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Abstract. Suzumura consistency and quasi-transitivity are important weakenings of
transitivity. Suzumura consistency rules out goodness cycles with at least one instance
of betterness, and quasi-transitivity requires betterness to be transitive. This paper ex-
amines to what extent these two (in general, independent) properties can be satisfied
simultaneously. To do so, we define the concept of a minimal quasi-transitive extension
for a Suzumura consistent relation. Because quasi-transitivity does not allow for the exis-
tence of a closure operator, this extension cannot be a closure. However, as we show, any
Suzumura consistent relation can be extended to a quasi-transitive and Suzumura consis-
tent relation. In addition, we apply the notion of a minimal quasi-transitive extension in
the context of rational choice theory.
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1 Introduction

Although transitivity is considered a plausible coherence property of a binary relation,
there are several reasons why it may be too demanding in some situations. Armstrong
(1939) argues forcefully against the transitivity of equal goodness (which is implied by
transitivity) because, inevitably, there are thresholds of perception that prevent this re-
quirement from being acceptable in several circumstances. This is evidenced, for example,
in Luce’s (1956) well-known thought experiment that refers to a cup of coffee and the
amount of sugar used. A cup that contains a certain amount of sugar is, for most people,
indistinguishable from a cup that contains 0.1 grams more. If transitivity is applied re-
peatedly, a cup that contains 10 grams is indistinguishable from a cup that contains no
sugar at all. This rather implausible implication is a direct consequence of assuming that
equal goodness is transitive.

If a relation is not necessarily complete, another case can be made that transitivity
may not be the most suitable coherence requirement. Transitivity requires that if an
object x is at least as good as an object y and y is at least as good as z, then x must
be at least as good as z. But if the underlying goodness relation is not complete, this
conclusion does not appear to be all that compelling. If x is at least as good as y and
y is at least as good as z, it is eminently reasonable to exclude the possibility that z be
better that x—but there is nothing wrong with x and z being non-comparable.

There are (at least) two plausible candidates that involve relaxing the transitivity re-
quirement. The first of these consists of weakening transitivity to Suzumura consistency
(Suzumura, 1976), a property that excludes goodness cycles with at least one instance
of betterness. In the presence of reflexivity and completeness, Suzumura consistency
is equivalent to transitivity but this equivalence is not valid in general. As shown by
Suzumura (1976), Suzumura consistency is necessary and sufficient for the existence of
an ordering extension. This result constitutes a substantial strengthening of Szpilrajn’s
(1930) classical observation that transitivity is sufficient for this conclusion. In addition,
Suzumura consistency allows for a well-defined closure operator. That any arbitrary rela-
tion R possesses a Suzumura consistent closure—that is, a smallest Suzumura consistent
relation that contains R—is established in Bossert, Sprumont, and Suzumura (2005).

The second option is quasi-transitivity, a condition that has been studied extensively
since Sen’s (1969) seminal contribution. A goodness relation is quasi-transitive if its
asymmetric (betterness) part is transitive; clearly, this does not imply that the symmet-
ric (equal goodness) part be transitive, thus avoiding the threshold-of-perception issue
pointed out by Armstrong (1939). This property is of importance because it guarantees
path independent choice functions; see Plott (1973) and Blair, Bordes, Kelly, and Suzu-
mura (1976). However, quasi-transitivity does not address the second problem alluded to
above—it fails to rule out goodness cycles with at least one instance of betterness. More-
over, in contrast to Suzumura consistency, there is no such thing as a quasi-transitive
closure because there is, in general, no unique way of obtaining a larger relation that
removes violations of quasi-transitivity.

In this paper, we examine how Suzumura consistency and quasi-transitivity can be
satisfied simultaneously. This is important because both of these properties possess some
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appealing attributes. As alluded to above, quasi-transitivity is a necessary and sufficient
condition for path independent choice. In addition to the features already mentioned,
Suzumura consistency is necessary and sufficient for the avoidance of a money pump
(Raiffa, 1968, p. 78). This is the case because the property prevents an agent from
engaging in a chain of exchanges each of which leaves him or her at least as well off as
the object that is currently in his or her possession, only to arrive at a situation in which
it is better to obtain the object he or she started out with. See Bossert and Suzumura
(2010, pp. 4–5) for a discussion.

We begin by establishing the existence of what we refer to as a minimal quasi-transitive
extension in the presence of Suzumura consistency. An extension of this nature does not
exist in general and, therefore, this existence result reveals an important complementar-
ity between Suzumura consistency and quasi-transitivity. We also show that the minimal
quasi-transitive extension of a Suzumura consistent relation is Suzumura consistent. How-
ever, the minimal quasi-transitive extension still fails to be a closure even if Suzumura
consistency is satisfied.

As an application, we focus on rational choice on arbitrary domains; see Richter (1966,
1971) for pioneering contributions. Characterizations of rationalizability by a Suzumura
consistent relation or by a quasi-transitive relation are available in the existing literature;
see, for example, Bossert, Sprumont, and Suzumura (2005) and Bossert and Suzumura
(2009, 2010). Bossert and Suzumura (2012) examine the conjunction of Suzumura con-
sistency and quasi-transitivity, with a focus on the ramifications for collective choice.
However, to the best of our knowledge, the implications of combining Suzumura consis-
tency and quasi-transitivity have not been explored in the context of rational choice. We
begin by identifying some logical relationships if a rationalization is required to satisfy
both Suzumura consistency and quasi-transitivity. A sufficient condition for Suzumura
consistent and quasi-transitive rationalizability follows, with the notion of a minimal
quasi-transitive extension emerging as its key element.

Section 2 introduces our basic notation and some relevant existing results concerning
binary relations. Minimal quasi-transitive extensions are defined in Section 3, and we
establish the importance of Suzumura consistency in this context. Section 4 examines
rationalizing relations that are both Suzumura consistent and quasi-transitive. Section 5
concludes the paper.

2 Preliminaries

Suppose that X is a non-empty set of alternatives. Consider a (binary) relation R ⊆ X×X
on X with asymmetric part P (R), symmetric part I(R), and non-comparable part N(R).
The diagonal relation on X is given by ∆ = {(x, x) | x ∈ X}. A relation R′ is an extension
of a relation R if R ⊆ R′ and P (R) ⊆ P (R′).

