only theealeofP. Suppose
(a',y") occurs. The observer knows that a particular outcéag) does not occur in
periodt when(ay) ¢ P(a(t),y(t)). In each period where(a,y) € P(a(t),y(t)), the
observer believes that there is a probabilitya, y|P(a,y)) that the outcome i¢a,y).
Hence, the total number of times the observer expéitg) to occur in(a",y") is
u@yP@y)f(Paya,y".

1470 be precise, the set of all recommendation and signal psatfilat are consistent with the public

signal is a self-evident event.
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For any(a,y) € supg ) and anyr > 0, define

Z'(@y),)={@.y")||f@aya.y)-u@yP@y)f(P@Eya,y)| >}

as the set ofa’,y") where the number of timg&,y) occurs in(a",y") deviates by
from the expectation of the aforementioned observer.
For each player, define

Z'(@y),n={@.y")||f@ya’,y") —pi@.iy-iay)f@.ya.y")| >}

as the set o( Y ) where the number of timgg, y) occurs |n( Y ) deviates from
the mean conditional on the private information that playeceives m(aT,yT) by 1.

Write ZT* (1) for UgayeaxyZ' ((8)Y),1) and ZT* (1) for UgyjeaxyZ' ((&Y),1).
Every( Y ) induces a distribution over stage-game outcofe¥ . Z™* (1) contains
any ( Y ) that induces a distribution that deviates from the expedisttibution
conditional on self-evident events, whitd * (1) contains any(a',y") that induces a
distribution that deviates from the expected dlstrlbunondltlonal on players private
information.

Lemma 2. For any! > 0, there exists ¢> 0 such that, for any T and anf@@",y") €
supgp) T, if (@7,y") € ZT* (1), then(@",y") € Z"* (cot ) for some player i.

Lemma 2 says that if the distribution induced(@,yT) deviates from the expected
distribution conditional on self-evident events fgythen it must also deviate by at least
co! from the expected distribution conditional on the privatermation of some player
i

To illustrate the lemma, recall in the Prisoners’ Dilemmaraple in Section 2,
there are four possible outcome@iH), (HL), (LH), and (LL). When the signals
are correlated, all four outcomes belong to the same iribtiuself-evident event. If
in somey", the number of timeg$HH) occurs is greater than the unconditional mean
but is equal to the mean conditional on the periods in whiaygil 1 observingd, as
well as the mean conditional on the periods in which playeb&eovingH, then the
number of timegH, L) and(L,H) occur iny” must also be greater than their respective
unconditional means. This means that the number of tithes) occurs iny” must
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be less than the unconditional mean, as well as the meantmralion the periods in
which player 1 observing.

Note thatr andcy apply uniformly to allT and(a',y") in Lemma 2. Given and
co, by the law of large number bo@™ (1) andZT* (cot ) become extremely unlikely
asT becomes large.

4.2 Decomposing incentives

A single-period contract is a mapping from an outcome pradile vector of payments.
We say that the incentives provided by a single-period eahtvary across two self-
evident events if, given the equilibrium outcome the total expected payment con-
ditional on one self-evident event is different from anoth&s we see in Case 1 of
Section 2, efficiency loss due to incentives that vary adiosself-evident events can-
not be reduced by linking. In a general contract, incentimay vary both across and
within self-evident events. To characterize the extent lictv this efficiency loss can
be reduced by linking, we need to decompose a single-peoigitlact into a component
that varies across self-evident events and a residualdltatistant across self-evident
events.

Write w for a typical element oP. For any stage-game contragtc #/(n), let
E[wi(ay)|0*, w] denote player's expected transfer conditional ari andw, and let

n

argmaxy E[wi(ay)|c*. w
OLJmaxE gwePi: [ I( 7y>| ’ ]

denote the element &fwith the maximum expected total payment. For any stage-game
contractw and any player, we can write

Wi (ay) =Wia(@y) +wipn@y), 9)
where

Wi,a( 7y> = W (é;y\) _Wi,b(§7y\>
wip(@y) = E[w(a,¥)]|o*P@y)]—E|[w(d,¥)|0", nax -

We callw; ,, the self-evident component @f;, as it depends only on the element
of P to which (a,y) belongs. This component measures incentives that vansscro
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irreducible self-evident events. The expected value ofréiselual component; 5 is
constant conditional on any € P. For alli € N andw € P,

EWa(@y)|o",w =E[w (a,y)]0" wmax - (10)

By construction, the sum of the self-evident componentwsags negative. For all
(&) € supp(p), ]
Wip(a,y) <0,
2

with the equality holds wheR (&,y) = wmax
The efficiency loss ofv can be similarly decomposed into two components:

n n
W(n,w)=-5% EWwa@ylo]- 5 Ewp@y)lo’|. (11)
i; . i; . |
Denote the efficiency loss associated with the self-evidentponent by
n
L(’%W) = _ZlE [Wi,b <a7y\) ‘O—*] : (12)
1=
Substituting (11) and (10) into (12), we have
n
L(.w) =W(n.w)+ 3 E [W (&.5) 0", cnas] (13)
i=

Thus, the self-evident efficiency loss of a contract is eqodhe total loss minus the
loss conditional ofumax.

5 Main Results

In this section, we present our main results.
Let

L'(m) =, min L(n.w (14)

denote the minimum self-evident efficiency loss of any cxttthat enforceg. Theo-
rem 1 says that the per-period efficiency loss is bounded Felow byL*(n).

