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1 Introduction

Imagine that all governments of the world agree with the Rawlsian idea that supporting the

worst-off or poorest person should be the first priority. However, it is quite possible that these

governments have different ideas about what kind of individual is the worst-off. Regarding social

spending, for example, some countries, such as Denmark, have a vast array of labor market policies,

while others, such as the UK, have a relatively large level of housing subsidies. A possible source

for such a variety is the differences in ideas regarding the measurement of well-being.

To understand our point, consider the money metric developed by Samuelson (1974). The

money metric is a measurement of well-being defined as the minimal expenditure to achieve a

utility level associated with a bundle. The worst-off can be identified according to money metrics.

However, the value of the money metric totally depends on a reference price, which should be

chosen in advance. One could think, as in Neary (2004), of relying on averaging methods such

as those developed in the “purchasing power parity” (PPP) literature. However, since there are

various methods of constructing PPP prices (see Deaton and Heston [2010]), this does not provide

a definitive answer regarding the choice.1

In general, a reference point (price, bundle, or possibly other things) is needed to make a con-

crete well-being measurement from information about ordinal preferences. A problem is whether

a definite “just” (or “normatively plausible”) reference point exists. Moreover, such reference

points can depend on the characteristics of economies (preferences, technologies, cultures, histor-

ical paths) if they exist. This implies that some types of comparisons (across time or regions) are

very difficult as it is likely that economies do not share their reference points. A possible way to

overcome this difficulty is to allow well-being measurements to be incomplete in order to make

them secure from any choice of reference points.

Incompleteness means that social evaluations are based on a social quasi-ordering (transitive

and reflexive relation). In a series of works, Sen (1985, 2004, 2017) emphasizes the legitimacy

of a quasi-ordering approach. According to him, incompleteness is a plausible answer for some

cases and a quasi-ordering is what can be only hoped for in practice. For instance, there is an

attempt of a well-being measurement, the Better Life Index, published by the OECD in 2011.

While it incorporates various attributes, the weights over them are not fixed. The choice of the

weights is up to people who can compare outputs associated with various weights, in which case,

incompleteness arises. One way of imagining a possible use of this Better Life Index is constructing

a quasi-ordering by taking the intersection across various sets of weights.

This paper develops the analysis of social quasi-orderings in a standard economic environment,

where individuals have regular ordinal preferences over multiple attributes. Notably, the most

influential quasi-ordering is the Paretian judgment, which requires that moving to some allocation

1Most of this paper focuses on a reference-bundle approach; however, our argument is also relevant to a reference-
price approach. See Section 3.3.
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is improving if no one is worse-off and someone is better-off. No interpersonal comparison is applied

in the Paretian approach. Because of this nature, there is no way to judge who is the worst-off.

In other words, the Paretian quasi-ordering completely ignores fairness.

Contrary to the Paretian judgment, a Bergson-Samuelson social welfare function yields a

complete judgment over allocations. Such a function is regarded as an extension of the Paretian

quasi-ordering, and it can incorporate not only efficiency but also fairness. Recently, Fleurbaey

(2007) and Fleurbaey and Maniquet (2008, 2011) have develop an axiomatic approach to fair

social orderings.2 In particular, they examine two particular types of social orderings: a class

of Pazner-Schmeidler social orderings and one of Egalitarian Walrasian social orderings. The

two types are associated with egalitarian equivalence and envy-freeness, respectively.3 Fair social

orderings are regarded as Bergson-Samuelson’s social welfare functions with concrete structures.

Notably, there is a huge “gap” between the Paretian quasi-ordering and the fair social order-

ings. There is no concern about fairness under the Paretian approach, while adopting a particular

fair social ordering implies a strong commitment to a particular type of fairness/comparison re-

garding the measurement of well-being. In this paper, we develop social quasi-orderings that are

in between the Paretian approach and the fair social orderings. Our proposal can be regarded as

a mid-way between the two approaches, in the sense that it does introduce fairness considerations

but without committing to specific interpersonal comparisons. Two types of social quasi-orderings

are examined in detail: the social nested-contour quasi-ordering and the pairwise nested-contour

quasi-ordering. The intersection of lower-contour sets of individuals is crucial information for the

social nested-contour quasi-ordering. That is, if the intersection of lower-contour sets of individu-

als under state B contains that under state A, then a move from A to B is a social improvement.

The social nested-contour quasi-ordering has a close link to the Pazner-Schmeidler social order-

ings and Egalitarian Walrasian social orderings. This quasi-ordering sheds light on the connection

between egalitarian equivalence and envy-freeness.

The pairwise nested-contour quasi-ordering is weaker (more partial) than the social nested-

contour quasi-ordering. If an individual’s upper-contour set has no intersection with another

individual’s lower-contour set, then the former’s well-being dominates the latter’s. According to

the pairwise nested-contour quasi-ordering, if, in state A, each individual is dominating some

individual in state B, a move from B to A is a social improvement.

The two criteria defined above are in a particular relationship with the existing criteria. Con-

sider a move from some state to another. The following summarizes the relationship among these

2Applications of the approach can be found in Fleurbaey and Gaulier (2009), Decancq et al. (2015a), and Jones
and Klenow (2016).

3Envy-freeness is a concept developed by, Tinbergen (1946), Foley (1967), Kolm (1971), and Varian (1974,
1976). An allocation is said to be envy-free if no individual strictly prefers any other individual’s bundle to his own
bundle. The concept of egalitarian equivalence was introduced by Pazner and Schmeidler (1978). An allocation is
said to be egalitarian equivalent if there exists a hypothetical bundle such that each individual is indifferent toward
choosing between that and his own bundle. These classical works mainly focus on identifying the set of equitable
and efficient allocations: two inequitable allocations cannot be compared in their approach.
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criteria:

• If the Paretian quasi-ordering approves this move, so does the pairwise nested-contour quasi-

ordering;

• If the pairwise nested-contour quasi-ordering approves this move, so does the social nested-

contour quasi-ordering;

• If the social nested-contour quasi-ordering approves this move, so do the Pazner-Schmeidler

social orderings and the Egalitarian Walrasian social orderings.

We show that differences between the aforementioned quasi-orderings and orderings are based on

different ideas of the set of worst-off individuals.

In this paper, we provide axiomatic characterizations of the two quasi-orderings. The pairwise

nested-contour quasi-ordering is characterized by three weak forms of equity, informational par-

simony, and efficiency (the Pareto principle, Hansson independence, and equity among equals).

Each of them is a basic axiom in the literature. By introducing a new axiom, we also characterize

the social nested-contour quasi-ordering.

Our approach may be useful for implementing international comparisons of living standards.

Nations have different fundamental parameters, such as endowments, technologies, or geographic

structures. Such parameters are crucial for constructing complete well-being measurements. One

approach is taking an endogenously fixed parameter as a reference point — as suggested by Fleur-

baey and Maniquet (2011) and Fleurbaey and Tadenuma (2014). Another approach is choosing

some country as a reference point. For example, Jones and Klenow (2016) make a quantitative

cross-country comparison by using the status of the U.S. as a reference. Such choices of reference

points strongly matter: results can change by modifying a reference point. By contrast, the so-

cial and pairwise nested-contour quasi-orderings are independent of reference choices. This is a

benefit of accepting incompleteness, as the judgments based on such quasi-orderings may appear

normatively more secure.

The core of our fair quasi-orderings is a general construction of well-being measurements.