Two standard richness properties of a relation are those of reflexivity and completeness.
A relation R is reflexive if (x, x) ∈ R for all x ∈ X, and R is complete if (x, y) ∈
R or (y, x) ∈ R for all x, y ∈ X such that x 6= y. These two axioms are frequently
combined into a single condition but, for our purposes, it is of importance to state them
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as separate properties. One motivation for doing so is that reflexivity is considerably
more uncontroversial than completeness. Moreover, as is the case for some observations
reported in Bossert and Suzumura (2010), reflexivity cannot be taken for granted and,
therefore, distinguishing the two can be of crucial importance in some applications.

There is another class of conditions the members of which require relations to exhibit
some form of coherence. The most prominent of these is transitivity. A relation R is
transitive if the conjunction of (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R for all
x, y, z ∈ X.

The transitive closure tc(R) of R is the unique smallest transitive relation that contains
R. It is defined by

tc(R) = {(x, y) ∈ X ×X | ∃K ∈ N and x0, . . . , xK ∈ X such that

x = x0 and (xk−1, xk) ∈ R for all k ∈ {1, . . . , K} and xK = y}.

The transitive closure tc(R) possesses the properties of a closure operator; the correspond-
ing result is stated as Theorem 2.1 of Bossert and Suzumura (2010).

Theorem 1. Suppose that R and R′ are relations on X.

(i) R ⊆ tc(R).

(ii) R is transitive if and only if R = tc(R).

(iii) tc(R) ⊆ Q for all transitive relations Q such that R ⊆ Q.

(iv) If R ⊆ R′, then tc(R) ⊆ tc(R′).

A reflexive and transitive relation is called a quasi-ordering, and we refer to a complete
quasi-ordering as an ordering. If an extension R′ of R is an ordering, R′ is called an
ordering extension. As shown by Arrow (1951; 1963) and Hansson (1968), any quasi-
ordering has an ordering extension; see Szpilrajn (1930) for the original extension theorem
expressed in terms of a transitive and irreflexive relation. (A relation R is irreflexive
if (x, x) 6∈ R for all x ∈ X.) The Szpilrajn-Arrow-Hansson theorem establishes that
transitivity is a sufficient condition for the existence of an ordering extension. This result
is generalized by Suzumura (1976) who weakens transitivity to a condition that is both
necessary and sufficient. Suzumura (1976) introduces the property as consistency but
we refer to it as Suzumura consistency to distinguish it from other (unrelated) forms of
consistency conditions that appear in the literature.

A relation R is Suzumura consistent if (x, y) ∈ tc(R) implies (y, x) 6∈ P (R) for all
x, y ∈ X. Transitivity implies Suzumura consistency but the reverse implication is not
valid in general. If R is reflexive and complete, Suzumura consistency and transitivity
are equivalent. As alluded to above, Suzumura consistency is a necessary and sufficient
condition for the existence of an ordering extension; see Suzumura (1976, 1983) and
Bossert and Suzumura (2010) for proofs of this observation.

The Suzumura consistent closure sc(R) of R is the unique smallest Suzumura consis-
tent relation that contains R; this closure operator is introduced by Bossert, Sprumont,
and Suzumura (2005). It is given by

sc(R) = R ∪ {(x, y) ∈ X ×X | (x, y) ∈ tc(R) and (y, x) ∈ R}.
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In analogy to Theorem 1, we obtain the following result which reproduces Theorem 2.4
of Bossert and Suzumura (2010).

Theorem 2. Suppose that R and R′ are relations on X.

(i) R ⊆ sc(R) ⊆ tc(R).

(ii) R is Suzumura consistent if and only if R = sc(R).

(iii) sc(R) ⊆ Q for all Suzumura consistent relations Q such that R ⊆ Q.

(iv) If R ⊆ R′, then sc(R) ⊆ sc(R′).

An alternative weakening of transitivity is obtained by requiring the asymmetric part
P (R) of R to be transitive. Thus, R is quasi-transitive if the conjunction of (x, y) ∈ P (R)
and (y, z) ∈ P (R) implies (x, z) ∈ P (R) for all x, y, z ∈ X. We note that R is
quasi-transitive if and only if P (R) = tc(P (R)). Transitivity implies quasi-transitivity
and, without further assumptions, the properties of Suzumura consistency and quasi-
transitivity are independent. In the presence of reflexivity and completeness, Suzumura
consistency implies quasi-transitivity as an immediate consequence of the former’s equiv-
alence to transitivity in this case.

Although quasi-transitivity has attracted considerable attention as a weakening of
transitivity (see, for example, Sen, 1969, 1970), the property suffers from the shortcoming
that it does not possess a well-defined closure operator. For example, suppose that X =
{x, y, z}, and consider the relation

R = {(x, y), (y, z), (x, z), (z, x)}. (1)

By definition, P (R) = {(x, y), (y, z)} and I(R) = {(x, z), (z, x)}. It is immediate that
both of R′ = R∪{(y, x)} and R′′ = R∪{(z, y)} are quasi-transitive relations that contain
R but there is no smallest relation that possesses this property. This implies that a
quasi-transitive closure cannot be defined.

The final coherence property we introduce is that of acyclicity, which rules out the
existence of cycles that are composed of asymmetric relationships. A relation R is acyclical
if (x, y) ∈ tc(P (R)) implies (y, x) 6∈ P (R) for all x, y ∈ X. It is immediate that Suzumura
consistency implies acyclicity, and so does quasi-transitivity. The reverse implications are
not valid.

3 Minimal quasi-transitive extensions

The existence of a quasi-transitive extension is not guaranteed in general. For example,
consider again the set X = {x, y, z} and the relation R defined in (1). To see that
this relation does not have a quasi-transitive extension, observe that any quasi-transitive
extension R′ of R must be such that (x, z) ∈ P (R′). Thus, (z, x) 6∈ R′ so that R′ cannot
contain R because (z, x) ∈ R by definition. This example involves a relation R that
fails to be Suzumura consistent. By Suzumura’s (1976) extension result, any Suzumura
consistent relation has an ordering extension. Because an ordering is quasi-transitive, it
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follows immediately that Suzumura consistency is a sufficient condition for the existence
of a quasi-transitive extension.

