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Abstract. This paper provides an axiomatic analysis of sufficientarian social eval-
uation. Sufficientarianism has emerged as an increasingly important notion of dis-
tributive justice. We propose a class of principles that we label generalized critical-
level sufficientarian orderings. These orderings provide a welfarist foundation for
social policies whose objective is the reduction of poverty. The distinguishing fea-
ture of our new class is that its members exhibit constant critical levels of well-being
that are allowed to differ from the threshold of sufficiency. Our basic axiom assigns
absolute priority to those below the threshold, a property that is shared by numer-
ous other sufficientarian approaches. When combined with the well-known strong
Pareto principle and the assumption that there be a constant critical level, the ax-
iom implies that the critical level cannot be below the threshold. The main results
of the paper are characterizations of our new class and an important subclass. As a
final observation, we identify the generalized critical-level sufficientarian orderings
that permit us to avoid the repugnant conclusion and the sadistic conclusion, which
are known as two fundamental challenges in population ethics. Journal of Economic
Literature Classification Nos.: D31, D63.

Keywords: poverty, sufficientarianism, critical level, threshold, strong Pareto, pop-
ulation ethics.



1 Introduction

The incidence of poverty remains alarmingly high in many countries. Indeed, 10% of
the world population live in a state of extreme poverty, and the fundamental needs
of numerous people in developing countries fail to be satisfied. The two foremost
objectives listed in the Sustainable Development Goals (UN General Assembly, 2015)
are “no poverty” and “zero hunger;” see also Sachs (2012). Moreover, inequality is
on the rise also in developed countries, including the United States and numerous
European-Union member states. There has been a dramatic increase in the mortality
rate of the middle class in the United States, and income levels are polarized because
of technological changes and educational disparities; see Case and Deaton (2015) and
Goldin and Katz (2008). As a result, there are now more and more people who are
deemed not to have enough to achieve a minimally acceptable standard of living,
both in developed and in developing countries.

One of the common ideas to overcome these severe insufficiencies is to use social
safety nets to guarantee that everyone has a sufficiently high level of well-being.
The need for a sound normative foundation of social-security policies has been an
important issue in welfare economics for centuries; in fact, the issue goes back at
least as far as Bentham (1789) and Pigou (1912). More recent approaches include
those of Rawls (1971), Nozick (1974), and Meade (1976), to name but a few. A
plausible objective of public policy is the choice of a social-security system that im-
proves the quality of life of those whose well-being is deemed to be at a level below
sufficiency and that guarantees as many people as possible to have enough to achieve
a minimally acceptable standard of living. This objective cannot be fulfilled by re-
stricting attention to poverty reduction. This is the case because poverty is typically
evaluated with an exclusive focus on shortfalls from the poverty (or insufficiency)
line and, therefore, poverty measures are unsuitable to provide unambiguous welfare
assessments of entire distributions of well-being. This problem cannot be resolved
by employing standard inequality-averse social welfare measures because these do
not explicitly involve a threshold of sufficiency and, as a consequence, they cannot
give priority to people below the threshold of sufficiency. Therefore, to address the
issue of insufficiencies, we need an alternative approach to social evaluation which
we may call insufficiency averse, and this is where the notion of sufficientarianism
enters the picture.

This paper provides an axiomatic foundation of a class of social-evaluation or-
derings that are based on sufficientarian principles. Sufficientarianism is a theory of
justice that has attracted considerable attention in political philosophy in the recent
past. Its reach extends well beyond that field, however; in particular, it is highly
relevant for numerous issues in welfare economics. The notion of sufficiency is based
on the view that individuals should be at or above a given threshold of utility, which
we interpret as an indicator of lifetime well-being. The seminal contribution in this
area is that of Frankfurt (1987) who advocates the maximization of the number of
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individuals whose utilities are above the threshold. Frankfurt’s proposal is closely
related to the head-count ratio, a well-know measure of poverty. However, Frank-
furt’s sufficientarian account exhibits several fundamental shortcomings. The first
difficulty is that his proposed ranking of distributions of utility is not consistent with
the Pareto principle. Moreover, his criterion is not distributionally sensitive to an
adequate degree; this latter observation does not come as surprise because it shares
this property with the head-count ratio that it resembles. Indeed, Frankfurt’s rank-
ing may recommend a very unequal distribution when the resources available are
insufficient for allowing everyone to be above the threshold. Moreover, Frankfurt’s
account of sufficiency is in conflict with the well-established Pigou-Dalton transfer
principle (see Pigou, 1912, and Dalton, 1920).

Crisp (2003) recommends an interesting refinement of Frankfurt’s (1987) pro-
posal. In addition to giving absolute priority to those below the threshold, his prin-
ciple pays due attention to distributional concerns below the threshold but assumes
a neutral position towards redistributions that take place above the threshold; see
Crisp (2003, p. 758) for details. Crisp’s sufficientarian account is extended by Brown
(2005), Huseby (2010, 2012), and Hirose (2016). As Crisp’s proposal makes clear,
sufficientarianism is related to but distinct from poverty measurement. A sufficien-
tarian approach to social evaluation focuses primarily on those whose well-being is
below the threshold level that represents sufficiency but it can be supplemented by
additional criteria so that it is consistent with the Pareto principle.

The axiomatic analysis carried out in this paper which, in part, formalizes Crisp’s
(2003) proposal, is of relevance for numerous social and economic policy choices that
may affect not only the current population but also future generations and their well-
being. To assess population consequences, an essential criterion is that of a critical
level of lifetime well-being, which is familiar from the literature on population ethics.
If a person at this level is added to a utility-unaffected population, the expanded
society is as good as the original. Phrased in the context of sufficientarian social
evaluation, a crucial question arises immediately: what is an ethically appealing
relationship between the sufficiency threshold and this critical level? Although all of
the existing sufficientarian theories assume (at least implicitly) that the two coincide,
there is no a priori reason why such fundamentally different values should be the
same. Indeed, allowing them to be distinct gives us considerably more flexibility
when it comes to the choice of policies that may affect population size.

We propose a general class of sufficientarian orderings which we label generalized
critical-level sufficientarian orderings. These criteria satisfy absolute priority and are
compatible with all of the properties advocated by Crisp (2003). In addition, they
approximate the Frankfurt criterion as a limiting case. Two numbers play crucial
roles in these orderings. The first is an externally given threshold of sufficiency,
the second is a critical level of utility. A special case is obtained if the two values
coincide, and we discuss the resulting critical-level sufficientarian orderings in our
companion contribution Bossert, Cato, and Kamaga (2020). Critical-level sufficien-
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tarianism is inspired by Blackorby and Donaldson’s (1984) critical-level generalized-
utilitarian population principles; see Blackorby, Bossert, and Donaldson (2005) for
a comprehensive analysis of critical-level generalized utilitarianism.

As a first result, we show that the critical level must be greater than or equal to
the threshold of sufficiency. This is the case because if a constant critical level exists
and is located below the threshold, strong Pareto is violated. Since the threshold
for sufficiency is assumed to be associated with the fundamental needs of a human
being (Braybrooke, 1987, and Wiggins, 1998), it is very natural to consider a critical
utility level that is higher than the threshold.

Our main contribution is a characterization of the new class of generalized
critical-level sufficientarian orderings. An additional result narrows down the class
to a subclass that no longer contains Frankfurt’s (1987) proposal as a limiting case.
This is accomplished by adding a transfer principle across the threshold. The re-
sulting subclass is more compact in that there is one less parameter to choose and
its members have the attractive feature of respecting a transfer principle that is on
as sound an ethical footing as the variants that are restricted to transfers below or
above the threshold.