Fleurbaey and Maniquet (2017) provide an axiomatic analysis for well-being measurements using

the information on individual preferences. Indifference curves and lower contour sets are em-

ployed in both their work and this study. In Fleurbaey and Maniquet’s framework, well-being

measurements are supposed to be complete, and there is no aggregation procedure for individual

well-beings. Our study considers an incomplete evaluation of individual well-being and has an ag-

gregation procedure with equity axioms. Bosmans, Decancq, and Ooghe (2018) examine a social

welfare evaluation based on money metrics. They introduce a new equity axiom, which utilizes

information about Scitovsky curves: a transfer among equals leads to a social improvement when

the Scitovsky curve does not change. Their new axiom is substantially weaker than the equity

axiom that we use in this paper. Piacquadio (2017) proposes a general class of social welfare
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orderings, including money metric approaches. He employs equity among equals to derive his

general class and derives a utilitarian form. One key difference is that our study imposes Hans-

son independence on incomplete social evaluations, while Piacquadio (2017) does not impose any

independence axiom, considering a complete social ordering.

The rest of this paper is organized as follows. Section 2 introduces our setting. Section

3 presents our two quasi-orderings and a fundamental analysis of their properties. Section 4

conducts the axiomatic analysis and main characterizations. Section 5 discusses another approach

to fair quasi-orderings.

2 Setting

Let N be the set of individuals. Assume that N is finite. There exist ` (≥ 2) commodities: all of

them are private goods. The consumption set is X = R`
+. Individual i’s consumption bundle is

an element of X. An allocation is a list of individual bundles: a typical allocation is denoted by

xN = (xi)i∈N ∈ XN .

Each individual i ∈ N has a preference ordering Ri over X. The asymmetric and symmetric

parts of Ri are denoted by Pi and Ii, respectively. Preferences are assumed to be continuous,

monotonic,4 and convex. Let R be the set of preferences over X satisfying these three properties.

An economy e is defined by the preference profile RN = (Ri)i∈N ∈ RN . The domain is defined as

follows:

E =
⋃

N⊆N:N<∞ & N 6=∅

RN .

A social ordering function (SOF) R is a mapping from E to the set of orderings over the set

XN of allocations. A social quasi-ordering function (SQF) is a mapping from E to the set of

quasi-orderings over the set XN of allocations. The asymmetric and symmetric parts of R(e) are

denoted by P (e) and I(e), respectively. An SQF R is a refinement of R′ if R′(e) ⊆ R(e) for all

e ∈ E . An SQF R is an extension of R′ if it is a refinement such that, additionally, P ′(e) ⊆ P (e)

for all e ∈ E . Each of a refinement and an extension yields a quasi-ordering that is compatible

with the original one.

The lower-contour set and upper-contour set are introduced as follows:

L(xi, Ri) = {y ∈ X : xiRiy} and U(xi, Ri) = {y ∈ X : yRixi}.

Now, we introduce major fair social orderings. Pick some reference bundle Ω ∈ R`
++. Define

uΩ
R : X ×R → R as follows:

uΩ
R(xi, Ri) = λ⇔ xiIiλΩ.

4The ordering Ri is monotonic if xRiy whenever x ≥ y and xPiy whenever x� y, and strictly monotonic if it
is monotonic and in addition, xPiy whenever x > y.
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Note that uΩ
R(·, Ri) is a utility representation of Ri. The Pazner-Schmeidler SOF is defined as

follows:

xNR
Ω
PSyN ⇔ min

i∈N
uΩ
R(xi, Ri) ≥ min

i∈N
uΩ
R(yi, Ri).

The Pazner-Schmeidler SOF is associated with the concept of egalitarian equivalence, defined in

the introduction. Formally, for any egalitarian equivalent allocation xN ∈ XN , there exists z ∈ X
such that xiIiz for all i ∈ N . Given any Ω, the optimal allocation with respect to RΩ

PS must be

egalitarian equivalent and efficient.

Define uΩ
p : X ×R → R as follows:

uΩ
p (xi, Ri) =

1

pΩ
min{pz : zRixi z ∈ X}.

The Egalitarian Walras SOF is defined as follows:

xNR
Ω
EWyN ⇔ max

p
min
i∈N

uΩ
p (xi, Ri) ≥ max

p
min
i∈N

uΩ
p (yi, Ri).

The Egalitarian Walras SOF is associated with the concept of envy-freeness: an allocation is said

to be envy-free if everyone weakly prefers his own bundle to others’ bundles. If Ω is equal to

an aggregate endowment of the economy, the optimal allocation with respect to RΩ
EW must be a

Walrasian allocation with equal income, and must therefore be envy-free and efficient.

3 Two Fair Social Quasi-Orderings

3.1 Definitions and relations

In this section, we introduce fair social quasi-orderings and provide a basic analysis of their

characteristics. Given RN ∈ RN , let

L(xN , RN) =
⋂
i∈N

L(xi, Ri).

That is, xi is at least good as x ∈ L(xN , RN) for every individual i ∈ N . Given RN ∈ RN , let

U(xN , RN) =
⋃
i∈N

U(xi, Ri).

For each x ∈ U(xN , RN), there is some individual i ∈ N who weakly prefers x to xi. Both

L(xN , RN) and U(xN , RN) are closed sets. We call L(xN , RN) the social lower-contour set at xN

(resp. U(xN , RN) the social upper-contour set at xN). Note that the social lower-contour set

(resp. the social upper-contour set) cannot be the lower-contour (upper-contour) set for social
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preference. The lower-contour (upper-contour) set for social preference must be a subset of the set

of allocations, XN , while the social lower-contour set or the social upper-contour set is a subset

of the consumption set, X.

Note that L(xi, Ri) = X − Int(U(xi, Ri)). Therefore,

L(xN , RN) =
⋂
i∈N

(
X − Int(U(xi, Ri))

)
,

= X − Int
(
U(xN , RN)

)
.

The Social Nested-Contour SQF is defined as follows:

xNRS(e)yN ⇔ L(xN , RN) ⊇ L(xN , RN).

According to this SQF, an allocation is socially at least as good as another allocation if the social

lower-contour set at xN includes the social lower-contour set at yN . That is, the set inclusion

relation works as a dominance relation. It is easy to see that RS(e) is always a quasi-ordering.

The social nested-contour SQF can equivalently be defined in terms of the social upper-contour

set:

xNRS(e)yN ⇔ U(xN , RN) ⊆ U(yN , RN),

because

L(xN , RN) ⊇ L(yN , RN)⇔ X − Int
(
U(xN , RN)

)
⊇ X − Int

(
U(yN , RN)

)
⇔ U(xN , RN) ⊆ U(yN , RN).

As a notable feature, the social nested-contour SQF is associated with the concept of envy-free

equivalence by Pazner (1977), which requires that there exists a hypothetical envy-free allocation

where the consumption bundle in the original allocation is indifferent to the hypothetical one for

each individual.5 Note that any egalitarian-equivalent allocation must be envy-free equivalent, and

so is any envy-free allocation. Now, we consider a simple exchange economy with an aggregate

endowment, in which all commodities are transferable. Given this endowment, we can get an

optimal allocation with respect to RS(e). That is, an allocation xN is said to be optimal with

respect to RS(e) if there exists no feasible allocation yN such that yNPS(e)xN . An example of

an optimal allocation is shown in Figure 1 (the bundles xi are not shown on the figure, only the

indifference curves are shown). Under any optimal allocation for RS(e), each individual’s upper

5Undominated diversity introduced by Van Parijs (1990) also uses information about the intersection of indi-
viduals’ lower contour set. According to him, an individual i is worse-off than another individual j if individual j’s
consumption is better than individual i’s consumption for everyone: i.e., xi is in the interior of

⋂
k∈N L(xj , Rk).