Theorem 1. For any enforceable), W* (n,T,d) > L*(n) forany T>1andd < 1.
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In Case 1 of the noisy Prisoners’ Dilemma example in Sectione2saw that the
value of linking is limited by the need to provide separateeimtives in continuation
games after different realizations of a public signal. Tamas is true in general. Since
any w € P is self-evident, the continuation games after differeatirations ofw € P
can be treated as separate subgames. Hence, any efficisscgsleociated with the
self-evident component of a contract cannot be elimindtealigh linking.

Whenn is pure and the signal is public, every irreducible seldewit event is of
the form{(a,y)}, whereais the unique element in the supportrpf If wis an optimal
one-shot contract, we must have

n n
E[w (2,¥)]0", nax| =max$ w; (8y) =0
2 wi (&,5) | =ma 2
and the second term in (13) is zéfoHence

L* = in W .
(n) Werg)?n) (n,w)

Theorem 1, therefore, implies that linking has no value wipénpure and the signal is
public.

The converse of Theorem 1 holds under an additional comdittollowing Black-
well (1953), we can think of a player’s action as an experin@generate information
about the actions and signals of the other players. In Bladkid953), one experiment
is more informative than another if the latter can be exg@ss a garbling of the for-
mer. Letn; denote the marginal distribution of playié&r action unden. Lety € A(A)
denote a mixed action for playgrwherey; (&) is the probability of choosing;.

Definition 3. For anyy,y € A(A), v is more informative thary at the recommen-
dationg; esupgn;) if for any (a,y;) € Ai X Y;, there exists a distributioly, v (,-) €
A(A xY;) such that for al(@_j,y_i) € A_j xY_j and all(a,y)) € A x Y,

S Awy (@) y@) ply-i,vildi,a)n@ =y (a) p(y-i.yila-i.a) n(@).

(a,¥i)EAI XY
(15)

150therwise, letymax maximize 31, w; (& y). Then the contractin(d,y) = Wi (& y) — Wi(&, Ymax)
strictly improves upony;.
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An actiony; is strictly more informative thag if y is more informative thay but not
vice versa.

Unlike the setup in Blackwell (1953), where the distributiof states is fixed, in
our model playeii’s action may alter the distribution gf ;. Equation (15) requires
that for everya_; with n(g,a_;) > 0 (assuming that the other players are following the
recommendationsy lead to the same distribution gf; thaty/ induces, and be more
informative thany/ in the Blackwell sense. Sincf\, v(-)I(a,Yi) € Al x Yi} can be
interpreted as a mixed reporting strategy, an equivaldititien is to say thay is more
informative thany if playeri can choose; and misreport; to mimic the distribution
of y undery.

Definition 4. An action profilen satisfies the no-free-information condition if

> v@) Y d@ain@< 3 9@n@

AEA aicA €A
for anyi € N, & € supp(ni), andy strictly more informative thag; at&;.

In words, n satisfies the no-free-information condition if any dewatthat gener-
ates more information for a player must strictly lower hega-game payoff.
We can now state the converse of Theorem 1.

Theorem 2. If n is enforceable and satisfies the no-free-information ciorai then for
anye > 0, there existsgsuch that, forany T Toand anyd > 1—-T~2, W*(n,T, ) <
L*(n)+e&.

Theorem 2 says that the bound established in Theorem 1 iswiggnn satisfies
the no-free-information condition. It means that any ey loss due to incentives
that vary within self-evident events can be eliminated altng run. Note that when
is pure andP is a singletonL* () = 0. In the literature of repeated games with private
monitoring, it is standard to assume that the signal distidgim has full support, and
the assumption is often treated as merely a simplifyingragsion. In fact, since full
support implies thaP is a singleton, it, by itself, implies a pure action profilendze
enforced efficiently in the long run.
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Under a non-stationary contract that links incentivess&periods, how an action is
rewarded depends on past outcomes. Thus, players havéwesdn deviate to actions
that generate more information about the private inforamatf the other player¥
The no-free-information condition ensures that no player do so without paying a
cost and without being detected. Note that the conditiors do¢impose a lower bound
on the cost to acquire more information. Asdecomes large, the potential gain from
having more information can be made arbitrarily small (bt+4zero).

It is standard in the literature to assume that the desirézbme is strictly enforce-
able. Since strict enforceability rules out any profitaldeidtion from the recommen-
dation, itimplies the no-free-information condition. Tine-free-information condition,
however, is more intuitive and weaker than strict enfordigb

Definition 5 (Almost-strict enforceability) A contractw almost strictly enforceg if,
for any playern and any strategg; € 2,

vi(o*;w) > Vi (01,075 w)
with the inequality strict for any detectabig. An action profile is almost-strictly en-
forceable if it can be enforced almost strictly by some

Unlike strict enforceability, almost-strict enforceatyilrequires only that a player
be strictly worse off when the deviation is detectable.

Lemma 3. An enforceable action profile that satisfies the no-freerimiation condition
is almost-strictly enforceable.

Lemma 3 follows from the theory of alternatives. The congertLemma 3 is false
as almost-strict enforceability does not rule out pure textable deviations that are
more informative than the obedient strategy. Theorem 2 doesold if the no-free-
information condition is replaced with almost-strict erdeability. We show this by an
example in the online Appendix.

Note that if can be enforced by both andw/, the latter almost strictly, then any
linear combination ofv andw’ also enforces) almost strictly. Hence, by Lemma 3, if
n satisfies the no-free-information condition, then thetistexa contractv with L(1,w)
close toL*(n) that enforces) almost strictly.

16uUnder a truncated contract, a player will gain from learnirigether the truncation is likely to occur.