A more subtle question is whether a relation possesses what we refer to as a minimal
quasi-transitive extension. In analogy to the notion of a closure operator, an extension
R′ of a relation R with a given property is minimal if all extensions with that property
contain R′. Thus, a transitive extension R′ of a relation R is minimal if R′ ⊆ Q for
all transitive extensions Q of R, and a quasi-transitive extension R′ of a relation R is
minimal if R′ ⊆ Q for all quasi-transitive extensions Q of R. Clearly, an extension that is
minimal in this sense must be unique. If a relation R is Suzumura consistent, its minimal
transitive extension is well-defined and given by the transitive closure tc(R). This follows
from the observation that R ⊆ R′ for any transitive extension R′ of R and Theorem 1,
which implies that tc(R) ⊆ tc(R′) = R′.

However, the transitive closure tc(R) of a Suzumura consistent relation R does not have
to be the minimal quasi-transitive extension. For example, suppose that X = {x, y, z}
and R = {(x, y), (y, z), (z, y)}. It follows that P (R) = {(x, y)} and I(R) = {(y, z), (z, y)}.
This relation is quasi-transitive and Suzumura consistent. Because R is quasi-transitive,
it trivially is a quasi-transitive extension of itself. But we also have tc(R) = R∪ {(x, z)},
which implies that tc(R) cannot be the minimal quasi-transitive extension of R because
tc(R) contains the pair (x, z) and R does not.

As we prove later in this section, the minimal quasi-transitive extension qe(R) of a
Suzumura consistent relation R is well-defined and given by

qe(R) = R ∪ tc(P (R)).

Our first observation is that, for any relation R on X, the transitive closure tc(R) of R
and the transitive closure tc(qe(R)) of the relation qe(R) coincide.

Theorem 3. For any relation R on X, tc(R) = tc(qe(R)).

Proof. By definition of qe(R), R ⊆ qe(R). Thus, it follows from Theorem 1 that
tc(R) ⊆ tc(qe(R)). To show that tc(qe(R)) ⊆ tc(R), let (x, y) ∈ tc(qe(R)). By definition
of tc(qe(R)), there exist K ∈ N and x0, . . . , xK ∈ X such that x = x0, xK = y, and
(xk−1, xk) ∈ qe(R) for all k ∈ {1, . . . , K}. By definition of qe(R), for all k ∈ {1, . . . , K},
(xk−1, xk) ∈ R or (xk−1, xk) ∈ tc(P (R)). If (xk−1, xk) ∈ R for all k ∈ {1, . . . , K}, then
(x, y) ∈ tc(R). Now define

K = {k ∈ {1, . . . , K} | (xk−1, xk) ∈ tc(P (R))} 6= ∅

and let k ∈ K. By definition of tc(P (R)), there exist Lk ∈ N and xk,0, . . . , xk,Lk ∈ X such
that xk = xk,0, xk,Lk = xk+1, and (xk,`−1, xk,`) ∈ P (R) ⊆ R for all ` ∈ {1, . . . , Lk}. Thus,
letting K∗ = K − |K|+

∑
k∈K Lk, there exist x0, . . . , xK∗

such that x = x0, xK∗
= y, and

(xk−1, xk) ∈ R for all k ∈ {1, . . . , K∗}. By definition of tc(R), (x, y) ∈ tc(R). �

We now derive the asymmetric and symmetric parts of qe(R), provided that R is
Suzumura consistent.

5



Theorem 4. Suppose that R is a Suzumura consistent relation on X. The asymmetric
part P (qe(R)) of qe(R) is given by

P (qe(R)) = tc(P (R)). (2)

Proof. To prove that (2) is true, suppose that R is Suzumura consistent. Let x, y ∈ X.
By definition of qe(R), it follows that (x, y) ∈ P (qe(R)) if and only if

[(x, y) ∈ R or (x, y) ∈ tc(P (R))] and (y, x) 6∈ R and (y, x) 6∈ tc(P (R))

which is equivalent to the disjunction

(x, y) ∈ R and (y, x) 6∈ R and (y, x) 6∈ tc(P (R)) (3)

or
(x, y) ∈ tc(P (R)) and (y, x) 6∈ R and (y, x) 6∈ tc(P (R)). (4)

Observe first that (3) is equivalent to

(x, y) ∈ R and (y, x) 6∈ R

because (y, x) 6∈ tc(P (R)) is implied by (x, y) ∈ R and the Suzumura consistency of R;
note that the conjunction of (x, y) ∈ R and (y, x) 6∈ tc(P (R)) would lead to a cycle with
at least one instance of an asymmetric relationship between two consecutive alternatives,
in contradiction to Suzumura consistency.

Analogously, (4) is equivalent to

(x, y) ∈ tc(P (R)) and (y, x) 6∈ tc(P (R))

because the conjunction of (x, y) ∈ tc(P (R)) and (y, x) ∈ R would, in violation of Suzu-
mura consistency, lead to a cycle with at least one instance of an asymmetric relationship
between two consecutive alternatives. Using the definition of the asymmetric part of a
relation, we obtain

P (qe(R)) = P (R) ∪ P (tc(P (R))).

Furthermore, tc(P (R)) is asymmetric; otherwise, there exist x, y ∈ X such that
(x, y) ∈ tc(P (R)) and (y, x) ∈ tc(P (R)), which is a contradiction because R is Suzu-
mura consistent. Thus, P (tc(P (R))) = tc(P (R)). From Theorem 1, P (R) ⊆ tc(P (R))
and, therefore, (2) follows. �

If R is not Suzumura consistent, (2) does not follow. Consider, again, the set X = {x, y, z}
and the relation defined by (1). We obtain qe(R) = R and hence P (qe(R)) = P (R) =
{(x, y), (y, z)}. However, because tc(P (R)) = P (R) ∪ {(x, z)}, (2) is not implied.

Theorem 5. Suppose that R is a Suzumura consistent relation on X. The symmetric
part I(qe(R)) of qe(R) is given by

I(qe(R)) = I(R). (5)
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Proof. Suppose that R is Suzumura consistent. By definition of qe(R), I(R) ⊆ I(qe(R)).
To show that I(qe(R)) ⊆ I(R), let (x, y) ∈ I(qe(R)). Then, (x, y) 6∈ tc(P (R)) because,
otherwise, we obtain (x, y) ∈ P (qe(R)) by Theorem 4, a contradiction. By the same
argument, (y, x) 6∈ tc(P (R)). Thus, (x, y) ∈ R and (y, x) ∈ R, that is, (x, y) ∈ I(R). �

Again, (5) does not follow if the assumption of Suzumura consistency is dropped. Let
X = {x, y, z} and R = {(x, y), (y, z), (z, x)}. We obtain I(R) = ∅ and qe(R) = R ∪
{(y, x), (z, y), (x, z)}. Therefore,

I(qe(R)) = qe(R) 6= ∅ = I(R).