Undominated diversity requires that there is no such dominance relation. However, undominated diversity and
envy-free equivalence (the social nested-contour SQF) are independent.
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contour set has an intersection with the social lower-contour set. This means that we can find a

hypothetical envy-free (but not necessarily efficient) allocation over the social lower-contour set.

Here, (z1, z2, z3) is an example of a hypothetical envy-free allocation in Figure 1.

The Pairwise Nested-Contour SQF is defined as follows:

xNRP (e)yN ⇔ ∀i ∈ N, ∃j ∈ N,L(xi, Ri) ⊇ L(yj, Rj).

RP always generates a quasi-ordering over the set of allocations. It is easy to see that RP (e)

is reflexive for any RN ∈ RN . Then, let us check transitivity. Suppose that xNRP (e)yN and

yNRP (e)zN . Take any i ∈ N . By definition, there exists j ∈ N,L(xi, Ri) ⊇ L(yj, Rj). Since

yNRP (e)zN , there exists k ∈ N,L(yj, Rj) ⊇ L(zk, Rk). Note that L(xi, Ri) ⊇ L(yj, Rj) and

L(yj, Rj) ⊇ L(zk, Rk). Thus, L(xi, Ri) ⊇ L(zk, Rk). This means that

∀i ∈ N,∃k ∈ N,L(xi, Ri) ⊇ L(zk, Rk).

Therefore, we have xNRP (e)zN .

Let us consider an optimal allocation in a simple exchange economy with respect to the pairwise

nested-contour SQF. Under any optimal allocation, each individual’s upper contour set has an

intersection with the lower-contour set of every individual. An example of an optimal allocation

in some economy is shown in Figure 2 (again, without the bundles xi). This means that for all

distinct j, k ∈ N , there exists z(j, k) ∈ X such that z(j, k)Iixi for all i ∈ {j, k}. An allocation

satisfying this property is called pairwise egalitarian equivalent. In Figure 2, z1 is the bundle

associated with individuals 1 and 3; z2 is the bundle associated with individuals 2 and 3; z3 is

the bundle associated with individuals 1 and 2. Pairwise egalitarian equivalence is weaker than

envy-free equivalence, which is weaker than envy-freeness or egalitarian equivalence.

The following result shows a hierarchical refinement structure among the three criteria.

Proposition 1.

(i) RS is a refinement of RP ;

(ii) RΩ
PS is a refinement of RS;

(iii) RΩ
EW is a refinement of RS.

Proof. (i) Let e = RN ∈ E . Suppose that xNRP (e)yN . By definition, we have ∀i ∈ N, ∃j ∈
N,L(xi, Ri) ⊇ L(yj, Rj). By way of contradiction, suppose that x∗ ∈ L(yN , RN) but x∗ /∈
L(xN , RN). Then, x∗ /∈ L(xi∗ , Ri∗) for some i∗ ∈ N . By our assumption, there exists j ∈ N such

that L(xi∗ , Ri∗) ⊇ L(yj, Rj). Then, x∗ /∈ L(yj, Rj), which implies that x∗ /∈ L(yN , RN). This is a

contradiction.

(ii) Suppose that xNRS(e)yN but ¬(xNR
Ω
PS(e)yN). Then, L(xN , RN) ⊇ L(yN , RN) and
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Commodity 1

R1

Commodity 2

R2

R3

z1

z3

z2

Figure 1: The social nested-contour SQF

Commodity 1

R1

Commodity 2

R2

R3

z1
z3

z2

Figure 2: The pairwise nested-contour SQF

9



mini∈N u
Ω
R(yi, Ri) > mini∈N u

Ω
R(xi, Ri). Let

i0 ∈ arg min
i∈N

uΩ(xi, Ri).

We have uΩ
R(xi0 , Ri0) < uΩ

R(yi, Ri) for all i ∈ N . This implies that uΩ
R(xi0 , Ri0)Ω ∈ Int(L(yi, Ri)) for

all i ∈ N . Thus, uΩ
R(xi0 , Ri0)Ω ∈ Int(L(yN , RN)). Since uΩ

R(xi0 , Ri0)Ω Ii0 xi0 , one has uΩ
R(xi0 , Ri0)Ω ∈

U(xN , RN). But it is impossible to simultaneously have

Int(L(yN , RN)) ∩ U(xN , RN) 6= ∅

and L(xN , RN) ⊇ L(yN , RN).

(iii) Suppose that xNRS(e)yN but ¬(xNR
Ω
EW (e)yN). Since L(xN , RN) ⊇ L(yN , RN), we have

U(xN , RN) ⊆ U(yN , RN). By monotonicity of the convex hull, co
(
U(xN , RN)

)
⊆ co

(
U(yN , RN)

)
,

where co denotes the convex hull. However, maxp mini∈N u
Ω
p (xi, Ri) < maxp mini∈N u

Ω
p (yi, Ri).

Note that maxp mini∈N u
Ω
p (xi, Ri) is min{r : rΩ ∈ co

(
U(xN , RN)

)
}. Thus, min{r : rΩ ∈

co
(
U(xN , RN)

)
} < min{r : rΩ ∈ co

(
U(yN , RN)

)
}. This violates the fact that co

(
U(xN , RN)

)
⊆

co
(
U(yN , RN)

)
. �

RS is not an extension of RP . There exists e = RN ∈ E and xN , yN ∈ N such that

xNPP (e)yN and xNIS(e)yN .

See Figure 3. It is easy to check that (x1, x2, x
′
3)PP (e)(x1, x2, x3) and (x1, x2, x

′
3)IS(e)(x1, x2, x3).

Moreover, RΩ
PS is not an extension of RS because one can have xNPS(e)yN without having

xNP
Ω
PS(e)yN because the part where L(xN , RN) dominates L(yN , RN) may not be in the direction

of Ω.

The following result shows that there exists no difference between the two social quasi-ordering

for the two-person case. This result is quite intuitive because there exists no difference between

egalitarian equivalence and pairwise egalitarian equivalence in the two-person case.

Proposition 2. If there are only two individuals in an economy e, then RS(e) is identical with

RP (e).

Proof. By Proposition 1, RP (e) ⊆ RS(e). We need to show the converse. Suppose that

xNRS(e)yN . Then, L(x1, R1) ∩ L(x2, R2) ⊇ L(y1, R1) ∩ L(y2, R2). Note that x1R1y1 or x2R2y2.

Without loss of generality, we assume that x1R1y1. If x2R2y2, then xNRP (e)yN . Assume that

y2P2x2. Since x1R1y1, it follows that L(x1, R1) ⊇ L(y1, R1). Since U(y2, R2) ∩ L(x2, R2) = ∅,
we need to show that L(x2, R2) ⊇ L(y1, R1). By way of contradiction, assume that L(x2, R2) 6⊇
L(y1, R1). Since U(y2, R2) ∩ L(x2, R2) = ∅, L(x2, R2) 6⊇ L(y1, R1) ∩ L(y2, R2). This contradicts

the assumption that L(x1, R1)∩L(x2, R2) ⊇ L(y1, R1)∩L(y2, R2), which implies that L(x1, R1) ⊇
L(y1, R1) ∩ L(y2, R2). �
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x1

x2

x3

x′
3

Commodity 1

Commodity 2

Figure 3: RS is not an extension of RP

A fundamental approach to a quasi-ordering consists in taking the intersection of orderings (the

intersection approach). It is known that the intersection of orderings is always a quasi-ordering.

As shown by Donaldson and Weymark (1998), in general, a quasi-ordering is the intersection

of all ordering extensions (i.e., orderings which are compatible with the original quasi-ordering).