24



5.1 Linking incentives

In this section, we describe the long-term contract in tlewpof Theorem 2. The idea
is similar to Case 3 of Section 2. Readers who are not inedtestthe details can skip
this section.

For anye > 0, letw* denote a contract that enforcgsalmost strictly with

L(n,w) <L(m)+5. (16)

Let w', andwi, denote, respectively, the self-evident and residual corapts ofw;
(as defined in Section 4). Let'*, WIT;, andwI b denote thel -period version ofv*, wi’,
andw;, respectively. For ail€ N and alla,y"),

.
w@.y') = 215”\/\4"(5(0,%));

-
wiz@.y') = ;5”\/\6'251(5(0,?(0);

T
wip@,y') = Z(Stl\/\fib(ﬁ(t),x?(t)%
t=
Fix some smalkt > 0. Let

RY@,¥",kr) = max(o,w/ ;@ ,y")—Ew @, y")|0"] —kr)
Rii(aT,y\T,KT) _ mln(O T*(~T,y\T) [ (aT/,AT/)‘O' ]_ T)

denote, respectively, the positive and negative partseotiifierence betweewI; and
the mean ofv; pluskr.
Let
B (kr)={(@".y") e ATxYTIR" @',y k1) >0}

denote set ofa’,y") whereR"(a",y", k7) > 0. Recall thaZ"* (1) denotes the set of
( Y ) whose distribution of outcomes deviates from the expecistlilolition by
conditional on self-evident events. Ref, (a",y") to deviate from the mean, the real-
ized outcome distribution must differ from the expectedribisition as well*” Hence,

LBy constructiorE [wi 4(8,y)|0*, w] = E [Wi 2 (&) |0*] for all w € P.
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there existso > 0 such thaB/ (k1) C Z* (1ok7). Then, by Lemma 2,
BiT (KT) - UjeNZ}r* (ColoKT) . (17)

We can therefore define a vector of indicator functions devia. For anyi € N,
set

li(@,9", k1) = 1 if (@7.,97) € Z (cotokT),
o 0 otherwise.

Now, define a new contrawt’ **. For all(a",y"), set

WT**( 7y KT) RI( 7y KT)+W|b(~T7VT7KT)

+|R@, Y, k) (- K@, 9", kT)) ;R+ 9, k)@, 9T kr) | (18)

Under this new contract, each playes paid the self-evident componentwf*, the
part of the residual that is less than the mean pitisand a third component (inside
the square bracket) that pays playe®" whenli = 0 and—R;" whenl; = 1. The total
payment is negative for a(&",y"). By definition, for all(a",y7),

n

Z(Fﬁ‘(?ﬁT,VT,KTHng @.y",«r)) <.

i=

The sum of the third component in (18) is also negative. By,(fof any player and

any (a",y") € B (kr), 1j (&",y",kr) = 1 for some playej. Intuitively, if playeri is

to receive somRi*(aT,y ,KT) > 0, then some other playémust pay for it.
Rearranging the terms on the right-hand side of (18), we aé&e w

w @yt k) =w @,y ) —Ewg (@’ y")|o™ —kr —@@.y' k1), (19)

where
@@,y k)= ZR+ Y kr)l@ Y KT)

measures the distortion in incentives.

The following lemma shows that we can choageso that the expected value of
@(a",y", kT) conditional on any private information playienay learn during the game
on the equilibrium path diminishes uniformly and exponalhtiwith T.
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Let HiT* denote the set of histories that playenay observe during th€-period
contract undeo ™.

Lemma 4. Let kt = T?/3. There exists ¢- 0 such that for all ie N, T > 1, and
hi c HiT*’
2
S * |
E[a@ .y kr)lo"™ hi] < CTexp(_@Tlﬁ) _

We prove Lemma 4 by the Hoeffding inequality (Hoeffding, 326_emma 4 means
that, when is sufficiently large, a playemwho has fO||OW€d7iT* up to some periotl<
T (conditional on any private information that he may obsérem period 1 tot — 1))
will believe that if he follows the equilibrium strategy’* in the remaining periods,
he will obtain a@ close to zero. This, together with the fact tlgats always positive,
means that no deviation can reduce the expected valge nificantly. SinceNiT*
enforcesn almost strictly and) satisfies the no-free-information condition, a player
deviating in any period must be strictly worse off if the d&ion is detectable or more
informative than the recommended one. Since the effect mighesperiod deviation on
the total payoff is of the order/T (asd goes to one), the players will have the incentives
to playn underw™* whenT is sufficiently large, as the distortion in incentives due to
the truncation diminishes at a rate faster tham .1

The per—period efficiency loss of ** is

@.y") 5T o7 =T of T+
1 5T ZlE —EMWz@"9")0™] -kt —@@ 9" k1)|0""]

=L(n,w") + % <nKT +i;E[<a(ﬁT,?T,KT)|0T*]> -
(20)

The per-period efficiency loss converged @), w") as the second term in the last e-
guation converges to zero agyoes to one and goes to infinity.

6 Value of Linking

In this section, we characteriz€ () in terms of the primitives of the model. The
following theorem provides a sufficient condition fot(n) = 0.
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Theorem 3A. For any enforceablg, we haveL*(n) = 0O if for any playeri € N, any
deviating strategy; € %/ {g;" } satisfies one of the following conditions:

(i) There exist4@,y) such thatt®(a,y) > 0 andu(a,y) = 0.
(i) There existaw € P such thatr? (-|w) # u (-|w).
(iii) There exists a playej € N such that there is ngj with % = n9.