A notable feature of our orderings is that some of them can avoid two well-known
undesirable attributes that have been studied in population ethics by authors such
as Parfit (1976, 1982, 1984), Blackorby and Donaldson (1984), Arrhenius (2000,
forthcoming), Blackorby, Bossert, and Donaldson (2004, 2005), and Spears and
Budolfson (2019). If the critical level is higher than the utility level that represents a
neutral life, Parfit’s repugnant conclusion can be avoided. Moreover, if the threshold
for sufficiency is equal to neutrality, then Arrhenius’s sadistic conclusion does not
materialize. It is worth emphasizing that both of these unattractive conclusions can
be avoided in our setting. This is in stark contrast to the standard formulation of
critical-level generalized utilitarianism in population ethics—it does not leave any
room to avoid both.

The dilemma between avoiding the repugnant and sadistic conclusions has been
examined by Blackorby, Bossert, and Donaldson (2004, 2005), Asheim and Zuber
(2014), Zuber (2018), and Pivato (2020). Some of these contributions employ order-
ings that are based on utilitarian principles, while others focus on egalitarian order-
ings that give unequivocal priority to the worst-off, and those egalitarian orderings
are shown to avoid both conclusions. In view of this contrast between utilitarian
and egalitarian approaches, the reconciliation of the population-ethics dilemma by
our orderings is worth emphasizing because they do not give exclusive priority to the
worst-off. Instead, they focus on those with insufficient levels of well-being, thereby
accommodating welfare gains and losses involving more than one person. Our order-
ings avoid the sadistic conclusion only if the threshold is equal to the neutral level.
This implies that, unlike some of its generalizations, a critical-level sufficientarian
ordering cannot avoid both conclusions because it requires that the critical level be
equal to the threshold.
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Section 2 introduces the setting and basic definitions. Our axioms are defined in
Section 3, and Section 4 presents our results and their proofs. Section 5 examines
some population-ethics properties of our orderings and compares them with other
well-known classes of orderings. Section 6 concludes. The appendix establishes the
independence of the axioms used in our main result.

2 Setting

A utility distribution for n ∈ N individuals is given by an n-dimensional vector u =
(u1, . . . , un) ∈ R

n. Each ui represents the level of lifetime well-being of individual i.
The set of all possible distributions is given by Ω =

⋃
n∈N

R
n.

A neutral life is a life that, from the viewpoint of the person leading it, is as good
as a life without any experiences. We follow the standard convention in population
ethics and normalize the level of utility that corresponds to neutrality to zero; see
Blackorby and Donaldson (1984, p. 14) or Blackorby, Bossert, and Donaldson (2005,
p. 25), for example. Thus, a life is worth living if lifetime utility is positive—above
neutrality.

We employ a notion of sufficientarianism that can be captured by means of an
ordering (that is, a reflexive, complete, and transitive binary relation) R defined
on the set of distributions Ω. For notational convenience, we write uRv instead
of (u, v) ∈ R with the interpretation that distribution u is at least as good as
distribution v from a sufficientarian perspective. The asymmetric and symmetric
parts corresponding to R are denoted by P and I.

The fundamental ingredient of a sufficientarian analysis is an exogenously given
threshold level of utility, denoted by θ ∈ R. Its interpretation is that individuals
who experience at least this level of well-being have enough, whereas those whose
utility is below θ do not. For all n ∈ N and for all u ∈ R

n, we define

Ln(u) = {i ∈ {1, . . . , n} | ui < θ};
En(u) = {i ∈ {1, . . . , n} | ui = θ};
Hn(u) = {i ∈ {1, . . . , n} | ui > θ}.

These are the sets of those whose lifetime utility is lower than, equal to, and higher
than the threshold level θ. Let R

n
L = (−∞, θ)n, R

n
LE = (−∞, θ]n, and R

n
HE =

[θ,∞)n, and define ΩL = ∪n∈N R
n
L, ΩLE = ∪n∈N R

n
LE, and ΩHE = ∪n∈N R

n
HE. For

notational simplicity, we write RL, RLE, and RHE instead of R
1
L, R

1
LE, and R

1
HE.

Taking the threshold θ of sufficiency of well-being as exogenously given, we refer
to an ordering R on Ω as a sufficientarian ordering if it is intended to evaluate utility
distributions from a sufficientarian perspective. In particular, this means that a
sufficientarian ordering compares utility distributions with priority being given to
those below the threshold. Our notion of a sufficientarian ordering is analogous to
that of a poverty ordering with an exogenously given poverty line.
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Let G be the set of all functions g : R → R that are increasing and strictly
concave on RL, and continuous, increasing, and concave on RHE. As is well-known,
because RL is an open interval, the (strict) concavity of g on RL implies that g is
continuous on RL. An analogous observation does not apply to the half-open interval
RHE—it is possible that an increasing and concave function is not continuous at the
boundary point θ, which is why the requisite continuity property does not follow.
An ordering R on Ω is generalized critical-level sufficientarian if there exist g ∈ G,
δL ∈ R with δL ≥ supa∈RL

g(a), and δH ∈ R with g(θ) ≤ δH < supa∈RHE
g(a) such

that, for all n, m ∈ N, for all u ∈ R
n, and for all v ∈ R

m, uRv if and only if∑
i∈Ln(u)

[g(ui) − δL] >
∑

i∈Lm(v)

[g(vi) − δL]

or ∑
i∈Ln(u)

[g(ui) − δL] =
∑

i∈Lm(v)

[g(vi) − δL]

and ∑
i∈En(u)∪Hn(u)

[g(ui) − δH ] ≥
∑

i∈Em(v)∪Hm(v)

[g(vi) − δH ] .

Generalized critical-level sufficientarianism evaluates the value of a life as the short-
fall of the transformed lifetime utility g(ui) from δL for a person i below the thresh-
old, and as the difference between the transformed lifetime utility g(uj) and δH for
a person at or above the threshold, where δL and δH may differ. The principle ranks
utility distributions by applying a lexical criterion to the resulting sums of values.
First, the sums of the values of people below the threshold are compared. If this
results in a strict ranking, this ranking is adopted as the sufficientarian ranking of
the two distributions in question. If the requisite sums are equal, the tie is broken
by comparing the sums that correspond to those at or above the threshold. Note
that the value of a life of a person at or above the threshold, g(uj) − δH , is not
necessarily positive.

Without loss of generality, g can be chosen so that g(0) = 0—that is, the value
of g at a neutral life is equal to zero; see, for example, Blackorby, Bossert, and
Donaldson (2005, Theorem 4.7). We note that g is allowed to be discontinuous at θ
because the limit of g as we approach θ from below does not have to be equal to the
value of g at θ. For that reason, the function g need not be increasing on its entire
domain R—it is possible that g(a) > g(θ) for some values of a below the threshold.

By construction, we can find some utility value α ∈ [θ,∞) such that g(α) = δH .
This value α is a critical level for this ordering and, thus, δH is the image of the
critical level α under g. That is, it holds that, for all u ∈ Ω, uI(u, α). Therefore,
the tie-breaking step of evaluation by a generalized critical-level sufficientarian or-
dering consists of the application of the critical-level generalized-utilitarian ordering
associated with a critical level α to the lifetime utilities of those at or above the
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threshold. If g(α) > g(θ), the critical level is strictly higher than the threshold for
sufficiency because g is increasing on [θ,∞).