Since RS(e) is a quasi-ordering, it must be the intersection of all ordering extensions. By this

process, we can implicitly characterize the social nested-contour SQF. A fundamental difficulty

of this procedure is that the construction is not explicit in the sense that ordering extensions for

each RS(e) are obtained through Zorn’s lemma (or the axiom of choice).

Fortunately, we can obtain an explicit characterization of RS by taking the intersection of a

particular set of orderings, which can be explicitly formulated. Given a reference subset Θ ⊆ X

of the consumption set, we can construct an SQF by taking the intersection:6

RΘ =
⋂

Ω∈Θ

RΩ
PS.

It is easy to see that RΘ ⊆ RΘ′ if Θ ⊇ Θ′. The following result states that the social nested-contour

SQF is characterized as the intersection of all Pazner-Schmeidler SOFs.

6This construction process is related with work on partial comparability of Blackorby (1975). He focuses on
the case of utilitarian sum and he proposes a procedure to construct a reference set Θ.
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Theorem 1. On the subdomain of R in which preferences are strictly monotonic,

RS(e) =
⋂

Ω∈R`
++

RΩ
PS(e).

Proof. We have xNRS(e)yN ⇒ xNR
Ω
PS(e)yN for all e ∈ R and all Ω ∈ R`

++, and thus, it is

obvious that

RS(e) ⊆
⋂

Ω∈R`
++

RΩ
PS(e).

We must show that

RS(e) ⊇
⋂

Ω∈R`
++

RΩ
PS(e)

when preferences are strictly monotonic. By way of contradiction, assume that there exist

xN , yN ∈ XN and e = RN ∈ RN such that

(xN , yN) ∈
⋂

Ω∈R`
++

RΩ
PS(e) and ¬(xNRS(e)yN).

Then, we must have the following: xNR
Ω
PS(RN)yN for all Ω ∈ R`

++ and L(xN , RN) 6⊇ L(yN , RN).

Since preferences are strictly monotonic, there exists Ω0 ∈ R`
++ such that Ω0 ∈ L(yN , RN) and

Ω0 /∈ L(xN , RN). Note that yNP
Ω0
PS(RN)xN . This is a contradiction. �

When preferences are not strictly monotonic, it is possible to have xNPS(e)yN while xNI
Ω
PS(e)yN

for all Ω ∈ R`
++ and even for all Ω ∈ X.

Let us now define the Social Nested-Contour Rule? as follows:

xN R̂S(e)yN ⇔ U(xN , RN) ∩ L(yN , RN) = ∅.

and the Pairwise Nested-Contour Rule? as follows:

xN R̂P (e)yN ⇔ ∀i ∈ N, ∃j ∈ N,U(xj, Rj) ∩ L(yi, Ri) = ∅.

Since U(xi, Ri) = X − Int(L(xi, Ri)), when U(xj, Rj) ∩ L(yi, Ri) = ∅, necessarily

Int(L(xj, Rj)) ⊇ L(yi, Ri).

Therefore, an equivalent expression is as follows:

xN R̂P (e)yN ⇔ ∀i ∈ N,∃j ∈ N, Int(L(xi, Ri)) ⊇ L(yj, Rj).

12



Similarly, we can obtain the following equivalent expression of R̂S(e):

xN R̂S(e)yN ⇔ Int
(
L(xN , RN)

)
⊇ L(yN , RN).

Both the Social Nested-Contour Rule? and the Pairwise Nested-Contour Rule? generate transitive

and asymmetric social preferences. The Social Nested-Contour SQF and the Pairwise Nested-

Contour SQF are extensions of R̂S and R̂P , respectively.

The following result shows that the variants introduced above are compatible with each other

and also that they are compatible with RΩ
PS and RΩ

EW .

Proposition 3.

(i) R̂S is an extension of R̂P ;

(ii) RΩ
PS is an extension of R̂S;

(iii) RΩ
EW is an extension of R̂S.

Proof. Let e = RN ∈ E . Since R̂S(e) and R̂P (e) is asymmetric, it suffices to show that

xN R̂P (e)yN ⇒ xNR
Ω
SyN . Suppose that xNRP (e)yN . Then,

∀i ∈ N,∃j ∈ N,U(xi, Ri) ∩ L(yj, Rj) = ∅. (1)

Suppose that L(yN , RN) ∩ U(xN , RN) 6= ∅. Note that⋂
i∈N

L(yi, Ri) ∩
⋃
i∈N

U(xi, Ri) 6= ∅ ⇒
⋂
i∈N

L(yi, Ri) ∩ U(xi∗ , Ri∗) 6= ∅ for some i∗ ∈ N

Therefore,

L(yi, Ri) ∩ U(xi∗ , Ri∗) 6= ∅ for all i ∈ N.

This contradicts (1).

(ii) Since R̂S(e) is asymmetric, it suffices to show that xN R̂S(e)yN ⇒ xNP
Ω
PSyN . Suppose that

xN R̂S(e)yN but ¬(xNP
Ω
PSyN). Then, mini∈N u

Ω
R(yi, Ri) ≥ mini∈N u

Ω
R(xi, Ri). Let

i0 ∈ arg min
i∈N

uΩ
R(xi, Ri).

We have uΩ
R(xi0 , Ri0) ≤ uΩ

R(yi, Ri) for all i ∈ N . This implies that uΩ
R(xi0 , Ri0)Ω ∈ L(yi, Ri) for

all i ∈ N . Note that uΩ
R(xi0 , Ri0)Ω ∈ U(xi0 , Ri0). Thus,

uΩ
R(xi0 , Ri0)Ω ∈ L(yN , RN) and uΩ

R(xi0 , Ri0)Ω ∈ U(xN , RN).

This is a contradiction.

(iii) This can be proved in a similar way to (ii). �
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Figure 4 shows the relationship among social rules. This figure includes the Paretian SQF and

the Paretian Rule?, which are defined, respectively, as follows:7

xNRR(e)yN ⇔ ∀i ∈ N : L(xi, Ri) ⊇ L(yi, Ri),

xN R̂R(e)yN ⇔ ∀i ∈ N : U(xi, Ri) ∩ L(yi, Ri) = ∅.

We can see that our rules are intermediate between the traditional Paretian approach and the

fair-ordering approach.

Paretian SQF

Pairwise Nested-Contour SQF

Social Nested-Contour SQF

Pazner-Schmeidler SOF Egalitarian Walrasian SOF

Social Nested-Contour Rule⋆

Pairwise Nested-Contour Rule⋆

Paretian Rule⋆

Figure 4: Relationship: “A→B” means “A is an extension of B” and a dashed line means “A is
a refinement of B”

To further examine the difference between RS(e) and R̂S(e), we provide remarks on continuity.

Now, a rule R is said to be open if for all e = RN ∈ E and xN ∈ XN , both {zN ∈ XN : zNP (e)xN}
and {zN ∈ XN : xNP (e)zN} are open; closed if for all e = RN ∈ E and xN ∈ XN , both

{zN ∈ XN : zNR(e)xN} and {zN ∈ XN : xNR(e)zN} are closed. A continuous rule is open

and closed. In general, if preference is an ordering, there is no difference between openness and

closedness. Therefore, an open SOF is continuous, and so is a closed SOF. However, openness

and closedness are independent when preference is incomplete.

First, RS is obviously closed. However, it is not open. Remember that if it is open, if yN is

socially better than xN , for any sequence {ykN} converging to yN , we can find k̂ ∈ N such that

ykNP (e)xN for all k ≥ k̂. Now, fix x∗ ∈ Rk
++. Let x∗N = (x∗, x∗, . . . , x∗). Pick up y∗ > x∗ and let

y∗N = (y∗, x∗, . . . , x∗). Let e = RN be such that L(x∗, R1) is not identical with L(x∗, Ri) for some

i 6= 1. It is clear that y∗NP (e)x∗N . Take a sequence {ykN} such that

yk1 = y∗
(

1 +
1

k

)
and yki = x∗

(
1− 1

k

)
.