Theorem 3A identifies three types of deviations that can ey almost costless-
ly asT becomes large: first, deviations that may resu(&ity) outside of the support of
U; second, deviations that change the distributiofé§) conditional on somev € P;
third, deviations that lead to distributions @& ¥) that cannot be caused by some oth-
er player. Rahman and Obara (2010) call the last type of tHemmattributable By
contrast, a deviating strategy profiles, ..., on) satisfying

oL — ... — %

is unattributable as the common distributian? could have been caused by any player.
The first type of deviations can be deterred costlessly byngract that punishes all
players severely when an out-of-supp@ty) occurs. The second type can be deterred
by a contract with a zero self-evident component. The thipetcan be deterred by a
budget-balance contract (Rahman and Obara, 2010).
Not all outcome profiles can be enforced almost efficientiyhalong run. The next
theorem characterie’ (n) for all . Let

Qn)={oezn” =-.-=n" cco({u(-|w) | weP})/{u}}

denote the set of unattributable deviations that are distiom ¢ and undetectable with
respect to anw € P. If g; does not satisfy any of Conditions (i) to (iii) in Theorem 3A,
then there must exist_; such that i, 0_;) belongs taQ(n).

For anyaqi, let

d(o)= 3 ailai,p) ) (gi(aiai(@))—a(@)n (@

(ci 1) ach
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denote player's gain from the deviatiomw;, and let

=095

measure the difference betweaff and u. Consider somer € Q(n). Any w that

enforces) must satisfy, for all player, the incentive-compatibility constraint that

(u(ay) —n7(ay)w (@) >d(q). (21)

(ay)eAxY

Sinceo € Q(n), for all w € P,
Ew (@y)|u,w =Ew @&y |n”, w. (22)

Substituting (22) into (21), and summing ovewe have
n

S ((@) -7 (@) 3 Ew (@9 ol > 5 dia). @3

It then follows from the definition ok, (13), that

LW = 5 (o) (—_iE[Wi(5,37)|u,w]+glg;<_iE[Wa(i?)lﬂ@’])

i ( )—1 n n
> Epu(wh”(w)i_l(—_ZE[Wi(é',V)Iu,w]Jrggg_;E[wi(é“,V)lu,w’]>

(01)
> 2 ot BEm @i
S d(0)
|(01)—l '

The first inequality follows from the definition dicj). The second inequality fol-
lows from the fact thaty|! ; E [w; (&, Y) |4, '] < 0. The last inequality follows from
(23). Intuitively, sinceo is unattributable, every player must be punished, and the to
tal punishment must be greater thgf , d (i), the total deviating gain. The resulting
efficiency loss is equal to the total deV|at|on gain muledlby a factor that measures
the difference between® andu. The smaller the difference, the harder it is to distin-
guish between the two distributions, and, hence, the hittesefficiency loss. Since
the argument applies to evemythat enforces), for anyo € Q(n),

; Si,d(ai)
L ('7) > W
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Theorem 3B shows that the converse is also true.

Theorem 3B. For any enforceablg,

max(3il,d(i),0)
I (O’l) -1

L*(n)=  sup
(017"'70n)6Q(n)

if Q(n) is nonempty. Otherwisé,*(n) = 0.

Theorem 3B implies thdt*(n) > 0 only if there is some € Q(n) with ', d(g;) >
0. Theorem 3B, thus, implies Theorem 3A.

In the noisy prisoners’ dilemma example in Section 2, whersignals are perfectly
correlated = 0), conditional or{C,C) there are two irreducible singleton self-evident
events:HH andLL. Either player deviating t® results in the same signal distribution
(0,1—q). Hence, the only way to enfora€,C) is to punish the players when the
signalL occurs. By Theorem 3B, the per-period efficiency loss is

2d _2(1—p)d
q1q)_q = p-q’
max(ﬁ,ﬁ>—l

whered is a player’s gain from deviating ©©. Theorem 3B effectively shows that any
long-term efficiency loss arises for the same reason as ipribeners’ dilemma exam-
ple. WhenQ(n) contains multiple strategy profiles, the efficiency lossatedmined by
the one that is the hardest to deter.

6.1 Relation to literature

Our results are closely related to the literature in regkegtames with private monitor-
ing and communicatio® The literature can be divided into two strands. One strand,
following Abreu, Milgrom, and Pearce (1991), applies tim&ing idea to obtain approx-
imate efficiency (Compte, 1998; Obara, 2009; Chan and Zh20tf; Rahman, 2014;
Sugaya, 2017a,8f. Another strand (Fudenberg, Levine, and Maskin, 1994; Kendo

8Instead of infinitely repeated games, we work with-period contracting problem that allows us to
focus on the mechanism of linking and abstract away from thblpm of implementing transfers through

continuation strategies. Our results can be readily appieepeated games with side-payments.
19The literature of repeated games with private monitoring aithout communication also exploits

the idea of linking. See, e.g., Matsushima (2004) and Fogs@er, Horner, and Sannikov (2011).
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and Matsushima, 1998; Rahman and Obara, 2010) identifiektmors that ensure that
an outcome can be costlessly enforced in a stage game by atHualgnced contract.

Theorem 3A naturally combines the two approaches. It, tagetvith Theorem
2, implies that an outcome can be enforced in the long-rurostrefficiently if every
deviating strategy can be deterreither by a contract that links efficiently or is budget
balanced. Theorems 1 and 3B further connect the efficiersylteein the repeated-
game literature with the inefficiency result of Abreu, Mibgn, and Pearce (19939.It
shows that the two approaches taken by the repeated-garatuite are, in fact, the
only approaches to obtain efficiency. If there is a deviati@t cannot be deterred by
either one, then long-run efficiency loss may be inevitahite] the way the efficiency
loss arises is exactly the same as in Abreu, Milgrom, anddee@d91) (Case 1 of
Section 2).