The role of δL is similar to that of δH . However, δL does not correspond to a
critical level. Assume that there exists β ∈ [θ,∞) such that g(β) = δL. Note that
such a value β need not exist and, even if it does, it cannot be associated with a
critical level. This is the case because uP (u, β) is true for all u ∈ Ω if α > β, while
(u, β)Pu results for all u ∈ Ω if α < β. For the special case in which g(θ) = δH = δL

and g is continuous on its entire domain, R reduces to a critical-level sufficientarian
ordering—the case examined in detail by Bossert, Cato, and Kamaga (2020).

3 Axioms

Our first axiom is a core principle of sufficientarianism, which states that if (a) the
distribution that corresponds to the subgroup of those who are below the threshold
is better for one distribution than another, then the former distribution is better
than the latter overall; and (b) if there is equal goodness below the threshold, then
the relative ranking of the two distributions overall is determined by the relative
aggregate values assigned to those at and above the threshold.

Absolute priority. For all n, m, �, r ∈ N, for all u ∈ R
n
L, for all v ∈ R

m
L , for all

w ∈ R
�
HE, and for all s ∈ R

r
HE,

(a) uPv ⇒ (u, w)P (v, s);

(b) if uIv, then [(u, w)R(v, s) ⇔ wRs].

There is a subtle difference between this axiom and the variant that we employ in
Bossert, Cato, and Kamaga (2020). In our companion contribution, we extend the
range of possible values of u and v to R

n
LE and R

m
LE rather that restricting attention

to R
n
L and R

m
L , respectively. This difference is associated with the definition of the

disadvantaged; in particular, it needs to be determined whether someone at the
threshold is considered to be among those who are in need of special attention.
This is parallel to the question of whether the weak or the strong definition of the
poor is to be employed in the measurement of poverty. As shown by Donaldson
and Weymark (1986), if people located on the poverty line are treated as poor, it is
impossible to construct a poverty measure that satisfies some normatively desirable
axioms. From this perspective, the weak definition of the poor is a more acceptable
definition, and our definition of the disadvantaged conforms to this observation.

The following anonymity requirement states that, for any distribution, all of its
permuted distributions are as good as the original. Thus, the axiom represents a
fundamental equal-treatment property in a welfarist framework.

Anonymity. For all n ∈ N and for all u, v ∈ R
n, if v is obtained by applying a

permutation to the components of u, then vIu.
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Another axiom that needs little explanation is the strong Pareto principle. Ac-
cording to this property, a change is normatively desirable if it makes all individuals
weakly better off and at least one individual strictly better off.

Strong Pareto. For all n ∈ N and for all u, v ∈ R
n, if ui ≥ vi for all i ∈ {1, . . . , n}

with at least one strict inequality, then uPv.

The following condition is a strong independence axiom familiar from the lit-
erature on population ethics; see, for example, Blackorby, Bossert, and Donaldson
(2005, p. 159).

Existence independence. For all u, v, w ∈ Ω,

uRv ⇔ (u, w)R(v, w).

We note that our orderings do not necessarily satisfy continuity on the entire
domain. If we consider the subdomain of the utilities of those below the threshold,
the continuity requirement can be applied.

Continuity below the threshold. For all n ∈ N and for all u ∈ R
n
L, the sets

{v ∈ R
n
L | vPu} and {v ∈ R

n
L | uPv}

are open in R
n
L.

The following counterpart of this property requires that the continuity require-
ment applies to the subdomain of the utilities of those who have enough.

Continuity above and at the threshold. For all n ∈ N and for all u ∈ R
n
HE,

the sets
{v ∈ R

n
HE | vRu} and {v ∈ R

n
HE | uRv}

are closed in R
n
HE.

Some additional properties are required for our purposes. The first of these is
very weak—it merely requires that a critical level exists for at least one distribution.
It appears in Blackorby, Bossert, and Donaldson (2005, p. 160).

Weak existence of critical levels. There exist u ∈ Ω and α ∈ R such that

uI(u, α).

The next axiom is a strengthening of this property, which first appeared in
Blackorby and Donaldson (1984). It requires the existence of a utility value that
can be applied to any distribution as a critical level.
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Existence of constant critical levels. There exists α ∈ R such that, for all
u ∈ Ω,

uI(u, α).

Our next axiom is new; it is one of the core axioms of our characterization of
the class of generalized critical-level sufficientarian orderings. Consider any two
population sizes n and m and two distributions u ∈ R

n
L and v ∈ R

m
L . The condition

requires the existence of two utility levels λ and μ below the threshold such that if
multiple individuals with utility λ are added to any u ∈ R

n
L and multiple individuals

with utility μ are added to any v ∈ R
m
L , the relative ranking of the augmented

distributions is the same as the relative ranking of u and v. The multiples are chosen
so that the population sizes in the two augmented distributions are the same.

Expansion independence. For all n, m ∈ N, there exist k ∈ N with k >
max{n, m} and λ, μ ∈ RL such that, for all u ∈ R

n
L and for all v ∈ R

m
L ,

uRv ⇔ (u, λ, . . . , λ︸ ︷︷ ︸
k−n

)R(v, μ, . . . , μ︸ ︷︷ ︸
k−m

)

and
vRu ⇔ (v, μ, . . . , μ︸ ︷︷ ︸

k−m

)R(u, λ, . . . , λ︸ ︷︷ ︸
k−n

).

Strictly speaking, the values k, λ, and μ may depend on n and m and, therefore,
the use of the symbols kn,m, λn,m, and μn,m would be more accurate. For simplicity
of presentation, however, we suppress this dependence whenever possible without
ambiguity.

Expansion independence has a similar normative implication to existence of con-
stant critical levels. In the presence of transitivity, existence of constant critical
levels implies that for all n, m ∈ N and for all k ∈ N with k > max{n, m}, there
exists α ∈ R such that, for all u ∈ R

n and for all v ∈ R
m,

uRv ⇔ (u, α, . . . , α︸ ︷︷ ︸
k−n

)R(v, α, . . . , α︸ ︷︷ ︸
k−m

).

Critical levels can be used to adjust population sizes without changing the relative
ranking between the two distributions. We note that the axiom of existence of con-
stant critical levels encompasses the entire domain, while expansion independence
focuses on the subdomain associated with those who are below the threshold. In a
generalized sufficientarian ordering, the critical level δH cannot be below the thresh-
old of sufficiency. Thus, existence of constant critical levels cannot be applied to that
subdomain and, therefore, an axiom such as expansion independence is required.

Finally, we introduce three axioms that capture a concern for distributional
equity below, above, and across the threshold; see Pigou (1912) and Dalton (1920)
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for the principle of transfers in the context of income distributions. The first of these
requires that a progressive transfer between two individuals below the threshold
is socially beneficial. The second applies to transfers that take place above the
threshold and merely demands that the post-transfer distribution be at least as
good as the pre-transfer utility allocation. The reason why we only impose a weak
variant of the axiom is that we want to allow the resulting class of orderings to
include Crisp’s (2003) proposal.

Principle of transfers below the threshold. For all n ∈ N, for all u, v ∈ R
n,

for all i, j ∈ {1, . . . , n}, and for all ε > 0, if ui = vi + ε ≤ vj − ε = uj < vj < θ and
uk = vk for all k ∈ {1, . . . , n} \ {i, j}, then uPv.

Weak principle of transfers above and at the threshold. For all n ∈ N, for
all u, v ∈ R

n, for all i, j ∈ {1, . . . , n}, and for all ε > 0, if θ ≤ vi < ui = vi + ε ≤
vj − ε = uj and uk = vk for all k ∈ {1, . . . , n} \ {i, j}, then uRv.

As is well-known, these transfer principles are responsible for the curvature proper-
ties of the function g. The principle of transfers below the threshold leads to the
strict concavity of g below the threshold, whereas the concavity of g on RHE follows
from the weak principle of transfers above and at the threshold.