There exists no k̂ ∈ N such that ykNP (e)x∗N for all k ≥ k̂.

7RR(e) corresponds to strong Pareto, while R̂R(e) corresponds to weak Pareto. These axioms will be introduced
in the next section.
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Second, R̂S is open but not closed. As a consequence, neither of them is continuous. This

point is closely related with the work of Schmeidler (1971), who shows that any non-trivial and

continuous quasi-ordering must be complete. This implies that there exists no “incomplete” fair

quasi-ordering that is continuous (open and closed).

3.2 Who is worst-off?

Each equitable criterion offers a specification of the set of worst-off agents. Under the Pazner-

Schmeidler SOF, the worst-off agent is an individual who attains the minimum value with respect

to uΩ
R(xi, Ri). To be precise, the set of worst-off agents with respect to the Pazner-Schmeidler

SOF is
{
i ∈ N : uΩ

R(xi, Ri) = minj u
Ω
R(xj, Rj)

}
. When we compare two allocations, any changes

in bundles of individuals who are not worst-off do not matter.

Under the social nested-contour SQF, worst-off agents are individuals whose upper-contour

set has an intersection with the social lower-contour set. More formally, the set of worst-off agents

can be specified as follows:

SS(xN , RN) = {i ∈ N : L(xN , RN) ∩ U(xi, Ri) 6= ∅}.

It is easy to see that

L(yN , RN) ⊇ L(xN , RN) if and only if
⋂

i∈SS(xN ,RN )

L(yi, Ri) ⊇
⋂

i∈SS(yN ,RN )

L(xi, Ri).

An individual who does not have an intersection with the social lower-contour set does not matter

for the social lower-contour set. In Figure 3, individuals 1 and 2 are worst-off, while individual 3 is

better-off in both allocations, (x1, x2, x3) and (x1, x2, x
′
3). The change (from x3 to x′3) is irrelevant

to the social lower-contour set, and thus, the two allocations are socially indifferent.

Although the set of worst-off agents is not explicitly stated under the pairwise nested-contour

SQF, it is defined as follows:

SP (xN , RN) = {i ∈ N : U(xi, Ri) ∩ L(xj, Rj) 6= ∅ for all j ∈ N}.

Note that for each j /∈ SP (xN , RN), there exists i ∈ SP (xN , RN) such that L(xi, Ri)∩U(xj, Rj) =

∅.
As we can see in the following proposition, only SP (xN , RN) matters for social judgments.

Proposition 4. The following three statements are equivalent:

(i) ∀i ∈ SP (xN , RN),∃j ∈ SP (yN , RN), L(xi, Ri) ⊇ L(yj, Rj) (resp. U(xi, Ri) ∩ L(xj, Rj) = ∅);
(ii) ∀i ∈ SP (xN , RN),∃j ∈ N,L(xi, Ri) ⊇ L(yj, Rj) (resp. U(xi, Ri) ∩ L(xj, Rj) = ∅);
(iii) ∀i ∈ N, ∃j ∈ N,L(xi, Ri) ⊇ L(yj, Rj) (resp. U(xi, Ri) ∩ L(xj, Rj) = ∅).
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Proof. (i) ⇔ (ii). Since the “⇒” part is obvious, it suffices to show the converse part.

Suppose that (ii) is true. Take any i ∈ SP (xN , RN). Then, there exists j ∈ N such that

L(xi, Ri) ⊇ L(yj, Rj). If j ∈ SP (yN , RN), the proof is complete. If j /∈ SP (yN , RN), we can find

k ∈ SP (yN , RN) such that U(yj, Rj) ∩ L(yk, Rk) = ∅. Note that L(yj, Rj) ⊇ L(yk, Rk). Since

L(xi, Ri) ⊇ L(yj, Rj) and L(yj, Rj) ⊇ L(yk, Rk), we have L(xi, Ri) ⊇ L(yk, Rk). This complete

the proof.

(ii)⇔ (iii). Since the “⇐” part is obvious, it suffices to show the converse part. Suppose that

(ii) is true. Take any i ∈ N . If i ∈ SP (xN , RN), then the claim follows from (ii). Suppose that

i /∈ SP (xN , RN). Then, we can find k ∈ SP (xN , RN) such that U(xi, Ri) ∩ L(xk, Rk) = ∅. By

(ii), there exists j ∈ N and L(xk, Rk) ⊇ L(yj, Rj). Since L(xi, Ri) ⊇ L(yk, Rk) and L(xk, Rk) ⊇
L(yj, Rj), we have L(xi, Ri) ⊇ L(yj, Rj). This complete the proof. �

Consider the Pazner-Schmeidler SOF, the social nested-contour SQF, and the pairwise nested-

contour SQF. All of the three rules are strongly equitable in the sense that they care only about

worst-off agents. The difference is in how they specify the set of worst-off agents. The Pazner-

Schmeidler SOF is a refinement of the social nested-contour SQF, and the latter a refinement of

the nested-contour SQF (without either of these being extensions, as noted earlier). Note that{
i ∈ N : uΩ

R(xi, Ri) = min
j
uΩ
R(xj, Rj)

}
⊆ SS(xN , RN) ⊆ SP (xN , RN). (2)

A refinement gives us a smaller set of worst-off agents.

In each rule, the worst-off agents are equally treated in the sense that any transfer from some

worst-off agent to another cannot be justified. On the other hand, a transfer from a better-off

agent to a worst-off agent is always beneficial. Then, the set of worst-off agents must be identical

with the set of individuals under any optimal allocation. It is easy to see that if the set of worst-off

is small, then there exists a large set of beneficial transfers.

Let us now make a comparison with the Paretian quasi-ordering, which is a foundation of

Pareto efficiency. There exists no specification of the worst-off agents under the Paretian quasi-

ordering (or it can be interpreted that all individuals are worst-off in any allocations). In other

words, any transfer from a person to another person cannot be justified because of the absence of

non-worst agents.8

8The specification of worst-off agents is closely related with the separability of social judgment. In the strong
from, separability states that the existence of unconcerned individuals do not matter for social ordering. None
of the rules studied in this paper satisfies this property. However, each of them satisfies its weak form. Let
W (xN , RN ) ⊆ N be the mapping that defines the set of worst-off agents for any given rule. Each rule satisfies
the following separability property: for any N with #N ≥ 2, any i /∈W (yN , RN ) such that xi = yi, xNR(e)yN ⇔
xN\{i}R(RN\{i})yN\{i}.
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3.3 Convex hull of social upper contour set

In this subsection, we briefly discuss a social quasi-ordering that lies in between the social nested-

contour rule and the Egalitarian Walras SOF. The following rule is based on the set-inclusion

relation in terms of the convex hull of social upper contour set:9

xNRW (e)yN ⇔ co
(
U(xN , RN)

)
⊆ co

(
U(yN , RN)

)
,

where co(A) is the convex hull of A. By the monotonic property of co, if U(xN , RN) ⊆ U(yN , RN),

then co
(
U(xN , RN)

)
⊆ co

(
U(yN , RN)

)
. Thus, this is a natural refinement of RS.10 Remember

that RS is the intersection of all the Pazner-Schmeidler SOFs. Here, RW is clearly associated

with the Egalitarian Walras SOF RΩ
EW . Taking the intersection of the Egalitarian Walras SOF

RΩ
EW , we can obtain RW (on the subdomain of strictly monotonic preferences).