In a repeated game, the players observe private signale &intth of every period.
While the players may delay revealing their signals, each neaxertheless update his
beliefs about other players’ signals on the basis of his d@ompte (1998) and Obara
(2009) deal with this problem by imposing restrictions oa $ignal structure to ensure
the existence of a contract that enforces the desired o@teudth the property that no
player can learn about his payment from his own sighalRahman (2014) adopts a
similar approach when correlated strategies are allowed.shéw that these restric-
tions are not necessary as linking could work even when aeplegn learn about his
payment. Our approach relies on the fact that, when large, it is possible to have
one player to partially compensate another player for thecttion effect so long as
the truncation is not self evident. Chan and Zhang (2016padsimilar approach to
obtain efficiency in repeated games where players obseeredtvn payoffs and the
signal distribution has full support. While Chan and Zha®@16) consider only pure
outcomes, our framework applies to all monitoring struesuiboth public and private)
and action profiles (both pure and correlated).

In two recent papers, Sugaya (2017a,b) derives upper aret loounds in equilib-

20Compte (1998), Obara (2009) and Chan and Zhang (2016) earsigle action profile and assume

that the signal distribution has full support, which rules public signals.
21Compte (1998) assumes independent signals. Obara (20@8ijlecs correlated signals and identi-

fies a condition on the signal distribution that ensurestibgtlayer can learn about his own transfer.
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rium payoffs in repeated games with private monitoring aodetated strategies. In
particular, Sugaya (2017a) shows that approximate efttgiean be achieved when the
players can observe their own payoffs. Sugaya’s methodyalwequires a correlating
device, while ours requires one only when the outcome isstated. While Sugaya
(2017a,b) focuses on the equilibrium payoff set, we focushenminimum efficiency
loss associated with the enforcement of a given outcome.

7 Correlated Strategies

Rahman and Obara (2010) show that, instead of having a eliested owner to break
the budget constraint, a partnership may reduce the cosi®§ monitoring by using a
disinterested mediator to implement a correlated stratiegtyidentifies non-deviators.
In our setting, players may also change the informatiorctire endogenously through
a correlated strategy profifé. Since a small change in a correlated strategy can alter
the support of the distribution of action-signal profilegstantially, it can have a large
impact on the long-run efficiency loss &gjoes to one and goes to infinity. The idea
is first raised by Rahman (2014). He proves a folk theorem utheecondition that the
signal distribution satisfies conditional identifiability

To illustrate the idea, let us return to the noisy PrisonBimma in Case 14 = 0)
of Section 2. As we showed in the last sectidri(C,C) = 2(1— p)d/(p—q). Consider
the correlated strategy profilewhere

ncc,C)=1-¢n(C,D)=n(D,C)=0.5¢.

Whene is small, i is close to the pure strategy profil€,C). Yet the support of the
distribution of the action-signal profiles undgis very different from the support under
(C,C). Now eachR, consists of four elements. In particular,

P, : {CCH,CDH},{CCLCDL},{DCH},{DCL}
P, : {CCH,DCH},{CCLDCL},{CDH},{CDL},

22This involves changing the correlating device correspogigi
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and the meet oP; andP; is
P:{CCH,CDH,DCH},{CCL CDL,DCL}.

Note that each member of the meet contains multiple elemAsta player is instructed
to chooseC, he is not sure whether the other player is choo€ingD. Let p(H|DD) =
r. Conditional identifiability requires that

1- 1-

g #* ? and 1—2 1—?'
The condition says that how playes action affects the relative likelihood &f andL
depends on whether playgris choosingC or D. Since player does not observe the
action of playerj,  can be “secretly” enforced so that the players do not leaoutab
their own punishments from the public signal. Hence, by sihapa smalk, the players
can obtain close to the efficient paydff, 1), when the players are sufficiently patient
andT is sufficiently large.

Using Theorems 2 and 3A, we can show thatan be enforced almost efficiently
without assuming conditional identifiability. It is straifjorward to see thaf is en-
forceable. LetaiXy denote the strategy of choosingvhenC is recommended ang
whenD is recommended. Each player has four pure action strategfiét aPP, aCC,
and aiDC. In Table 3, each row gives the probabilities of outcome$aitH signal
under a different pure strategy of player 1 (assuming tregtgyl 2 pIaysaZCD).

CCH DCH CDH

asP (1-&)p 0.5eq 0.5¢q
aPP (1-¢e)q 05eq 0.5er
at® (1-¢)p 05ep 0.5¢q
aPC (1-¢€)q 0.5ep 0.5er

Table 3: The probability for each outcome with ldrsignal.

Notice that the ratio of the relative probability GCH over DCH is strictly higher
when player 1 follows the recommendation and ple§$. Hence, every deviation is
detectable with respect to the self-evident e&@€CH,CDH,DCH}. By Theorem 3A,
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L*(n7) = 0. Intuitively, the recommendatioDC serves as a “benchmark” for player
1. Given that player 2 is choosirg player 1 choosing minimizes the probability
of H. Hence, if player 1 deviates © when told to choos€, he must lower the
relative probability ofCCH overDCH. Finally, since any unilateral deviation fromis
detectableq) satisfies the no-free-information condition. Hence, bydrken 2,1 can
be enforced almost efficiently in the long run.

The following theorem generalizes the above example. & Hagt any strictly en-
forceable outcome can be virtually enforced with almostargtrun efficiency los$3
The proof is in the online Appendix.