Our next observation is that if R is a Suzumura consistent relation, then the relation
qe(R) is Suzumura consistent as well.

Theorem 6. Suppose that R is a Suzumura consistent relation on X. The relation qe(R)
is Suzumura consistent.

Proof. To prove the contrapositive statement, suppose that qe(R) is not Suzumura
consistent. Then there exist x, y ∈ X such that (x, y) ∈ tc(qe(R)) and (y, x) ∈ P (qe(R)).
By Theorem 3, (x, y) ∈ tc(R). Furthermore, by Theorem 4, (y, x) ∈ tc(P (R)). By
definition of Suzumura consistency, the conjunction of (y, x) ∈ tc(P (R)) and (x, y) ∈ tc(R)
implies that R is not Suzumura consistent. �

The main result of this section establishes that qe(R) is the minimal quasi-transitive
extension of a Suzumura consistent relation R.

Theorem 7. Suppose that R is a Suzumura consistent relation on X. The minimal
quasi-transitive extension of R is given by qe(R).

Proof. Suppose that R is a Suzumura consistent relation on X. We first prove that
qe(R) is quasi-transitive. Let x, y, z ∈ X. Using (2), it follows that (x, y) ∈ P (qe(R)) and
(y, z) ∈ P (qe(R)) if and only if

(x, y) ∈ tc(P (R)) and (y, z) ∈ tc(P (R))

which implies (x, z) ∈ tc(P (R)). Because R is Suzumura consistent, we obtain (x, z) ∈
P (qe(R)) by (2). Therefore, qe(R) is quasi-transitive.

Clearly, R is a subset of qe(R) = R ∪ tc(P (R)). Using (2), it follows from Theorem 1
that P (R) ⊆ tc(P (R)) = P (qe(R)) so that qe(R) is an extension of R if R is Suzumura
consistent.

We complete the proof by showing that qe(R) is the minimal quasi-transitive extension
of R. Suppose that Q is a quasi-transitive extension of R. Let x, y ∈ X, and suppose
that (x, y) ∈ qe(R). By definition,

(x, y) ∈ R or (x, y) ∈ tc(P (R)).

If (x, y) ∈ R, (x, y) ∈ Q follows immediately because R ⊆ Q by definition of an
extension.
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If (x, y) ∈ tc(P (R)), it follows that there exist K ∈ N and x0, . . . , xK ∈ X such
that x = x0, (xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K}, and xK = y. Because Q is an
extension of R, it follows that P (R) ⊆ P (Q) and, therefore, (xk−1, xk) ∈ P (Q) for all
k ∈ {1, . . . , K}. Because Q is quasi-transitive, we obtain (x, y) ∈ P (Q), as desired. �

A quasi-transitive closure need not exist even in the presence of Suzumura consis-
tency. For example, suppose that X = {x, y, z} and R = {(x, y), (y, z)}. This relation
is Suzumura consistent and, by Theorem 7, qe(R) = R ∪ {(x, z)} is its minimal quasi-
transitive extension. However, this relation is not the smallest quasi-transitive relation
containing the original relation R. Indeed, R′ = R∪ {(y, x)} is a quasi-transitive relation
that contains R but R′ is not a subset of qe(R).

The observations of the following theorem parallel those of Theorems 1 and 2.

Theorem 8. Suppose that R is a Suzumura consistent relation on X.

(i) R ⊆ qe(R).

(ii) R is quasi-transitive if and only if R = qe(R).

(iii) qe(R) ⊆ Q for all quasi-transitive extensions Q of R.

(iv) There exist Suzumura consistent relations R and R′ such that

R ⊆ R′ and qe(R) 6⊆ qe(R′).

Proof. Suppose that R is a Suzumura consistent relation on X.

(i) By definition, R ⊆ R ∪ tc(P (R)) = qe(R).

(ii) If R is quasi-transitive, it follows that tc(P (R)) ⊆ R and hence qe(R) = R.
Conversely, if R = qe(R), R is quasi-transitive because qe(R) is.

(iii) This part is the result of Theorem 7.

(iv) An example is sufficient to prove this part. Let X = {x, y, z}, R = {(x, y), (y, z)},
and R′ = {(x, y), (y, z), (z, y)}. It follows that qe(R) = R ∪ {(x, z)} and qe(R′) = R′.
Thus, R ⊆ R′ and qe(R) 6⊆ qe(R′) because (x, z) ∈ qe(R) and (x, z) 6∈ qe(R′). �

Part (i) of this theorem is valid even if R is not Suzumura consistent; we stated this
requirement on R in the preamble of the theorem statement to simplify the exposition.

Part (iii) of Theorem 8 merely establishes a minimality property within the class
of quasi-transitive extensions, whereas the corresponding conclusions in the two earlier
theorems apply to all relations that contain R. This is the case because Theorems 1 and
2 list the properties of the requisite closure operator rather than those of an extension.

Most significantly, part (iv) of Theorem 8 shows that the operator qe violates a fun-
damental property of a closure operator.

We conclude this section with an observation regarding the relationship between tc(R)
and qe(R).

Theorem 9. Suppose that R is a Suzumura consistent relation on X. The transitive
closure tc(R) of R is an extension of the minimal quasi-transitive extension qe(R) of R.
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Proof. Suppose that R is Suzumura consistent. By Theorem 6, qe(R) is Suzumura
consistent. By Lemma 3 of Cato (2012), the Suzumura consistency of a relation R′

implies that tc(R′) is an extension of R′. Thus, tc(qe(R)) is an extension of qe(R). By
Theorem 3, tc(R) = tc(qe(R)). Therefore, tc(R) is an extension of qe(R). �

4 Rational choice

A fundamental question in decision theory is whether observed (or observable) choices can
be rationalized in the sense that they are performed with a purpose in mind. The notion
of purposive choice is typically captured in terms of a rationalizing relation according to
which the observed choices are the greatest elements or the maximal elements according
to this relation.