As in the case of RP and RS, we can consider an asymmetric version of RW , which is useful

to consider the relationship among the three rules. Let

L∗(xN , RN) = X − Int
(
co
(
U(xN , RN)

))
.

Define

xN R̂W (e)yN ⇔ co
(
U(xN , RN)

)
∩ L∗(yN , RN) = ∅.

R̂W is a refinement of R̂S, which means that it is also a refinement of R̂P .

3.4 Nietzsche-type social welfare criteria

There is another way to construct SQFs. Remember that xNRP (e)yN if and only if ∀i ∈ N,∃j ∈
N,L(xi, Ri) ⊇ L(yj, Rj). Analogically, we can construct the following rule:

xNRNiet1(e)yN ⇔ ∃i ∈ N, ∀j ∈ N,L(xi, Ri) ⊇ L(yj, Rj).

Note that it always generates transitive social preferences. Since the formulation of RNiet1 is

parallel to that of RP , it seems to be compelling. However, it is not an equitable rule and it is

independent of RP . We can say that the implication of RNiet1 is completely opposite to that of

RP . According to RNiet1, it is enough that there exists only one very rich person, and thus a

9In this subsection, we emphasize a link between the convex hull of the social upper contour set and the
Egalitarian Walras SOF. This quasi-ordering is also associated with the idea of money metrics, which is discussed
in the introduction. Consider a criterion maximizing the minimum level of individual money metrics. It depends
on a reference price. If we take the intersection of all money-metric maximin criteria with regard to reference
prices, we get the convex hull of the social upper contour set.

10It is not an extension of RS because one can have U(xN , RN ) ( U(yN , RN ) and co
(
U(xN , RN )

)
=

co
(
U(yN , RN )

)
.
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transfer from the poor to the rich can be socially beneficial.11

Let us define the following rule:

xNRNiet2(e)yN ⇔
⋃
i∈N

L(xi, Ri) ⊇
⋃
i∈N

L(yi, Ri).

A dominance relation is constructed in terms of the union of individuals’ lower-contour sets. This

is a counterpart of RS. The relationship between RP and RS is corresponding to RNiet1 and

RNiet2. Similarly, the relationship between RS and RΩ
PS is corresponding to RNiet1 and the rule,

defined as follows:

xNR
Ω
Niet(e)yN ⇔ max

i∈N
uΩ
R(xi, Ri) ≥ max

i∈N
uΩ
R(yi, Ri).

We can show that by taking the intersection of RΩ
Niet over the largest reference set, we can get

RNiet2. As a consequence, RΩ
Niet, RNiet1(e), and RNiet2(e) can be called Nietzsche-type social

welfare criteria. Only the best-off agents matter for social judgments with these criteria.

4 Axiomatic Analysis

In this section, we provide an axiomatic analysis of the two main social quasi-orderings. To do

so, we list several basic axioms. First, we introduce Paretian axioms, which basically require that

the unanimous agreement must be respected in a certain way. We note that strong Pareto implies

weak Pareto and Pareto indifference.

Strong Pareto: For all e = RN ∈ E and xN , yN ∈ XN , if xiRiyj for all i ∈ N , then xNR(e)yN ; if

xiRiyi for all i ∈ N and xiPiyi for some i ∈ N , then xNP (e)yN

Pareto Indifference: For all e = RN ∈ E and xN , yN ∈ XN , if xiIiyi for all i ∈ N , then xNI(e)yN .

Weak Pareto: For all e = RN ∈ E and xN , yN ∈ XN , if xiPiyi for all i ∈ N , then xNP (e)yN .

Hansson independence is an axiom of independence of irrelevant indifference curves. This

axiom is a weakening of Arrow’s IIA and is proposed by Hansson (1973).12 Let I(xi, Ri) =

U(xi, Ri) ∩ L(xi, Ri) =.

Hansson independence: For all e = RN , e
′ = R′N ∈ E and xN , yN ∈ XN , if for all i ∈ N ,

I(xi, Ri) = I(xi, R
′
i) and I(yi, Ri) = I(yi, R

′
i),

then R(e) and R(e′) agree on {xN , yN}.
11An undesirable feature of RNiet1 is that it does not satisfy the Pareto principle. Even if everyone is better-off,

there might not be an individual who can dominate other people.
12See also Fleurbaey, Suzumura, and Tadenuma (2005).
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Fleurbaey and Trannoy (2003) show that there is a strong tension between transfer axioms and

Paretian axioms. Therefore, a transfer should be restricted to certain situations. The following

axiom is a basic transfer axiom in the literature.13

Transfer among equals: For all e = RN ∈ E and xN , x
′
N ∈ XN , if there exist j, k ∈ N and

∆ ∈ R`
++ such that Rj = Rk,

xj = yj −∆ > yk + ∆ = xk,

and xi = yi for all i ∈ N \ {j, k}, then xNR(e)yN .

We now present the fundamental observation, which is not new; the proof is almost the same

as that of Lemma A.1 of Fleurbaey and Maniquet (2011, p 242), and thus, we omit it. The axioms

listed in this lemma is imposed in most works in fair social orderings.

Lemma 1. Suppose that an SQF satisfies weak Pareto, transfer among equals, and Hansson

independence. For all e = RN ∈ E and xN , yN ∈ XN , if there exist j, k ∈ N such that

yjPjxj, xkPkyk and U(xj, Rj) ∩ L(xk, Rk) = ∅,

and xiPiyi for all i ∈ N \ {j, k}, then xNP (e)yN .

The following result provides an axiomatic characterization of the pairwise nested social quasi-

ordering.

Theorem 2.

(i) RP is an SQF that satisfies weak Pareto, Pareto indifference, transfer among equals, and

Hansson independence.

(ii) If an SQF satisfies weak Pareto, transfer among equals, and Hansson independence, then for

all e = RN ∈ E ,

xN P̂P (e)yN ⇒ xNP (e)yN .

Proof. (i) It is clear that RP satisfies weak Pareto, Pareto indifference, and Hansson indepen-

dence. It suffices to show that it satisfies transfer among equals. Take xN , yN ∈ XN . Now,

suppose that there exist k, j ∈ N such that Rk = Rj and ∆ ∈ R`
++ such that

xj = yj −∆ > yk + ∆ = xk,

and xi = yi for all i ∈ N \ {k, j}.
One has

L(xi, Ri) ⊇ L(yi, Ri) for all i 6= j. (3)

13See Fleurbaey and Trannoy (2003) and Fleurbaey and Maniquet (2008, 2011).
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Now consider j. Since U(xj, Rj) ∩ L(yk, Rk) = ∅, one has L(xj, Rj) ⊇ L(yk, Rk). Therefore,

transfer among equals is satisfied.

(ii) Suppose that an SQF satisfies weak Pareto, transfer among equals, and Hansson indepen-

dence. Let xN , yN ∈ XN and e = RN ∈ RN be such that

∀i ∈ N,∃j ∈ N,U(xi, Ri) ∩ L(yj, Rj) = ∅. (4)

Now, let M = {i ∈ N : xiPiyi}. If M = N , then we have xNP (e)yN . In the rest of this proof, we

assume that M 6= N , i.e., N \M is non-empty.