Theorem 4. For any strictly enforceable and anye > 0, there exists an enforceable
correlated action profilen that satisfies the no-free-information condition and with

Mavea | (&) ~ 71(&)| < € and L' (17) = 0.

8 Conclusion

Players in along-run relationship can reduce incentivesdmslinking incentives across
periods, but the value of linking is limited by the inforn@tithe players obtain during
the course of the relationship. We show that the long-rurpeeiod efficiency loss in
enforcing an action profile is bounded from below by the inisencost that becomes
self-evident at the end of each period, and the bound iswgkh players cannot obtain
free information undetectably. The results extend thegmsiof Abreu, Milgrom, and
Pearce (1991) to general stage games where players may@bséhn public and private
signals and use a correlating device to coordinate thamrast

23Theorem 4 does not hold if merely satisfies the no-free-information condition butds strictly
enforceable. The strict enforceability pf together with the fact thaf is close tan, ensures that under
no player can deviate undetectably without strictly redgdiis stage-game payoff when recommended
to choose an action in the supportrpf
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A Proof of Theorem 1

By definition,W*(n) > L*(n). Hence, Theorem 1 holds far= 1. Suppose the theo-
rem holds fofT — 1. Consider thd -period case.

Leta®T andy?" denote, respectively, the value@f andy’ from period 2 through
T. Fixw' € #(n,T,8). For each and each{a(1),y(1)) € AxY, let

T
wi(a(1),y(1)) = wi (a(1),a",9(1),*7) nu(ﬁ(t),ﬂt))
CANAS t=
denote the expected valuewf conditional on(a(1),¥(1)), assuming that all players
follow the equilibrium strategy.

For each, each(&7,y*T) and eactw € P, let

w @TLPY = S W (@9 e(El), i) w)
@1)yl)ew

denote the expected value wf conditional on(a*",y>T) and (a(1),y(1)) being in
the setw, assuming that all players follow the equilibrium strategy

Sincew’ enforcesn for T periods,w = (Wy,...,Wy) must enforcen in the first
period. Hencew € #(n). Furthermore, since is self-evident, the continuation game
following w can be treated as(& — 1)-period game with an extra randomization device
u (-|w), and the contracd—w' 1% must enforcen in this game. By the revelation
principle, adding this extra randomization device will resthance the efficiency of
the contract. Hence, by the supposition that Theorem 1 Hold§ — 1, the expected
efficiency loss of this contract, which is equal to

~571 3 W(ED) ) (3D 5] ).

5T,
must be greater thakz®<—L*(n)). Let

n
Wmax € argmaxy E [wi (a(1),¥(1))[0", ).
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It follows that

Y
—
*
>
I

wi(&(1),¥(1))p(a(1), y(1)| wmax)

i, (a(2),9(1)) € wax

* 1_5T_1 *
L*(n)+9o L*(n)

1-90
1-o6" ,

v

The first inequality follows from the fact thatc #'(n).

B Proof of Lemma 2

Define two constants

1
(2lsupgp)| +1)cy

We show for all(@",y") € supgu)T, if (@",y") ¢ Z'*(cot) for all playeri, then
@) ¢ 27 ().

Fix any (2,y) € supg i) and letw be the element d? that containgad',y'). Since
wis an element of the meBf any(a’,y") € wis reachable froni@,y’), i.e., there exists
a sequencéd,y) = (al,yh), (@2,y?), ..., (8, y¥) = (&",y") such that@®,y®) € w for
eachs < k and that any two consecutive profilg, y%) and(a51,y5*1) have the same

1
Ci= max ——— and cy=
17 (@y)esupru) H(EY)

is-th component for playeg € N (see, e.g., Aumann, 1976; Geanakoplos, 1994).
For each(a®,y®) and eachm € N, by supposition, we have

113187, Y") — Hom(@ Y2l Vi) (@ YmlaT,YT) | < cor. (24)

Dividing both sides of (24) by(a°,y®), we have

@ yma,y) f@ylay)|_  co

. 25
Hm(&5 Vi) W@y | Sy = e (25)
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Fix any two players, j € N. It follows from (25) that

f@.yay’)  f@E.yaEyn
Hi (&, Y)) Hj (&7, Y})
_|f@E Rty fEytalyn || fEhyaT Yy fE vty
| wi(&y) p(atyt) p(at,y) iy (BL,yL)
f@ELyalayh) @ yayn f@ ¥ aT,y")  f(@.yjlayn
Hiy (B2, 7) H(@.y?) MERY Hi (&.Y))

<2k cpl < 2|w)cicol
This implies that
f(éjj/,)/ﬂﬁT’yT) f(él17%|§T,yT> _ (a“// }/]| T )
Hi (& YY) @y T H( ,M,’)
Note that (26) holds for alf and all (&],y{). Multiplying each side of (26) by
uj(&,y}) and summing over ali&/,y/) € Aj x Y; for which there exist¢a” ;,y" ;) €
A_j xY_jsuchthata”,y’) = (&, ”’],y’J y” ) € w, we have

Ni(é?a}/i)

+ 2|w|ciCpl . (26)

—2w|cicot <

f(wfaT,y") —2llcicol () < ) ) < F(@laT Y7 + 2l wlcrcor ().

Using (25), we have

f@ylary") f(wa’y"
p@.,y) H(w)

< (2lw|+1)cicot,
or

f@y1a"y") — @ y|wf(way)
<(2|w| +1)crcol H(@,Y) < (2/sup )|+ 1)caCol =1.