In a result that identifies an important subclass of the generalized critical-level
sufficientarian orderings, we also employ the following transfer principle across the
threshold that applies to situations in which the donor of a transfer drops below the
threshold as a consequence of the associated utility loss.

Principle of transfers across the threshold. For all n ∈ N, for all u, v ∈ R
n,

for all i, j ∈ {1, . . . , n}, and for all ε > 0, if ui = vi + ε ≤ vj − ε = uj < θ ≤ vj and
uk = vk for all k ∈ {1, . . . , n} \ {i, j}, then uPv.

4 Axiomatic analysis

We begin by showing that a constant critical level must be greater than or equal to
the threshold of sufficiency in the presence of absolute priority and strong Pareto.

Theorem 1. If a sufficientarian ordering R satisfies absolute priority, strong Pareto,
and existence of constant critical levels, then α ≥ θ, where α is the constant critical
level.

Proof. By existence of constant critical levels, there exists α ∈ R such that, for
all u ∈ Ω, uI(u, α). By way of contradiction, suppose that α < θ. Let β ∈ (α, θ),
and consider v ∈ ΩL and w ∈ ΩHE. By strong Pareto, we obtain (v, β)P (v, α).
Since α is a constant critical level, we have (v, α)Iv. Since R is transitive, it follows
that (v, β)Pv. Let γ ∈ R be such that γ > θ. Note that (v, β) ∈ ΩL and (γ, w) ∈

9



ΩHE. Since R satisfies absolute priority, (v, β)Pv implies (v, β, w)P (v, γ, w). This
contradicts strong Pareto. �

Blackorby, Bossert, and Donaldson (2005, Theorem 6.8) show that if an ordering
R satisfies anonymity, strong Pareto, existence independence, and weak existence of
critical levels, then there exists a constant critical level α that applies to all utility
distributions in Ω. This observation immediately gives us the following corollary.

Corollary 1. If a sufficientarian ordering R satisfies absolute priority, anonymity,
strong Pareto, existence independence, and weak existence of critical levels, then
there exists a constant critical level α such that α ≥ θ.

A generalized critical-level sufficientarian ordering satisfies strong Pareto if it is
associated with a critical level α that is greater than or equal to the threshold θ.
As a simple illustration, suppose that we have a two-person situation with utilities
(u1, u2) such that u1 < θ ≤ u2. Now consider any distribution (v1, v2) such that
(v1, v2) > (u1, u2), and suppose that v1 < θ ≤ v2. It follows that

g(v1) − δL ≥ g(u1) − δL and g(v2) − δH ≥ g(u2) − δH .

Because at least one of these inequalities is strict, (v1, v2) is better than (u1, u2).
Suppose now that θ ≤ v1 and θ ≤ u2 so that the first individual is deemed to
have enough. For the distribution (v1, v2), the aggregate utility of those below the
threshold is zero, and the aggregate utility of those above or at the threshold is
g(v1) + g(v2) − 2δH . We note that g(v1) + g(v2) − 2δH can be less than g(u2) − δH

but it must be true that g(u1) − δL < 0 because δL ≥ supa∈(∞,θ) g(a) and u1 is less
than θ. Therefore, (v1, v2) is better than (u1, u2) according to a generalized critical-
level sufficientarian ordering with a critical level that is greater than or equal to the
threshold.

Our main result is a characterization of the class of generalized critical-level
sufficientarian orderings with a critical level that is greater than or equal to the
threshold level. There are ten axioms employed in this characterization, a feature
that may be seen as a drawback because this is a ‘large’ number. Our first response
to this criticism is that the number of axioms in and of itself does not reveal the
interaction between them; for starters, they are independent, as established in the
appendix. Moreover, the number of axioms is, to some extent, a matter of how the
requisite conditions are grouped together, and our choice in that regard is motivated
by a desire to pin down the exact role played by each of the requirements. For
instance, it would be a perfectly reasonable alternative to combine the two continuity
properties and the two transfer principles to reduce the number of axioms.

Theorem 2. A sufficientarian ordering R satisfies absolute priority, anonymity,
strong Pareto, existence independence, continuity below the threshold, continuity
above and at the threshold, weak existence of critical levels, expansion independence,
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the principle of transfers below the threshold, and the weak principle of transfers
above and at the threshold if and only if R is a generalized critical-level sufficien-
tarian ordering with a critical level α that is greater than or equal to the threshold
level θ.

We establish three auxiliary results before presenting the proof of Theorem 2.
The first of these shows that anonymity and existence independence together imply
that any replications of two utility distributions must be ranked in the same way as
the original distributions. Note that the original utility distributions are allowed to
have different population sizes. This property appears in Zoli (2009), who labeled it
strong population replication principle; see also Blackorby, Bossert, and Donaldson
(2005).

Lemma 1. If a sufficientarian ordering R satisfies anonymity and existence inde-
pendence, then, for all n, m, k ∈ N with k ≥ 2, for all u ∈ R

n, and for all v ∈ R
m,

uRv ⇔ (u, . . . , u︸ ︷︷ ︸
k

)R(v, . . . , v︸ ︷︷ ︸
k

).

Proof. Let n, m, k ∈ N with k ≥ 2, u ∈ R
n, and v ∈ R

m. First, to show that

uRv ⇒ (u, . . . , u︸ ︷︷ ︸
k

)R(v, . . . , v︸ ︷︷ ︸
k

),

suppose that uRv. Let � ∈ {0, 1, . . . , k − 1}. By existence independence, it follows
that

(u, u, . . . , u︸ ︷︷ ︸
k−�−1

, v, . . . , v︸ ︷︷ ︸
�

)R(v, u, . . . , u︸ ︷︷ ︸
k−�−1

, v, . . . , v︸ ︷︷ ︸
�

). (1)

By anonymity and the transitivity of R, it follows from (1) that

(u, . . . , u︸ ︷︷ ︸
k−�

, v, . . . , v︸ ︷︷ ︸
�

)R(u, . . . , u︸ ︷︷ ︸
k−�−1

, v, . . . , v︸ ︷︷ ︸
�+1

). (2)

Since (2) holds for all � ∈ {0, 1, . . . , k − 1}, we obtain, by the transitivity of R, that

(u, . . . , u︸ ︷︷ ︸
k

)R(v, . . . , v︸ ︷︷ ︸
k

). (3)

To show that
(u, . . . , u︸ ︷︷ ︸

k

)R(v, . . . , v︸ ︷︷ ︸
k

) ⇒ uRv,

suppose that
(u, . . . , u︸ ︷︷ ︸

k

)R(v, . . . , v︸ ︷︷ ︸
k

).

11



By way of contradiction, we assume that uRv does not hold. Since R is complete,
we have vPu. Using the argument employed to show (3), we obtain

(v, . . . , v︸ ︷︷ ︸
k

)P (u, . . . , u︸ ︷︷ ︸
k

).

This is a contradiction. Thus, uRv must hold. �

The following lemma shows that if an ordering R satisfies some of the axioms of
the theorem statement, it ranks utility distributions at or above the threshold by
applying critical-level generalized utilitarianism.