Take #N \M = s. Without loss of generality, assume that N \M = {1, 2, . . . , s}. Consider

individual 1. By (4), there exists j∗ ∈ N such that U(xk, Rk) ∩ L(yj∗ , Rj∗) = ∅. Define z1
N =

(z1
1 , . . . , z

1
n) ∈ XN as follows. For a small vector ε ∈ R`

++, let us consider e′ = R′N ∈ RN such that

I(xi, Ri) = I(xi, R
′
i) and I(yi, Ri) = I(yi, R

′
i) for all i ∈ N,

z1
1 = yj∗ + ε and z1

j∗ = yj∗ +
ε

2
,

x1P
′
1z

1
1 and U(z1

1 , R
′
1) ∩ L(z1

j∗ , R
′
j∗) = ∅,

z1
i P
′
iyi for all i ∈ (M)c \ {1, j∗},

xiP
′
iz

1
i P
′
iyi for all i ∈M \ {j∗},

and

SP (z1
N , R

′
N) = SP (yN , R

′
N) and [∀i ∈ N, ∃j ∈ N,U(xi, R

′
i) ∩ L(z1

j , R
′
j) = ∅]. (5)

By Lemma 1, we have

z1
NP (e′)yN .

Next, we consider individual 2. Note that

{i ∈ N : xiP
′
iz

1
i } = M ∪ {1} := M1.

Since (5) holds, an argument similar to the previous one works. We can find k∗ ∈ N such that

U(z1
2 , R2) ∩ L(z1

k∗ , Rk∗) = ∅. By taking an arbitrarily small vector ε′ ∈ R`
++, we can construct

z2
N = (z2

1 , . . . , z
2
n) ∈ XN and e′′ = R′′N ∈ RN as follows:

I(xi, R
′
i) = I(xi, R

′′
i ), I(yi, Ri) = I(yi, R

′
i), and I(z1

i , Ri) = I(z1
i , R

′
i) for all i ∈ N,
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Commodity 1

Commodity 2

Rk∗

R1

y1

x1

xj∗

Rj∗

z11z1j∗

Figure 5: The construction

z2
2 = z1

k∗ + ε′ and z2
k∗ = z1

k∗ +
ε′

2
,

x2P
′′
2 z

2
2 and U(z2

2 , R
′′
2) ∩ L(z2

k∗ , R
′′
k∗) = ∅,

z2
i P
′′
i z

1
i for all i ∈ (M1)c \ {2, k∗},

xiP
′′
i z

2
i P
′′
i z

1
i for all i ∈M1 \ {k∗},

and

SP (z2
N , R

′′
N) = SP (z1

N , R
′′
N) and [∀i ∈ N,∃j ∈ N,U(xi, R

′′
i ) ∩ L(z2

j , R
′′
j ) = ∅].

By Lemma 1, we have

z2
NP (e′′)z1

N .

Note that

{i ∈ N : xiP
′′
i z

2
i } = M ∪ {1, 2}.

Similarly, we can construct a sequence z1, z2, . . . , zm and obtain a resulting profile ê ∈ RN

such that

zmP (ê) . . . z3P (ê)z2P (ê)z1R(ê)yN ,

and

xiP̂iz
m
i for all i ∈ N.
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By weak Pareto, we have xNP (ê)zmN . By transitivity, we have xNP (ê)yN . By Hansson indepen-

dence, xNP (e)yN . �

The theorem implies that if weak Pareto, transfer among equals, and Hansson independence

are satisfied, then an SQF is an extension of R̂P . One might think that if we add some continuity

property to weak Pareto, transfer among equals, and Hansson independence, we make an SQF

to be a refinement of RP . The answer to this question is negative. Given some vector Ω, RΩ
PS

satisfies weak Pareto, transfer among equals, Hansson independence, and continuity, but it is not

an extension of RP . Therefore, a continuity property is not sufficient to obtain a refinement of

RP .

Now, we consider an axiomatic justification of the social nested-contour SQF. To characterize

it, we need one more axiom.

The following axiom is a weak equity requirement, saying that making a transfer from a non-

advantaged individual to an advantaged one is worsening the allocation. Advantage is defined

here in terms of envy. An advantaged individual is one who cannot escape the envy of others

without having to make a sacrifice. Formally, i is advantaged in xN if for all zRixi, there is j ∈ N
such that zPjxj.

Advantage Equity: For all e = RN ∈ E , and all xN , yN ∈ XN , if there exist j, k ∈ N such that j

is advantaged in xN and k is not, and ∆ ∈ R`
++ such that

yj = xj + ∆, yk = xk −∆,

while yi = xi for all i 6= j, k, then xNR(e)yN .

It seems that advantage equity is more demanding than transfer among equals in the sense that

it applies to individuals with different preferences. However, advantage equity requires nothing

about transfers among advantaged individuals, while transfer among equals can be applied to two

advantaged individuals. Thus, the two equity axioms are independent.

Lemma 2. Suppose that an SQF satisfies weak Pareto, advantaged equity, and Hansson inde-

pendence. For all e = RN ∈ E and xN , yN ∈ XN , if there exists an advantaged individual j ∈ N
at xN such that yjPjxj and xiPiyi for all i ∈ N \ {j}, then xNP (e)yN .

Proof. First, consider the case where x ∈ U(yj, Rj), x
′ ∈ L(xj, Rj), and ¬(x > y) for some

x, x′ ∈ X.

Since N is finite, we can always find an individual who is not advantaged. Let k ∈ N be an

individual who is not advantaged at yN . We now construct a profile and a sequence of allocations.
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Let e′ = R′N be such that

I(xi, R
′
i) = I(xi, Ri) for all i ∈ N ;

I(yi, R
′
i) = I(yi, Ri) for all i ∈ N,

and there exist z1
j , z

2
j , z

3
j , z

4
j , z

1
k, z

2
k, z

3
k, z

4
k ∈ X be such that, for some ∆� 0,

z1
jP
′
jyj;

z2
j = z1

j −∆;

yjP
′
jz

2
j ;

z3
jP
′
jz

2
j ;

z4
j = z3

j −∆;

z2
jP
′
ixj;

xjP
′
jz

4
k,

and

xkP
′
kz

4
kP
′
kz

3
kP
′
kz

2
kP
′
kz

1
kP
′
kyk,

where z2
k = z1

k + ∆ and z4
k = z3

k + ∆, the following is satisfied:

U(z4
k, R

′
k) ∩

(( ⋂
i 6=k,j

L(yi, R
′
i)
)
∩ L(z4

j , R
′
j)
)
6= ∅, (6)

and j is advantaged at (z4
j , xN\{j}). The key of the construction is the choice of z1

j , z
2
j , z

3
j , z

4
j and

indifference curves among these bundles. Figure 6 shows them. Note that (6) makes individual k

non-advantaged at (z4
j , z

4
k, yN\{k,j}). This is possible because k is not advantaged at yN . Moreover,

we take a sufficiently small bundle ε ∈ R`
++ such that, for h = 1, . . . , 4,

zhi = yi + hε and xiP
′
iz

4
i for all i ∈ N \ {k, j}.

We here derive the claim by using the constructed profile and sequence. First, weak Pareto

implies that

z1
NR(e′)yN .

Second, we make a move from z1
N to (z2

k, z
2
j , z

1
N\{k,j}). Since individual j is advantaged at xN , j is

also advantaged at (z2
k, z

2
j , z

1
N\{k,j}) because j is better-off and all the other individuals are worse-

off by a change from xN to (z2
k, z

2
j , z

1
N\{k,j}). Moreover, k is not advantaged at (z2

k, z
2
j , z

1
N\{k,j})
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z1j
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z3j
z4j

xj

Commodity 1

Commodity 2

yk
yj

another disadvanteged

Figure 6: Construction for Lemma 2

because, from (6), we have

U(z2
k, R

′
k) ∩

(( ⋂
i 6=k,j

L(z1
i , R

′
i)
)
∩ L(z2

j , R
′
j)
)
6= ∅.

By advantage equity, we obtain

(z2
k, z

2
j , z

1
N\{k,j})R(e′)z1

N .