C Proof of Lemma 3

By Lemma 1, pure and undetectable strategsp;) are unprofitable. Hence, it suf-
fices to show that there exists a contracsuch that for any player and any pure

strategy(ai, pi),
@y —nP(ag)wi(ay) > Z g@i,ai(@))—-g@)n@ (27

(ay)eAxyY
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with the inequality strict ifn®-P £ u. By the theory of alternatives (see, e.g., Proposi-
tion 5.6.2 of Bertsekas, 2009), (27) does not have a solwidirand only if there exists
Ai(ai, pi) > 0 for each(ai, pi) such that

> Ai(ai,pi) [H(ay) — P (a,9)] = 0 for each(a,y),
(ai,pi)

and either one of the following two cases holds:

(i) We havey (g 5)Ai(0i,pi) Taca(Gi(@-i; ai(a)) —gi(a))n (@) > 0.

(i) We havey g o) Ai(0i, 0i) Yaca(9i(@-i, 0i(&)) — gi(a))n(8) = 0 andAi(ai, pi) >
0 for some(aj, p;) such thatt®:P £ p.

In either caseAi(a/,p/) > 0 for some(a,p/). By dividing eachA;(ai,pi) by
> (at.ph Ailai, p) if necessary, we may assume thiaty ) Ai(af,pf) = 1. Thatis,A;
represents a mixed strategy for player

Sincen is enforceable, by Lemma 1, Case (i) cannot hold. Case (@ipigs the
no-free-information condition. Hence (27) must have a thofu

D Proof of Lemma 4

We apply the following inequality of Hoeffding (1963) to p®the lemma. Suppose
thaté (1), £(2), ..., &(T) are independent random variables such tgét)| < v for
eacht <T. Then, for any > 0, Hoeffding’s inequality asserts that

T T 2
Pr <t;E(t> >E L;E(t) +K> < eXp(_ZCZT)'

Fix any (3 y) € supgu) and(&",y ), we estimate the probability théa™,y") €
ZT ((a,y),colokT) conditional on(aT,y"). Focus on thef(&,yi|a’,y") periods in

which playeii observe4d;,y;). Note that we can rewrité(a,y|a",y") as the sum of in-
dicators Ya iy for these periods that equals 1& i,y i) occurs. Them i (a_i,y_i|&,y) f(&,yi|a",y")
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is the mean of this sum. Hence, by Hoeffding’s inequality haee

Pr(|f@ya,y") — p_i(@iy-ila,y)f(@yla.y")| > cookr| o7, &,y )

:Pr<
—pi(@,y-ila, ) f (&, yila,y")

(ColoKT)? (ColokT)?
< — < AP
—Zexp( 2@y ) = 2P
It follows that,
Pr(Z(cotokr)| 0,87y} )
< 5 Pr(lf@Eyaly’) - pi(@iy-ila, ) f(@ i@y > cotokr|o T, &yl )

(ay)esuppp)
(ColoKT)?

< = ).

<2|suppu)| exr)( >T

l(ii,yfi) (afi (t)7y7i (t))
t: (& ).y (0)=(a.yi)

> ColoKT

UT*751TaYiT)

Let
Co =maxX{|W 4(a,y)|[ieN,ac AyeY}.

SinceR™(a",97) < ¢ T andkr = T3,
n
E [(n(gT7VT7KT)|O-T*7aIT7yiT] =E [Z RT(gTvy\TvKT)'i(gTay\TaKT>|O-T*7§IT7yiT]
=
<nc,T Pr(Z™ (cotokr)| o™, &1y )
2
<202\sup[:(u)|nTexp<—@Tl/3) .

Let c = 2cp|supf p)|n. This completes the proof of the lemma.

E Proof of Theorem 2

We say that a pure action strategyis equally informative asr* if for eachg; that
may be recommended with strictly positive probability ungethere is a one-to-one
mappingxz : Yi — Yi such that for anya_j,y_j) € A_j x Y_j,

P(yi,y—ilai (&).a) =p(xz (V).y-ila).
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We say that a pure stage-game stratégyp;) is a duplicate for(a;", pj) if a;j is as
informative asa" andp; (&, ai(&),-) = X3 -

Note that if somé ai, pi) is not a duplicate fofa;", p*), then either it is detectable
or a; is strictly more informative thaa;". The number of pure stage-game strategies is
finite. Sincew is almost strict and) satisfies the no free information condition, there
existsAg > 0 such that for all non-duplicat@;, p;),

Vi(o" W) — vi(a%, ai, pis W) > Ao. (28)

Because) is enforceable, any duplicate action strategy must gemertawer stage-
game payoff for playerthana;". Playeri, therefore, will receive a higher payoff if he
replaces any duplicate action strategyin some period with a;" and then, in the
reporting stage, reports the peribdignal truthfully. Hence, to prove Theorem 2, if
suffices to show that any deviation to a non-duplicate gyatell make a player strictly
worse off.

If o7 deviates fromg;"*, there must be a first time a deviation occurs. There are two
types of first-time non-duplicate deviations. First, a plagnay choose an action that is
not equally informative as;* after some history. Alternatively, the player may follow
the recommendations in all periods but lie about the signal of a particular period at
the end.

We first consider the first type of deviations. Supposefirst prescribes a non-
equally-informative action in periotafterh; € H*. Letv (o;w',h;) denote player
i’s expected discounted payoff conditioral andh;. Recall thatwiT** is the truncated
contract with side bets in (18) amf* is T-period version ofv;".