The analysis of rational choice has a long tradition in economic theory. In the context
of consumer demand, Samuelson’s (1938a,b) seminal contributions examined whether ob-
served demand functions can be interpreted as resulting from an optimization problem
solved by the consumer in question. Specifically, the fundamental objective of revealed
preference theory as developed by Samuelson is to define testable restrictions on observed
demand functions that allow us to conclude whether these choices can be generated from
solving the problem of choosing the best bundles from those that are feasible according
to an underlying relation defined on the commodity space.

In the special case pioneered by Samuelson, the feasible set of options in a given
situation consists of all possible bundles that are affordable with the consumer’s budget
at the current prices. Richter (1966, 1971) adopts a considerably more general approach
to rational choice by allowing a choice function to be defined on any arbitrary non-empty
domain, and this is the basic framework that we employ in this section.

Let X denote the set of all non-empty subsets of X, and suppose that Σ ⊆ X is a
non-empty domain. A choice function is a mapping C : Σ → X such that, for all S ∈ Σ,
C(S) ⊆ S. The direct revealed goodness relation RC associated with a choice function C
is defined by

RC = {(x, y) ∈ X ×X | ∃S ∈ Σ such that x ∈ C(S) and y ∈ S}.

For a feasible set S ∈ Σ and a relation R on X, the set G(S, R) of greatest elements
in S according to R is

G(S, R) = {x ∈ S | (x, y) ∈ R for all y ∈ S}.

Analogously, the set M(S, R) of maximal elements in S ∈ Σ according to a relation R on
X is

M(S, R) = {x ∈ S | (y, x) 6∈ P (R) for all y ∈ S}.

By definition, G(S, R) ⊆ M(S, R) for all S ∈ Σ and for all relations R on X. Furthermore,
G(S, R) = M(S, R) if R is reflexive and complete. See, for example, Bossert and Suzumura
(2010, Theorem 2.5) for proofs of these two observations.
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A choice function C is greatest-element rationalizable if there exists a relation R on
X such that C(S) = G(S, R) for all S ∈ Σ. In this case, we say that R greatest-element
rationalizes C and we refer to R as a greatest-element rationalization of C. Analogously,
C is maximal-element rationalizable if there exists a relation R on X such that C(S) =
M(S, R) for all S ∈ Σ. In this case, R maximal-element rationalizes C and R is a
maximal-element rationalization of C.

In the traditional setup pioneered by Samuelson, the notion of rationalizability was
linked to the assumption that a rationalizing relation be an ordering. However, rational-
izability can be studied without any commitment to additional richness properties such
as reflexivity and completeness or coherence requirements such as transitivity; see, in
particular, Richter (1971) for an early approach that examines more general notions of
rationality.

In line with the subject matter of this paper, we consider definitions of rationaliz-
ability such that rationalizing relations are required to possess both coherence properties
of quasi-transitivity and Suzumura consistency. This yields eight new notions of ratio-
nalizability. For each of the two fundamental types of rationalizability (greatest-element
rationalizability and maximal-element rationalizability), there are four potentially distinct
definitions. These correspond to the possibilities of (i) requiring none of the two richness
properties of reflexivity and completeness; (ii) requiring reflexivity only; (iii) requiring
completeness only; and (iv) requiring both reflexivity and completeness. To the best of
our knowledge, these notions of rationalizability have not been explicitly examined in the
earlier literature. A full account of the logical relationships among all 40 definitions of
greatest-element rationalizability and maximal-element rationalizability that can be ob-
tained by requiring none, one, or both of the two richness properties, and none or one of
the four coherence properties of transitivity, Suzumura consistency, quasi-transitivity, and
acyclicity can be found in Bossert and Suzumura (2009, 2010). As shown in these con-
tributions, several of the properties are equivalent and there remain 11 distinct versions
of greatest-element rationalizability and four versions of maximal-element rationalizabil-
ity. In addition, each of the four distinct versions of maximal-element rationalizability is
equivalent to one of the 11 versions of greatest-element rationalizability so that maximal-
element rationalizability can be considered redundant; see Bossert and Suzumura (2010,
Chapter 3) for details.

The following three theorems establish the logical relationships between the notions of
rationalizability that can be defined if both quasi-transitivity and Suzumura consistency
are to be satisfied by a rationalizing relation. We begin with greatest-element rationaliz-
ability.

Theorem 10. Suppose that C : Σ → X is a choice function.

(i) C is greatest-element rationalizable by a reflexive, complete, Suzumura consistent,
and quasi-transitive relation if and only if C is greatest-element rationalizable by a com-
plete, Suzumura consistent, and quasi-transitive relation.

(ii) If C is greatest-element rationalizable by a complete, Suzumura consistent, and
quasi-transitive relation, then C is greatest-element rationalizable by a reflexive, Suzumura
consistent, and quasi-transitive relation. The reverse implication is not valid.
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(iii) If C is greatest-element rationalizable by a reflexive, Suzumura consistent, and
quasi-transitive relation, then C is greatest-element rationalizable by a Suzumura consis-
tent and quasi-transitive relation. The reverse implication is not valid.

Proof. Let C : Σ → X be a choice function.

(i) That greatest-element rationalizability by a reflexive, complete, Suzumura consis-
tent, and quasi-transitive relation implies greatest-element rationalizability by a complete,
Suzumura consistent, and quasi-transitive relation is immediate. To prove the reverse
implication, suppose that R is a complete, Suzumura consistent, and quasi-transitive
greatest-element rationalization of C. Define

R′ = R ∪∆ ∪ {(x, y) | x ∈ C(Σ) and y 6∈ C(Σ)} \ {(y, x) | x ∈ C(Σ) and y 6∈ C(Σ)}.

As shown in part (a) of the proof of Theorem 3.2 in Bossert and Suzumura (2010), R′

is a reflexive, complete, and Suzumura consistent rationalization of C. It remains to be
shown that R′ is quasi-transitive. Suppose that (x, y), (y, z) ∈ P (R′) for three alternatives
x, y, z ∈ X. Clearly, x, y, and z must be pairwise distinct. If (z, x) ∈ R′, we obtain a
contradiction to the Suzumura consistency of R′. Because R′ is complete, it follows that
(x, z) ∈ P (R′) so that R′ is quasi-transitive.