Lemma 2. If a sufficientarian ordering R satisfies anonymity, strong Pareto, exis-
tence independence, continuity above and at the threshold, weak existence of critical
levels, and the weak principle of transfers above and at the threshold, then there
exists a continuous, increasing, and concave function gHE : RHE → R and δH ∈ R

with gHE(θ) ≤ δH < supa∈RHE
g(a) such that, for all n, m ∈ N, for all u ∈ R

n
HE, and

for all v ∈ R
m
HE,

uRv ⇔
n∑

i=1

[gHE(ui) − δH ] ≥
m∑

i=1

[gHE(vi) − δH ]. (4)

Proof. Let RHE denote the restriction of R to ΩHE. By Corollary 1, there exists
α ∈ RHE such that uI(u, α) for all u ∈ Ω, which implies that uIHE(u, α) for all
u ∈ ΩHE. Furthermore, since R satisfies anonymity, strong Pareto, existence in-
dependence, and continuity above and at the threshold, the ordering RHE on ΩHE

satisfies the properties corresponding to these axioms on ΩHE. Applying Theorem
6.10 of Blackorby, Bossert, and Donaldson (2005), it follows that there exists a con-
tinuous and increasing function gHE : RHE → R such that, for all n, m ∈ N, for all
u ∈ R

n
HE, and for all v ∈ R

m
HE,

uRHEv ⇔
n∑

i=1

[gHE(ui) − gHE(α)] ≥
m∑

i=1

[gHE(vi) − gHE(α)] .

By the weak principle of transfers above and at the threshold, gHE is concave. Let
δH = gHE(α). Since gHE is increasing,

sup
a∈RHE

g(a) > δH = gHE(α) ≥ gHE(θ)

and the proof is complete. �

Our final auxiliary result establishes an observation that is parallel to that of
the previous lemma. It states that the ordering R ranks utility distributions below
the threshold by applying a variant of critical-level generalized utilitarianism that
utilizes δL.
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Lemma 3. If a sufficientarian ordering R satisfies anonymity, strong Pareto, ex-
istence independence, continuity below the threshold, expansion independence, and
the principle of transfers below the threshold, then there exists an increasing and
strictly concave function gL : RL → R and δL ∈ R such that, for all n, m ∈ N, for
all u ∈ R

n
L, and for all v ∈ R

m
L ,

uRv ⇔
n∑

i=1

[gL(ui) − δL] ≥
m∑

i=1

[gL(vi) − δL]. (5)

Proof. The proof proceeds in five steps.

Step 1. We show that there exists an increasing and strictly concave (and, thus,
continuous) function gL : RL → R such that, for all n ∈ N and for all u, v ∈ R

n
L,

uRv ⇔
n∑

i=1

gL(ui) ≥
n∑

i=1

gL(vi). (6)

For all n ∈ N, let Rn
L be the restriction of R to R

n
L. Since R satisfies anonymity,

strong Pareto, existence independence, and continuity below the threshold, Rn
L in-

herits these properties on R
n
L. Thus, for all n ≥ 3, there exists a continuous and

increasing function gn
L : RL → R such that, for all u, v ∈ R

n
L,

uRn
Lv ⇔

n∑
i=1

gn
L(ui) ≥

n∑
i=1

gn
L(vi);

see Blackorby, Bossert, and Donaldson (2005, Theorem 4.7). Since gn
L is unique up

to a positive affine function and R satisfies existence independence, we may choose
gL = gn

L for all n ≥ 3 (see Blackorby, Bossert, and Donaldson, 2005, Chapter 6).
Thus, for all n ≥ 3 and for all u, v ∈ R

n
L,

uRv ⇔
n∑

i=1

gL(ui) ≥
n∑

i=1

gL(vi).

By existence independence, this result extends to population sizes 1 and 2. Since R
satisfies the principle of transfers below the threshold, gL must be strictly concave.

Step 2. We show that, for all n, m ∈ N with n �= m, there exists a unique
δn,m
L ∈ R such that, for all u ∈ R

n
L and for all v ∈ R

m
L ,

uRv ⇔
n∑

i=1

[gL(ui) − δn,m
L ] ≥

m∑
i=1

[gL(vi) − δn,m
L ], (7)

where gL : RL → R is an increasing and strictly concave function that satisfies (6).
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Let n, m ∈ N with n �= m. Since R satisfies expansion independence, there exist
kn,m ∈ N with kn,m > max{n, m} and λn,m, μn,m ∈ RL such that, for all u ∈ R

n
L and

for all v ∈ R
m
L ,

uRv ⇔ (u, λn,m, . . . , λn,m︸ ︷︷ ︸
kn,m−n

)R(v, μn,m, . . . , μn,m︸ ︷︷ ︸
kn,m−m

)

and

vRu ⇔ (v, μn,m, . . . , μn,m︸ ︷︷ ︸
kn,m−m

)R(u, λn,m, . . . , λn,m︸ ︷︷ ︸
kn,m−n

).

Thus, it follows from Step 1 that, for all n, m ∈ N, for all u ∈ R
n
L, and for all v ∈ R

m
L ,

uRv ⇔
n∑

i=1

gL(ui) + (kn,m − n)gL(λn,m) ≥
m∑

i=1

gL(vi) + (kn,m − m)gL(μn,m)

⇔
n∑

i=1

gL(ui) + [(kn,m − n)gL(λn,m) − (kn,m − m)gL(μn)] ≥
m∑

i=1

gL(vi)

and

vRu ⇔
m∑

i=1

gL(vi) + (kn,m − m)gL(μn,m) ≥
n∑

i=1

gL(ui) + (kn,m − n)gL(λn,m)

⇔
m∑

i=1

gL(vi) ≥
n∑

i=1

gL(ui) + [(kn,m − n)gL(λn,m) − (kn,m − m)gL(μn,m)].

Given n, m ∈ N with n �= m, we define δn,m
L ∈ R by

δn,m
L =

(kn,m − n)gL(λn,m) − (kn,m − m)gL(μn,m)

m − n
. (8)

By definition, δn,m
L satisfies (7) for all u ∈ R

n
L and for all v ∈ R

m
L .

To prove the uniqueness of δn,m
L , we show that, for all n, m ∈ N with n �= m,

there exist (a, . . . , a) ∈ R
n
L and (b, . . . , b) ∈ R

m
L such that (a, . . . , a)I(b, . . . , b). Let

n, m ∈ N with n �= m. Without loss of generality, suppose that m > n. Using δn,m
L

given by (8), we define Δn,m by

Δn,m = (m − n)δn,m
L .

Since δn,m
L satisfies (7) for all u ∈ R

n
L and for all v ∈ R

m
L , it follows that

(a, . . . , a︸ ︷︷ ︸
n

)I(b, . . . , b︸ ︷︷ ︸
m

) ⇔ mgL(b) − ngL(a) = Δn,m
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for all a, b ∈ RL. We distinguish two cases.
First, suppose that Δn,m > 0. Since gL is increasing and strictly concave on RL,

gL is not bounded below. Thus, there exists b ∈ RL such that

gL(b) < 0.

Furthermore, since m > n, there exists c ∈ (−∞, b) ⊂ RL such that

gL(c) <
mgL(b) − Δn,m

n
<

m

n
gL(b) < gL(b).

Because gL is continuous, it follows from the intermediate value theorem that there
exists a ∈ (c, b) ⊂ RL such that

gL(a) =
mgL(b) − Δn,m

n
,

that is, mgL(b) − ngL(a) = Δn,m.
Now suppose that Δn,m ≤ 0. We further distinguish two subcases.
First, suppose that there exists c ∈ RL such that gL(c) = 0. Let a ∈ (c, θ) ⊂ RL.

Since gL is increasing, gL(a) > 0. Then, it follows that

ngL(a) + Δn,m

m
≤ n

m
gL(a) < gL(a).

Since gL is not bounded below, there exists d ∈ (−∞, a) ⊂ RL such that

gL(d) <
ngL(a) + Δn,m

m
.

By the continuity of gL, there exists b ∈ (d, a) ⊂ RL such that

gL(b) =
ngL(a) + Δn,m

m
.