By (19), we can write

ViT(O-iT7GIi*;WiT**7hi) -
1-90

Tt (Vi(ai i) —EWwig@".y" kr)lo"] —kr —E[@(@".y" ,k1)|0}, 07 i)

where .
Vi(g'ih) =E| S 6% (ai(als) +w (&(s), ¥(9))

s=1

O:—ri*7 O-iT7 hI:|
denote player's discounted payoff conditional di undenw *.
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It follows that

ViT<O.T*; iT**7hi) (O. I,O.iT’WT** hl)
1-9
=15t V(o g hi) —Vi(ai" ;i)
~E[@(@".y" ,k7)[0"", h] +E[@@".y" ,k7)|0]. o' . hi)

> 120 (V(6T5h) — (o sh) — El@(&",§" kr)|o™ ).

1 o
The last inequality follows from the fact thetis always positive.

Sinceo first prescribes a non-equally-informative action in petigit will lower
playeri’s payoff (including the stage-game paymentWayin that period. This, together
with the fact that undew * the stage-game payoff plus payment is maximizeadby
in each periog # t, |mpI|es that

Vi (65 hi) = Vi (o', i ;i)
>t (Efgi(a(t)) +w (&), yt)) o™, hi] — E[gi(a(t)) +wi'(&t), 9(t))| o1}, o' hi])
Z(St_le.
By Lemma 4, we can choodg large enough such that for &> Toandd > 1—T 2,

El@@,y" k7)o", h] <& Ao

This proves that any;' first prescribes a non-equally-informative action is nati-op
mal. The argument for following the recommendations butemsrting the signals is
similar.

Finally, by (20), the per-period efficiency loss is

_ T** T*
1 5TZ B w1

1-9 ~T ol T2/3 T 2/3
SL<nw>+—l_5Ti;(Em< 9T aT) TR,

(nT5 T**

By Lemma 4, wherT is sufficiently large

1-3 5T T T2/3)gT* 2/3 €
T < =,
157 2 (El@ g™, T%3)|0™]+T%%) < 5
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F Proof of Theorem 3B

Let

noda) - _
C_ [ suRcqu BRI Q) £0;
0, otherwise.

To prove Theorem 3B, it remains to show that
L*(n) <L. (29)
By definition, a contractv enforces) with L(n,w) < L if and only if

[nai,M(g,y)_u(g,@]wi(a,y) < —di(ai,p) V(ai,pi,i); (30)
(ay)eAxY

Y 3 HE+HET@IwEY) < T veeP (31)
i=1(ay)cAxY

By the theorem of alternatives (see, e.g., Propositior2mflBertsekas, 2009), (30) and
(31) does not have a solutionmif and only if there exis{Ai(ai,pi) > 0| (ai,p0i,1) }
and{v(w) > 0| w € P} such that

> Ailai, o) [P () — ()] + va(w)[—u(-)+u(-|w)] = 0vi (32

(ai,pi) we
n

Zl > Ai(ai, pi)di(ai, pi) — ZPV(OO)E > 0. (33)
i=1(ai,p) we

Suppose (32) and (33) hold. From (33)= maxcn > (ai.on Ai(@i, pi) > 0. We can,
therefore, define a mixed strategyfor each player such that, for all a;, pi, 1),

e, i (o, 01) # (a',py);
1= 3 (ar.p(ar o) Ai(‘;_“p'), otherwise.

ai(ai,pi) = {
Using the definition ot;, we can rewrite (32) and (33) as

A[OC) = u))+ 3 V@[ +uC|w)] = 0foreach  (34)

we

iiXdi(q)—w;v(w)E > 0. (35)

42



Fix a contractw. Multiplying each (34) byw;(-), then summing over all and all
(ay) € AxY, and adding (35), we have

Zi/\ ( n(ay) —u@y)w (5,37>+di(0i>>
EAXY
+ EP ( [—u(@y) +u@ylw)w (@y) — >>0
ay EAXY

This means that ify cannot be enforced by amny with L(n,w) <L, then there must
existo such that, for anyv with L(n,w) <L,

Vi(0i, 0% W) > V(0% wh)

for some player.

We prove (29) by showing that for adf € %, there exists a contraet such that
vi(0i,0% ;W) — vi(0*;w) < O for all i andL(n,w) <L. By Theorem 4(i) of Rahman
and Obara (2010), itr is either unprofitable or attributable, then it can be detérr
by a contract with total transfer summing to zero. It remamsonsiderg such that
nt =...=n%andy! ;di(g) > 0. Sincen is enforceablenr” # p.

Case 1. If there exist&,y) such thatn®(a,y) > 0 andu(a,y) = 0, theno can
be deterred by a contraatthat punishes every player severely whené@ey) occurs.
Clearly,L(n,w) = 0.

Case 2. Suppose tha (-|w) # u(-|w) for somew € P. Thenn% (4 y|w) >
H (a,y|w) for some(a,y) € w. We define a contraet by letting, for each,

-, if (@,y)=(@y);
VW<€yy):: '—C'U(5A/0»7 if(éﬂyﬂ ¢CU
0, otherwise.

ThenE|wi(&,¥)|o*, 0] = —c- 1 (a,y|w) for all ' € P. Hencel(n,w) = 0. Moreover,
vi(ai,0%w) — vi(0"wh) = —¢- (1%(& Y]w) — p (8, Y]w)) 1 (w) +d(0i) <0,

whenc is large enough.
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Case 3. Suppose thate Q(n). Let w solve maxycp % We define a contract
w by letting, for each,

___d(@) if (A7) < o
w(ay) ={ me-pe @&y e
0, otherwise.

ThenL(n,w) = 21900 () — 25100 g

BECEE (o 1
(01,0 ) (07 =~ SO (19(@) — () + ) = O
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