Third, weak Pareto implies that

z3
NP (e′)(z2

k, z
2
j , z

1
N\{k,j}).

Fourth, we make a move from z3
N to (z4

k, z
4
j , z

3
N\{k,j}). Since j is advantaged at (z4

j , xN\{j}), j is

advantaged at (z4
k, z

4
j , z

3
N\{k,j}). Note k is not advantaged by (6). By advantage equity, we obtain

(z4
k, z

4
j , z

3
N\{k,j})R(e′)z3

N .

Finally, weak Pareto implies that

xNP (e′)(z4
k, z

4
j , z

3
N\{k,j}).

Transitivity implies xNP (e′)yN . By Hansson independence,

xNP (e)yN ⇔ xNP (e′)yN .
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This completes the proof of this case.

Second, consider the case where x ∈ U(yj, Rj), x
′ ∈ L(xj, Rj), and ¬(x > y) for no x, x′ ∈

X. This case is proved by an argument similar to the second case in the proof of Lemma A.1

(Fleurbaey and Maniquet, 2011). �

Theorem 3. (i) RS is an SQF that satisfies weak Pareto, Pareto indifference, transfer among

equals, advantage equity, and Hansson independence.

(ii) If an SQF satisfies weak Pareto, advantage equity, and Hansson independence, then

xN P̂S(e)yN ⇒ xNP (e)yN .

Proof. (i) It is clear that RS satisfies weak Pareto, Pareto indifference, transfer among equals,

Hansson independence, and advantage equity.

(ii) Now, assume that R satisfies weak Pareto, advantage equity, and Hansson independence.

Let xN , yN ∈ XN and e = RN ∈ RN be such that

L(yN , RN) ∩ U(xN , RN) = ∅.

Note that changes outside of indifference curves over xN and yN do not affect the ranking between

xN and yN by Hansson independence.

Let

Ŝ(xN , RN) = {i ∈ N : L(xN , RN) ∩ U(xi, Ri) 6= ∅}.

Define

M = {i ∈ N : xiPiyi}.

If M = N , then we have xNP (e)yN by weak Pareto. Now, we suppose that N \M 6= ∅ and

#N \M = s. Without loss of generality, we can assume that N \M = {1, . . . , s}. For each

i ∈ N \M , we have yiRixi.

We now show that each k ∈ {1, . . . , s} is advantaged at yN . If Ŝ(yN , RN) 6⊆ M , then there

exists i ∈ N such that L(yN , RN)∩U(yi, Ri) 6= ∅ and yi ∈ U(xi, Ri). Since yi ∈ U(xi, Ri), we have

U(yi, Ri) ⊆ U(xi, Ri), which implies that U(yi, Ri) ⊆ U(xN , RN). Now, L(yN , RN)∩U(yi, Ri) 6= ∅
and U(yi, Ri) ⊆ U(xN , RN) implies that L(yN , RN) ∩ U(xN , RN) 6= ∅. This is a contradiction.

Therefore, we have the following:

Ŝ(yN , RN) ⊆M. (7)

Take some individual k ∈ {1, . . . , s}. Since k ∈ N \M , it follows that k /∈ Ŝ(yN , RN) by (7). This

means that

L(yN , RN) ∩ U(yk, Rk) = ∅.
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Thus, k is advantaged at yN .

Now, we construct a profile and a sequence of allocations. By taking a very small bandle

ε ∈ R`
++ and a smaller one δ � ε/#N , let e′ = R′N ∈ RN and z1

N , z
2
N , . . . , z

s
N be such that

I(xi, R
′
i) = I(xi, Ri) for all i ∈ N ;

I(yi, R
′
i) = I(yi, Ri) for all i ∈ N,

and, for each k ∈ {1, . . . , s},

zk1 = x1 − ε+ (k − 1)δ;

zk2 = x2 − ε+ (k − 2)δ;

...

zkj = xj + ε+ (k − j)δ;
...

zkk−1 = xk−1 − ε+ δ;

zkk = xk − ε;
zkk+1 = yk+1 + kε;

...

zkn = yn + kε

,

and

Ŝ(zkN ;RN) = Ŝ(yN ;RN) for all k ∈ {1, . . . , s};
xiPiz

s
i for all i ∈ N.

Figure 7 demonstrates the construction of these allocations (we assume that N = {1, 2, 3} and

s = 2). The key is that advantaged individuals at yN are also advantaged at z1
N , z

2
N , . . . , z

s
N .

Taking a sufficiently small ε makes this construction possible.

Now, we prove the claim by employing the constructed profile and sequence. First, consider a

move to z1
N from yN . Note that

z1
1 = x1 − ε and z1

i = yi + ε for all i 6= 1.

Note that y1P1z
1
1 and z1

i Piyi for all i 6= 1. Since Ŝ(z1
N ;RN) = Ŝ(yN ;RN), individual 1 is advantaged
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x3
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z11

z12

z22

Figure 7: Construction for Theorem 3

at z1
N . By Lemma 2, we have

z1
NP (e′)yN .

Next, consider a move to z2
N from z1

N . By construction,

z2
1 = x1 − ε+ δ, z2

2 = x2 − ε, and z1
i = yi + 2ε for all i 6= 1, 2.

Note that z1
2P1z

2
2 and z2

i Piz
1
i for all i 6= 2. Since Ŝ(ẑ2

N ;RN) = Ŝ(yN ;RN), individual 2 is advan-

taged at z2
N . By Lemma 2, we have

z2
NP (e′)z1

N .

By repeating this process, we have

zsNP (e′) . . . P (e′)z3
NP (e′)z2

NP (e′)z1
NP (e′)yN ,

Weak Pareto implies that

xNP (e′)zsN

Transitivity implies that xNP (e′)yN . By Hansson independence,

xNP (e)yN ⇔ xNP (e′)yN .

This completes the proof. �

As in the case of RP , a continuity property is not sufficient to obtain an extension of RS.
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5 Conclusion

We conclude this paper with some remarks. In social choice, there are two possible forms of

incompleteness in the social judgment. Incompleteness may either lie in the measurement of

individual wellbeing, as in this paper, or in the aggregation over the population, allowing for

different degrees of inequality aversion.

Our SQFs are of the maximin kind, giving absolute priority to the worst-off. Their incom-

pleteness does not come from the aggregation, but only from the well-being measurement.14 This

is true since the combination of Pareto axioms with either transfer among equals or advantage

equity pushes for giving absolute priority to the worst-off (Lemmas 1 and 2). To make room

for the other form of incompleteness while remaining Paretian, one would need to weaken these

equity axioms.

An important step in our SQFs is identifying the set of worst-off individuals. This is a fun-

damental issue in a multidimensional poverty measurement. In the case of the one-dimensional

attribute (typically, income), given a poverty line, one can determine the set of poor individuals

without any doubt. However, if there are multiple attributes, such as health, housing, or educa-

tion, there are various ways to construct the set of poor individuals (Tsui 2002, Atkinson 2003).

Suppose that there is a threshold for each attribute. One extreme way is identifying the poor

as individuals with no attributes above the threshold. The other extreme way is identifying the

poor as individuals with some attributes below the threshold. Counting the number of attributes

below the threshold is also a popular approach (Alkire and Foster, 2011). However, most works in

this line do not use information about individual preferences, an exception being Decancq et al.

(2015b), which relies on fair social orderings. Our approach suggests a new way to use information

about the indifference curves of individuals for anti-poverty policy. Either of our two proposed

definitions could be used to identify the worst-off.15 Then, the worst-off can be removed from the

dataset, and the worst-off among the remaining population could again be identified, and so on.

In this way, a hierarchical identification of the most disadvantaged populations is possible.
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