In the second subcase, there is no c ∈ RL such that gL(c) = 0. Because gL is
increasing, gL(c) < 0 for all c ∈ RL. Since gL is not bounded below, there exists b ∈
RL such that mgL(b)−ngL(b) ≤ gL(b) < Δn,m. Furthermore, limc→−∞ −gL(c) = ∞.
Thus, there exists d ∈ (−∞, b) ⊂ RL such that

mgL(b) − ngL(b) < Δn,m < mgL(b) − ngL(d).

Therefore, we obtain

gL(b) >
mgL(b) − Δn,m

n
> gL(d).
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By the continuity of gL, there exists a ∈ (d, b) ⊂ RL such that

gL(a) =
mgL(b) − Δn,m

n
.

To complete Step 2, let n, m ∈ N with n �= m and suppose, by way of contra-
diction, that there exists δ ∈ R with δ �= δn,m

L that satisfies (7) for all u ∈ R
n
L and

for all v ∈ R
m
L . Without loss of generality, suppose that δ > δn,m

L and m > n. Let
(a, . . . , a) ∈ R

n
L and (b, . . . , b) ∈ R

m
L be such that (a, . . . , a)I(b, . . . , b). Since δn,m

L

satisfies (7) for all u ∈ R
n
L and for all v ∈ R

m
L , we obtain

mgL(b) − ngL(a) = (m − n)δn,m
L .

Since (m − n)δn,m
L < (m − n)δ and δ satisfies (7) for all u ∈ R

n
L and for all v ∈ R

m
L ,

we have
(b, . . . , b︸ ︷︷ ︸

m

)P (a, . . . , a︸ ︷︷ ︸
n

).

This is a contradiction. Thus, only δn,m
L satisfies (7) for all u ∈ R

n
L and for all

v ∈ R
m
L .

Step 3. We show that there exists a unique δL ∈ R such that, for all n ∈ N, for
all u ∈ R

n
L, and for all v ∈ R

n+1
L ,

uRv ⇔
n∑

i=1

[gL(ui) − δL] ≥
n+1∑
i=1

[gL(vi) − δL] and

vRu ⇔
n+1∑
i=1

[gL(vi) − δL] ≥
n∑

i=1

[gL(ui) − δL],

(9)

where gL : RL → R is an increasing and strictly concave function that satisfies (6).
That is, δL satisfies (5) in the lemma statement for any n ∈ N and m = n + 1.

For simplicity, we denote δn,n+1
L by δn

L for all n ∈ N. We show that δn
L = δn+1

L for
all n ∈ N. Let n ∈ N, u ∈ R

n
L, v ∈ R

n+1
L , and a ∈ RL. By existence independence,

we obtain

uRv ⇔ (u, a)R(v, a)

⇔
n∑

i=1

gL(ui) + gL(a) − (n + 1)δn+1
L ≥

n+1∑
i=1

gL(vi) + gL(a) − (n + 2)δn+1
L

⇔
n∑

i=1

[gL(ui) − δn+1
L ] ≥

n+1∑
i=1

[gL(vi) − δn+1
L ]

and, analogously,

vRu ⇔
n+1∑
i=1

[gL(vi) − δn+1
L ] ≥

n∑
i=1

[gL(ui) − δn+1
L ].
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Thus, for each n ∈ N, δn+1
L satisfies (9). From Step 2, it follows that δn

L = δn+1
L for

all n ∈ N. Thus, δL = δn satisfies (9).

Step 4. We show that, for all n, m, � ∈ N with |m − n| = 1, for all u ∈ R
n�
L , and

for all v ∈ R
m�
L , δL satisfies (5).

Let n, m, � ∈ N and suppose, without loss of generality, that m = n + 1. From
Lemma 1 and Step 2, it follows that, for all u ∈ R

n
L and for all v ∈ R

n+1
L ,

uRv ⇔ (u, . . . , u︸ ︷︷ ︸
�

)R(v, . . . , v︸ ︷︷ ︸
�

)

⇔ �

n∑
i=1

gL(ui) + �δ
n�,(n+1)�
L ≥ �

n+1∑
i=1

gL(vi)

⇔
n∑

i=1

gL(ui) + δ
n�,(n+1)�
L ≥

n+1∑
i=1

gL(vi).

Thus, it follows from Step 3 that, for all n, � ∈ N,

δ
n�,(n+1)�
L = δL.

Since δ
n�,(n+1)�
L satisfies (5) for all u ∈ R

n�
L and for all v ∈ R

m�
L , Step 4 is complete.

Step 5. We complete the proof. Let n, m ∈ N, u ∈ R
n
L, and v ∈ R

m
L . Without

loss of generality, suppose that m > n. Let � = m − n. Define h ∈ N by

h = min{h′ ∈ N | h′� > n}.

Let
(u, a, . . . , a︸ ︷︷ ︸

h�−n

) ∈ R
h�
L and (v, a, . . . , a︸ ︷︷ ︸

h�−n

) ∈ R
(h+1)�.

From existence independence and Step 4, it follows that

uRv ⇔ (u, a, . . . , a︸ ︷︷ ︸
h�−n

)R(v, a, . . . , a︸ ︷︷ ︸
h�−n

)

⇔
n∑

i=1

[gL(ui) − δL] + (h� − n)[gL(a) − δL] ≥
m∑

i=1

[gL(vi) − δL] + (h� − n)[gL(a) − δL]

⇔
n∑

i=1

[gL(ui) − δL] ≥
m∑

i=1

[gL(vi) − δL]

and the proof is complete. �

We are now in a position to prove our characterization result.
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Proof of Theorem 2. ‘If.’ Suppose that R is a generalized critical-level sufficien-
tarian ordering associated with a function g : R → R and parameters δL, δH ∈ R,
where g is increasing and strictly concave (thus continuous) on RL, continuous,
increasing, and concave on RHE, and δL and δH are such that the inequalities
δL ≥ supa∈RL

g(a) and supa∈RHE
> δH ≥ g(θ) are satisfied. We show that R satisfies

the axioms of the theorem.
To see that R satisfies absolute priority, let n, m, �, r ∈ N, u ∈ R

n
L, v ∈ R

m
L ,

w ∈ R
�
HE, and s ∈ R

r
HE. To prove part (a) of the property, suppose that uPv. Since

En(u) ∪ Hn(u) = Em(v) ∪ Hm(v) = ∅, it follows that∑
i∈En(u)∪Hn(u)

[g(ui) − δH ] = 0 =
∑

i∈Em(v)∪Hm(v)

[g(vi) − δH ].

By the definition of R, uPv implies∑
i∈Ln(u)

[g(ui) − δL] >
∑

i∈Lm(v)

[g(vi) − δL].

Let ū = (u, w) and v̄ = (v, s). Since L�(w) = Lr(s) = ∅, it follows that Ln+�(u, w) =
Ln(u) and Lm+r(v, s) = Lm(v). Thus,∑
i∈Ln+�(u,w)

[g(ūi) − δL] =
∑

i∈Ln(u)

[g(ui) − δL] >
∑

i∈Lm(v)

[g(vi) − δL] =
∑

i∈Lm+r(v,s)

[g(v̄i) − δL].

By the definition of R, we obtain (u, w)P (v, s). The proof of part (b) is analogous
since En(u) ∪ Hn(u) = Em(v) ∪ Hm(v) = ∅ and L�(w) = Lr(s) = ∅.

That R satisfies anonymity follows immediately by definition.
We next show that R satisfies strong Pareto. Let n ∈ N and u, v ∈ R

n, and
suppose that u > v. Note that Ln(v) ⊆ Ln(u).