(ii) The implication follows immediately from part (i). To prove that the reverse
implication is not valid, consider the following example; see also parts (i) and (l) of the
proof of Theorem 3.2 in Bossert and Suzumura (2010). Let X = {x, y, z},

Σ = {{x}, {x, y}, {x, y, z}, {x, z}},

C({x}) = {x}, C({x, y}) = {x, y}, C({x, y, z}) = {x}, and C({x, z}) = {x, z}. The
choice function C is greatest-element rationalized by the reflexive, Suzumura consistent,
and quasi-transitive relation

R = {(x, x), (x, y), (x, z), (y, x), (y, y), (z, x), (z, z)}.

Suppose that R′ is a complete rationalization of C. By the completeness of R′, it follows
that (y, z) ∈ R′ or (z, y) ∈ R′. If (y, z) ∈ R′, it follows that (y, x) ∈ R′ and (y, y) ∈ R′

because R′ is a greatest-element rationalization of C and y ∈ C({x, y}). Together with
(y, z) ∈ R′ and the definition of greatest-element rationalizability, we obtain y ∈ C(X),
contradicting the definition of C. Analogously, if (z, y) ∈ R′, it follows that (z, x) ∈
R′ and (z, z) ∈ R′. Together with (z, y) ∈ R′ and the definition of greatest-element
rationalizability, we obtain z ∈ C(X), again contradicting the definition of C.

(iii) The implication of the statement is immediate. To show that the reverse impli-
cation is not valid, consider the following example. Let X = {x, y, z, v},

Σ = {{x, y}, {x, y, z, v}, {y, z}, {y, z, v}},

C({x, y}) = {y}, C({x, y, z, v}) = {v}, C({y, z}) = {z}, and C({y, z, v}) = {z, v}. This
choice function is greatest-element rationalized by the Suzumura consistent and quasi-
transitive relation

R = {(x, y), (y, x), (y, y), (z, y), (z, z), (z, v), (v, x), (v, y), (v, z), (v, v)}.
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Suppose that R′ is a reflexive, Suzumura consistent, and quasi-transitive rationalization
of C. By reflexivity, (x, x) ∈ R′ and, because x 6∈ C({x, y}) and y ∈ C({x, y}), we
have (y, x) ∈ P (R′). Similarly, because y 6∈ C({y, z}) and z ∈ C({y, z}), we obtain
(z, y) ∈ P (R′). Since R′ is quasi-transitive, it follows that (z, x) ∈ P (R′). Because
z ∈ C({y, z, v}), we obtain (z, y) ∈ P (R′) ⊆ R′, (z, z) ∈ R′, and (z, v) ∈ R′. Because
R′ is a greatest-element rationalization of C and (z, x) ∈ P (R′) ⊆ R′, we must have
z ∈ C({x, y, z, v}), which contradicts the definition of C. �

Because Suzumura consistency and transitivity are equivalent in the presence of reflex-
ivity and completeness, and quasi-transitivity is implied by transitivity, the two definitions
that appear in part (i) of Theorem 10 are equivalent to greatest-element rationalizability
by an ordering—the strongest form of rationalizability that can be obtained by employing
the richness properties of reflexivity and completeness, along with none or one of the four
coherence properties. Therefore, introducing greatest-element rationalizability by a (re-
flexive,) complete, Suzumura consistent, and quasi-transitive relation does not yield any
new independent properties that are not already covered by known variants. Greatest-
element rationalizability by a reflexive, Suzumura consistent, and quasi-transitive relation,
on the other hand, is not equivalent to any of the existing versions, and the same is true
for the property that results if the reflexivity requirement is dropped. The implications
that have to be added in the system of logical relationships are that greatest-element
rationalizability by a reflexive, Suzumura consistent, and quasi-transitive relation implies
greatest-element rationalizability by a reflexive and quasi-transitive relation, and that
greatest-element rationalizability by a Suzumura consistent and quasi-transitive relation
implies greatest-element rationalizability by a quasi-transitive relation.

The following theorem exhibits the logical relationships among the four notions of
maximal-element rationalizability that can be defined if rationalizing relations are required
to be Suzumura consistent and quasi-transitive.

Theorem 11. Suppose that C : Σ → X is a choice function.

(i) C is maximal-element rationalizable by a reflexive, complete, Suzumura consis-
tent, and quasi-transitive relation if and only if C is maximal-element rationalizable by a
complete, Suzumura consistent, and quasi-transitive relation.

(ii) C is maximal-element rationalizable by a reflexive, Suzumura consistent, and
quasi-transitive relation if and only if C is maximal-element rationalizable by a Suzumura
consistent and quasi-transitive relation.

(iii) If C is maximal-element rationalizable by a complete, Suzumura consistent, and
quasi-transitive relation, then C is maximal-element rationalizable by a Suzumura consis-
tent and quasi-transitive relation. The reverse implication is not valid.

Proof. Let C : Σ → X be a choice function.

(i) That maximal-element rationalizability by a reflexive, complete, Suzumura con-
sistent, and quasi-transitive relation implies maximal-element rationalizability by a com-
plete, Suzumura consistent, and quasi-transitive relation is immediate. To prove the re-
verse implication, suppose that R is a complete, Suzumura consistent, and quasi-transitive
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maximal-element rationalization of C. Let R′ = R∪∆. Clearly, R′ is reflexive. Moreover,
R′ is complete, Suzumura consistent, and quasi-transitive because these properties are un-
affected if the pairs in the diagonal ∆ are added to R. Analogously, R′ maximal-element
rationalizes C because R does and the addition of the pairs in the diagonal leaves this
property unchanged because only the asymmetric part of a maximal-element rationaliza-
tion is relevant.

(ii) The proof of this part parallels that of part (i); the completeness of R and R′ (or
the lack thereof) does not change the argument employed.

(iii) The implication of the statement is immediate. To show that the reverse implica-
tion is not valid, consider the following example; see also part (e) of the proof of Theorem
3.3 in Bossert and Suzumura (2010). Let X = {x, y, z},

Σ = {{x, y}, {x, z}, {y, z}},

C({x, y}) = {x, y}, C({x, z}) = {z}, and C({y, z}) = {y, z}. This choice function is
maximal-element rationalized by the Suzumura consistent and quasi-transitive relation

R = {(z, x)}.