First, suppose that Ln(u) = Ln(v). Since g is increasing, we obtain∑
i∈Ln(u)

[g(ui) − δL] >
∑

i∈Ln(v)

[g(vi) − δL]

or∑
i∈Ln(u)

[g(ui)−δL] =
∑

i∈Ln(v)

[g(vi)−δL] and
∑

i∈En(u)∪Hn(u)

[g(ui)−δH ] >
∑

i∈En(v)∪Hn(v)

[g(vi)−δH ].

In either case, we obtain uPv.
Next, suppose that Ln(v) ⊂ Ln(u). Since δL ≥ supa∈RL

g(a), it follows that∑
i∈Ln(u)

[g(ui) − δL] >
∑

i∈Ln(v)

[g(vi) − δL]

and, therefore, uPv.
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Now we show that R satisfies existence independence. Let n, m, � ∈ N, u ∈ R
n,

v ∈ R
m, and w ∈ R

�. Let ū = (u, w) and v̄ = (v, w). It follows that∑
i∈Ln+�(ū)

[g(ūi) − δL] ≥
∑

i∈Lm+�(v̄)

[g(v̄i) − δL] ⇔
∑

i∈Ln(u)

[g(ui) − δL] ≥
∑

i∈Lm(v)

[g(vi) − δL]

and ∑
i∈En+�(ū)∪Hn+�(ū)

[g(ūi) − δH ] ≥
∑

i∈Em+�(v̄)∪Hm+�(v̄)

[g(v̄i) − δH ]

⇔
∑

i∈En(u)∪Hn(u)

[g(ui) − δH ] ≥
∑

i∈Em(v)∪Hm(v)

[g(vi) − δH ].

Thus, by the definition of R,

uRv ⇔ (u, w)R(v, w).

Now we show that R satisfies continuity below the threshold. Let n ∈ N and
u ∈ R

n
L. To show that {v ∈ R

n
L | vPu} is open in R

n
L, let v∗ ∈ {v ∈ R

n
L | vPu}.

Since v∗Pu and u, v∗ ∈ R
n
L, it follows that

n∑
i=1

g(v∗
i ) >

n∑
i=1

g(ui).

Define Δ ∈ R++ by

Δ =
n∑

i=1

g(v∗
i ) −

n∑
i=1

g(ui).

Let b ∈ RL be such that b = min{v∗
1, . . . , v

∗
n}. Since g is continuous and increasing

on RL and is not bounded below, there exists ε ∈ R++ such that b + ε < θ and

g(b) − g(b − ε) <
Δ

n
.

Since g is strictly concave, it follows that, for all i ∈ {1, . . . , n},
g(v∗

i ) − g(v∗
i − ε) ≤ g(b) − g(b − ε).

Thus, we obtain

n∑
i=1

g(v∗
i ) −

n∑
i=1

g(v∗
i − ε) ≤ n[g(b) − g(b − ε)] < Δ. (10)

Let Bε(v
∗) ⊂ R

n
L be the open ball with radius ε and center v∗. Note that, for all

v ∈ Bε(v
∗) and for all i ∈ {1, . . . , n},

|v∗
i − vi| < ε.
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Thus, by (10), it follows that, for all v ∈ Bε(v
∗),

n∑
i=1

g(vi) −
n∑

i=1

g(ui) =
n∑

i=1

g(v∗
i ) −

n∑
i=1

g(ui) −
[

n∑
i=1

g(v∗
i ) −

n∑
i=1

g(vi)

]
> 0

and, thus,
Bε(v

∗) ⊆ {v ∈ R
n
L | vPu}.

Therefore, {v ∈ R
n
L | vPu} is open in R

n
L. The proof that {v ∈ R

n
L | uPv} is open

in R
n
L is analogous.

To prove that R satisfies continuity above and at the threshold, let n ∈ N and
u ∈ R

n
HE. To show that {v ∈ R

n
HE | vRu} is closed in R

n
HE, let 〈vt〉t∈N be a sequence

in {v ∈ R
n
HE | vRu} and assume that 〈vt〉t∈N converges to v∗ ∈ R

n
HE. By way

of contradiction, suppose that v∗ �∈ {v ∈ R
n
HE | vRu}. Because R is complete, it

follows that uPv∗. Since v∗, u ∈ R
n
HE, we obtain

n∑
i=1

g(ui) >

n∑
i=1

g(v∗
i ).

We define Δ ∈ R++ by

Δ =
n∑

i=1

g(ui) −
n∑

i=1

g(v∗
i ).

Since g is continuous on R
n
HE and 〈vt〉t∈N converges to v∗ ∈ R

n
HE, there exists t∗ ∈ N

such that, for all t ≥ t∗, ∣∣∣∣∣
n∑

i=1

g(v∗
i ) −

n∑
i=1

g(vt
i)

∣∣∣∣∣ < Δ,

which means that uPvt for all t ≥ t∗. This is a contradiction since vtRu for all
t ∈ N. Thus, v∗ ∈ {v ∈ R

n
HE | vRu}, that is, {v ∈ R

n
HE | vRu} is closed in R

n
HE.

The proof that {v ∈ R
n
HE | uRv} is closed in R

n
HE is analogous.

We show that R satisfies weak existence of critical levels. Because supa∈RHE
g(a) >

δH ≥ g(θ) and g is increasing and continuous on RHE, there exists α ∈ RHE such
that δH = g(α). Let n ∈ N, u ∈ R

n, and v = (u, α). We obtain∑
i∈Ln(u)

[g(ui) − δL] =
∑

i∈Ln+1(v)

[g(vi) − δL]

and ∑
i∈En(u)∪Hn(u)

[g(ui)−δH ] =
∑

i∈En(u)∪Hn(u)

[g(ui)−δH ]+g(α)−δH =
∑

i∈En+1(v)∪Hn+1(v)

[g(vi)−δH ].

Thus, uI(u, α) follows.
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We now show that R satisfies expansion independence. Let n, m ∈ N. If n = m,
then the requisite condition is satisfied for any k > max{m, n} and λ, μ ∈ RL such
that λ = μ. Thus, we consider the case in which n �= m. Without loss of generality,
suppose that m > n. Let k = m + 1. We show that there exist λ, μ ∈ RL such that

δL =
(k − n)g(λ) − (k − m)g(μ)

m − n
=

(m − n + 1)g(λ) − g(μ)

m − n
. (11)

Since g is increasing on RL and δL ≥ supa∈RL
g(a), g(a) < δL for all a ∈ RL.

Furthermore, g is not bounded below because of strict concavity. Thus, there exist
λ, a ∈ RL with λ > a such that

g(a) < g(λ) − (m − n)[δL − g(λ)] < g(λ) < 0.

The function g is continuous on RL as a consequence of strict concavity. Thus, it
follows from the intermediate value theorem that there exists μ ∈ (a, λ) ⊂ RL such
that

g(μ) = g(λ) − (m − n)[δL − g(λ)],

that is,

δL =
(m − n + 1)g(λ) − g(μ)

m − n
.

Let u ∈ R
n
L and v ∈ R

m
L . We define ū, v̄ ∈ R

m+1 by

ū = (u, λ, . . . , λ︸ ︷︷ ︸
m−n+1

) and v̄ = (v, μ).

We show that
uRv ⇔ ūRv̄.