Suppose that R′ is a complete, Suzumura consistent, and quasi-transitive rationalization
of C. By the definition of maximal-element rationalizability, we must have (z, x) ∈ P (R′)
because x 6∈ C({x, z}). Because R′ is complete and maximal-element rationalizes C, it
follows that (x, y) ∈ I(R′) and (y, z) ∈ I(R′). This is a contradiction to the Suzumura
consistency of R′. �

Because Suzumura consistency and transitivity are equivalent in the presence of re-
flexivity and completeness, and quasi-transitivity is implied by transitivity, it follows
that maximal-element rationalizability by a reflexive, complete, Suzumura consistent, and
quasi-transitive relation is equivalent to maximal-element rationalizability by a reflexive,
complete, and transitive relation. Therefore, the two definitions of maximal-element ra-
tionalizability that appear in part (i) of Theorem 11 do not add any new independent
versions of rationality; they are covered by some of the known variants.

Moreover, maximal-element rationalizability by a Suzumura consistent and quasi-
transitive relation is equivalent to maximal-element rationalizability by a quasi-transitive
relation. To see that maximal-element rationalizability by a quasi-transitive relation im-
plies maximal-element rationalizability by a Suzumura consistent and quasi-transitive
relation, suppose that R is a quasi-transitive rationalization of a choice function C. Be-
cause quasi-transitivity implies acyclicity, R is acyclical. Define R′ = R\I(R). Therefore,
P (R′) = P (R) and I(R′) = ∅. It follows that R′ is a quasi-transitive maximal-element ra-
tionalization of C because only the asymmetric part of a relation matters for the property
of quasi-transitivity and maximal-element rationalizability. Because quasi-transitivity
implies acyclicity, R′ is also Suzumura consistent because acyclicity and Suzumura con-
sistency are equivalent as a consequence of the emptiness of I(R′). Conversely, maximal-
element rationalizability by a Suzumura consistent and quasi-transitive relation trivially
implies rationalizability by a quasi-transitive relation. Again, we conclude that no new
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independent variants of maximal-element rationalizability emerge if both Suzumura con-
sistency and quasi-transitivity are required.

Necessary and sufficient conditions for those definitions of greatest-element rational-
izability that involve quasi-transitive or acyclical greatest-element rationalizations are
difficult to come by, and the same is true for complete greatest-element rationalizations
without any coherence properties. That this is the case is explained in Bossert and Suzu-
mura (2010, Chapter 4). Although Bossert and Suzumura provide such sets of conditions
for all earlier forms of greatest-element rationalizability, those that involve transitive or
Suzumura consistent greatest-element rationalizations (or greatest-element rationaliza-
tions that need not be complete and need not possess any coherence properties) are based
on considerably more intuitive axioms than the remaining variants. The principal reason
why transitive and Suzumura consistent notions of greatest-element rationalizability are
more tractable than those that involve quasi-transitivity or acyclicity is that they allow
for a well-defined closure operator.

One of the fundamental insights that already appears in Samuelson’s (1938a,b) sem-
inal work in the context of consumer choice is that a greatest-element rationalization R
must respect the direct revealed goodness relation of a choice function in the sense that
RC is contained in R—that is, the subset relationship RC ⊆ R must be true for any
greatest-element rationalization R of a choice function C. This observation is not diffi-
cult to prove. If (x, y) ∈ RC and R greatest-element rationalizes C, there is a feasible
set S ∈ Σ such that x ∈ C(S) and y ∈ S. That (x, y) ∈ R must be true now follows
immediately from the definition of greatest-element rationalizability. As demonstrated by
Richter (1971), this reasoning extends to transitive greatest-element rationalizability: if
a transitive relation R greatest-element rationalizes a choice function C, it must be the
case that tc(RC) ⊆ R—otherwise we immediately obtain a contradiction to the defini-
tion of greatest-element rationalizability or to transitivity because the transitive closure
tc(RC) of RC is the smallest transitive relation that contains RC . Bossert, Sprumont,
and Suzumura (2005) apply the same argument to Suzumura consistent greatest-element
rationalizability. Again, because the Suzumura consistent closure sc(RC) is the smallest
Suzumura consistent relation that contains RC , any Suzumura consistent greatest-element
rationalization R must respect this relation so that the subset relationship sc(RC) ⊆ R
follows immediately as a necessary condition.

These observations lead to intuitively appealing compatibility requirements that are
necessary and sufficient for the three types of greatest-element rationalizability just dis-
cussed. A necessary and sufficient condition for the greatest-element rationalizability of
a choice function C by an arbitrary relation is obtained by requiring that, for all feasible
sets S ∈ Σ and for all alternatives x ∈ S, (x, y) ∈ RC for all y ∈ S implies x ∈ C(S). That
this axiom is indeed necessary and sufficient for rational choice can be proven using ele-
mentary methods; see Richter (1971). If RC is replaced with tc(RC) in this requirement, a
necessary and sufficient condition for transitive greatest-element rationalizability results;
again, see Richter (1971) for a simple and intuitive proof. Finally, as demonstrated by
Bossert, Sprumont, and Suzumura (2005), using the Suzumura consistent closure sc(RC)
in place of RC or tc(RC) leads to a necessary and sufficient condition for greatest-element
rationalizability by a Suzumura consistent relation.
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Because there is no such thing as a closure operator for quasi-transitivity and acyclicity
(and, in fact, completeness), conditions of the type defined above cannot be formulated
in these cases. For this reason, the sets of necessary and sufficient conditions for the re-
maining definitions of greatest-element rationalizability are more cumbersome—and they
typically involve existential clauses because the uniqueness that comes with a well-defined
closure operator is not present. The two definitions of greatest-element rationalizability
by a Suzumura consistent and quasi-transitive relation without completeness suffer from
the same fate, for the same reason. However, we can utilize the minimal quasi-transitive
extension of a Suzumura consistent relation introduced in the previous section to at least
obtain a sufficient condition for greatest-element rationalizability by a reflexive, Suzumura
consistent, and quasi-transitive relation. The axiom that we employ adapts the compati-
bility property alluded to above to the case of Suzumura consistent and quasi-transitive
greatest-element rationalizability. Because there is no such thing as a quasi-transitive
closure, the condition is based on the minimal quasi-transitive extension of the Suzumura
consistent closure instead. That the resulting requirement cannot be necessary follows
from the observation that the minimal quasi-transitive extension does not constitute a
unique minimal way of defining a quasi-transitive relation that contains a given Suzumura
consistent relation: as demonstrated earlier, qe(sc(R)) fails to possess all properties of a
closure operator, even if the relation R is Suzumura consistent. Our axiom is defined as
follows.

Quasi-transitive extension compatibility. For all S ∈ Σ and for all x ∈ S,

(x, y) ∈ qe(sc(RC)) for all y ∈ S ⇒ x ∈ C(S).

The final result of this section provides a sufficient condition for a choice function to be
greatest-element rationalizable by a reflexive, Suzumura consistent, and quasi-transitive
relation.

Theorem 12. Suppose that C : Σ → X is a choice function. If C satisfies quasi-transitive
extension compatibility, then C is greatest-element rationalizable by a reflexive, Suzumura
consistent, and quasi-transitive relation.

Proof. Suppose that C satisfies quasi-transitive extension compatibility. By Theorem
6, qe(sc(RC)) is Suzumura consistent, and Theorem 7 implies that qe(sc(RC)) is quasi-
transitive. Define the relation R by

R = qe(sc(RC)) ∪∆.

It follows immediately that R is reflexive, Suzumura consistent, and quasi-transitive; the
latter two properties are consequences of the requisite properties of qe(sc(RC)) and the
observation that adding the pairs in the diagonal does not affect these attributes. We
complete the proof by showing that R greatest-element rationalizes C. Let S ∈ Σ and
x ∈ S.
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Suppose first that x ∈ C(S). By definition of the direct revealed goodness relation,
it follows that (x, y) ∈ RC for all y ∈ S. Because RC ⊆ sc(RC) ⊆ qe(sc(RC)) ⊆ R, this
implies (x, y) ∈ R for all y ∈ S. Thus, x ∈ G(S, R) and hence C(S) ⊆ G(S, R).

Conversely, suppose that x ∈ G(S, R). By definition, this implies

(x, y) ∈ qe(sc(RC)) for all y ∈ S \ {x}. (6)

If S = {x}, it follows that (x, x) ∈ RC and hence (x, x) ∈ qe(sc(RC)). This implies
x ∈ C(S) by quasi-transitive extension compatibility.

Now suppose that S 6= {x}.
If there exists y ∈ S\{x} such that (x, y) ∈ RC , it follows that (x, x) ∈ RC by definition

of the direct revealed goodness relation RC . Because RC ⊆ qe(sc(RC)), it follows that
x ∈ C(S) because (6) allows us to apply quasi-transitive extension compatibility.

If (x, y) 6∈ RC for all y ∈ S \ {x}, suppose that there exists y ∈ S \ {x} such that
(x, y) ∈ sc(RC). By definition of the Suzumura consistent closure, there exists x1 ∈ X
such that (x, x1) ∈ RC and, therefore, (x, x) ∈ RC by definition of RC . Together with (6),
it follows again that x ∈ C(S).

If (x, y) 6∈ RC and (x, y) 6∈ sc(RC) for all y ∈ S \ {x}, (6) implies that there exists
y ∈ S \ {x} such that (x, y) ∈ RC or (x, y) ∈ P (tc(sc(RC))). If (x, y) ∈ RC , x ∈ C(S)
follows as above. If (x, y) ∈ tc(P (sc(RC))), the definitions of sc, P , and tc imply that
there exists x1 ∈ X such that (x, x1) ∈ RC and, as in the previous case, x ∈ C(S).

Combined with the reverse set inclusion established above, it follows that C(S) =
G(S, R) so that R greatest-element rationalizes C.

Quasi-transitive extension compatibility is not necessary for the rationalizability of a
choice function by a reflexive, Suzumura consistent, and quasi-transitive relation. To see
that this is the case, consider the following example. Let X = {x, y, z, v, w},

Σ = {{x, y, w}, {x, y, z, v}, {y, z}, {y, z, v}},

C({x, y, w}) = {y}, C({x, y, z, v}) = {v}, C({y, z}) = {z}, and C({y, z, v}) = {z, v}.
This choice function is greatest-element rationalized by the reflexive, Suzumura consistent,
and quasi-transitive relation

R = {(x, x), (x, y), (y, x), (y, y), (y, w), (z, y), (z, z), (z, v), (z, w),

(v, x), (v, y), (v, z), (v, v), (v, w), (w,w)}.

The direct revealed goodness relation RC that corresponds to C is given by

RC = {(y, x), (y, y), (y, w), (z, y), (z, z), (z, v),

(v, x), (v, y), (v, z), (v, v), }.

This relation is Suzumura consistent and, therefore, sc(RC) = RC . Because (z, y) ∈
sc(RC) and (y, x) ∈ sc(RC), it follows that (z, x) ∈ tc(P (sc(RC))) and hence (z, x) ∈
qe(sc(RC)). Because sc(RC) ⊆ qe(sc(RC)), it follows that (z, y) ∈ qe(sc(RC)), (z, z) ∈
qe(sc(RC)), and (z, v) ∈ qe(sc(RC)). But z 6∈ C({x, y, z, v}), a contradiction to quasi-
transitive extension compatibility.
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5 Concluding remarks

In our view, this paper provides two (related) main contributions. First, we define and
analyze the notion of a minimal quasi-transitive extension of a relation. Although this
extension does not constitute a closure operator, we show that it possesses some interesting
features if the underlying relation is Suzumura consistent. The minimal quasi-transitive
extension is then shown to play a major role in examining notions of rationality that
involve rationalizing relations that are both Suzumura consistent and quasi-transitive.

Although our application to revealed preference theory demonstrates the usefulness
of minimal quasi-transitive extensions of Suzumura consistent relations, there remain
various possible applications in economic theory to be explored. In particular, minimal
quasi-transitive extensions may turn out to provide a powerful analytical tool in the
context of collective choice. For instance, Bordes (1976) links what he refers to as the
transitive closure choice function to the majority rule as applied to two-element sets,
along with the conjunction of a rationality requirement and a minimality condition. It
may be worthwhile to examine the possibility of extending his observations to minimal
quasi-transitive extensions. As another example, Suzumura (1999) employs extension
results to Paretian Bergson-Samuelson social welfare functions, and the use of minimal
quasi-transitive extensions may be an interesting addition to this area of research.
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