Since λ and μ satisfy (11), we obtain

uRv ⇔
∑

i∈Ln(u)

[g(ui) − δL] ≥
∑

i∈Lm(v)

[g(vi) − δL]

⇔
∑

i∈Ln(u)

g(ui) + (m − n)δL ≥
∑

i∈Lm(v)

g(vi)

⇔
∑

i∈Ln(u)

g(ui) + (m − n + 1)g(λ) − g(μ) ≥
∑

i∈Lm(v)

g(vi)

⇔
∑

i∈Ln(u)

g(ui) + (m − n + 1)g(λ) ≥
∑

i∈Lm(v)

g(vi) + g(μ)

⇔
∑

i∈Lm+1(ū)

g(ūi) ≥
∑

i∈Lm+1(v̄)

g(v̄i)

⇔ ūRv̄.
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The proof that vRu if and only if v̄Rū is analogous.
Finally, R satisfies the principle of transfers below the threshold and the weak

principle of transfers above and at the threshold because g is strictly concave on RL

and concave on RHE.

‘Only if.’ Suppose that R satisfies the axioms of the theorem statement. From
Lemma 2, there exist a continuous, increasing, and concave function gHE : RHE → R

and δH ∈ R with δH ≥ gHE(θ) such that (4) is satisfied for all n, m ∈ N, for
all u ∈ R

n
HE, and for all v ∈ R

m
HE. Furthermore, from Lemma 3, there exist an

increasing and strictly concave (and thus continuous) function gL : RL → R and
δL ∈ R such that (5) is satisfied for all n, m ∈ N, for all u ∈ R

n
L, and for all v ∈ R

m
L .

Using the functions gHE and gL, we define the function g : R → R by

g(a) =

{
gL(a) if a ∈ RL,
gHE(a) if a ∈ RHE.

Because g inherits the corresponding properties of gL and gHE, g is increasing and
strictly concave (and therefore continuous) on RL, and continuous, increasing, and
concave on RHE.

We show that R is the generalized critical-level sufficientarian ordering associated
with g, δH , and δL. Let n, m ∈ N, u ∈ R

n, and v ∈ R
m. First, suppose that∑

i∈Ln(u)

[g(ui) − δL] >
∑

i∈Lm(v)

[g(vi) − δL] (12)

or ∑
i∈Ln(u)

[g(ui) − δL] =
∑

i∈Lm(v)

[g(vi) − δL] and

∑
i∈Hn(u)∪En(u)

[g(ui) − δH ] >
∑

i∈Hm(v)∪Em(v)

[g(vi) − δH ] . (13)

We show that uPv follows in either case.
First, suppose that (12) is true. By (5), it follows that

(ui)i∈Ln(u) P (vi)i∈Lm(v).

Thus, by part (a) of absolute priority, we obtain(
(ui)i∈Ln(u), (ui)i∈En(u)∪Hn(u)

)
P

(
(vi)i∈Lm(v), (vi)i∈Em(v)∪Hm(v)

)
.

Since R satisfies anonymity, we obtain(
(ui)i∈Ln(u), (ui)i∈En(u)∪Hn(u)

)
Iu and

(
(vi)i∈Lm(v), (vi)i∈Em(v)∪Hm(v)

)
Iv.

Thus, by the transitivity of R, it follows that uPv.
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Now suppose that (13) is true. Since g and δL satisfy (5), it follows that

(ui)i∈Ln(u) I (vi)i∈Lm(v).

Furthermore, by (4), we obtain

(ui)i∈En(u)∪Hn(u) P (vi)i∈Em(v)∪Hm(v).

By part (b) of absolute priority, it follows that(
(ui)i∈Ln(u), (ui)i∈En(u)∪Hn(u)

)
P

(
(vi)i∈Lm(v), (vi)i∈Em(v)∪Hm(v)

)
.

Since R is transitive and satisfies anonymity, we obtain uPv.
Next, suppose that ∑

i∈Ln(u)

[g(ui) − δL] =
∑

i∈Lm(v)

[g(vi) − δL]

and ∑
i∈En(u)∪Hn(u)

[g(ui) − δH ] =
∑

i∈Em(v)∪Hm(v)

[g(vi) − δH ] .

We show that uIv. By (5),

(ui)i∈Ln(u) I (vi)i∈Lm(v).

Analogously, by (4),

(ui)i∈En(u)∪Hn(u) I (vi)i∈Em(v)∪Hm(v).

By part (b) of absolute priority, we obtain(
(ui)i∈Ln(u), (ui)i∈En(u)∪Hn(u)

)
I

(
(vi)i∈Lm(v), (vi)i∈Em(v)∪Hm(v)

)
.

Because R is transitive and satisfies anonymity, it follows that uIv.
Since R is complete, the above argument implies that R is the generalized critical-

level sufficientarian ordering associated with g, δH , and δL. To complete the proof,
we show that δL ≥ supa∈RL

gL(a). By way of contradiction, suppose that δL <
supa∈RL

gL(a). Since g is continuous and increasing on RL, there exists c ∈ RL such
that gL(c) = δL. Let a ∈ RHE and b ∈ RL be such that c < b < θ < a. Note that
g(b) > g(c) = δL. We define u, v ∈ R

3 by

u = (b, b, a) and v = (b, a, a).

We obtain∑
i∈L3(u)

[g(ui) − δL] = 2[g(b) − δL] > g(b) − δL =
∑

i∈L3(v)

[g(vi) − δL].
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Since R is the generalized critical-level sufficientarian ordering associated with g,
δH , and δL, we obtain uPv. However, this is a contradiction because R satisfies
strong Pareto. Thus, δL ≥ supa∈RL

gL(a).

We now examine some distributional implications of the generalized critical-level
sufficientarian orderings. Assume that a society is in possession of a sufficiently large
amount of a resource that allows everyone to be above or at the sufficiency thresh-
old. In the absence of population change, the optimal distribution with respect
to a generalized critical-level sufficientarian ordering is identical to the solution of
maximizing the total sum of transformed utility levels g(ui) subject to the con-
straints that requires everyone’s utility be at least as large as the threshold of suf-
ficiency. This implies that generalized critical-level sufficientarian orderings have
the same distributional implication as the (generalized) utilitarian orderings with a
floor constraint, a problem that has been examined extensively in experiments; see,
for instance, Frohlich and Oppenheimer (1992), Faravelli (2007), and Gaertner and
Schokkaert (2012). In these contributions, subjects are asked to choose what they
consider the normatively most attractive option among a range of social orderings.
According to Frohlich and Oppenheimer (1992), the utilitarian orderings with a floor
constraint receive more support than each of the maximin and utilitarian orderings.
Our axiomatic analysis provides a theoretical foundation of utilitarianism with a
floor.

One difficulty of utilitarianism with a floor is that it does not provide rankings
when there is not enough of the resource to ensure that everyone reaches the thresh-
old. An obvious advantage of our sufficientarian ordering is that it is capable of
providing distributional judgments in these cases as well. Clearly, the distribution
favored by our orderings is crucially dependent on δL. If the value of this parameter
approaches infinity, the resulting generalized critical-level sufficientarian ordering
approaches Frankfurt’s proposal as the primary criterion. However, any value of
δL above supa∈RL

g(a) leads to a violation of the principle of transfers across the
threshold. To identify the requisite subclass of our orderings, we add this principle
to our list of axioms to obtain the following result.

Theorem 3. A sufficientarian ordering R satisfies absolute priority, anonymity,
strong Pareto, existence independence, continuity below the threshold, continuity
above and at the threshold, weak existence of critical levels, expansion independence,
the principle of transfers below the threshold, the weak principle of transfers above
and at the threshold, and the transfer principle across the threshold if and only if
R is a generalized critical-level sufficientarian ordering such that δL = supa∈RL

g(a)
with a critical level α that is greater than or equal to the threshold level θ.

Proof. ‘If.’ Let R be a generalized critical-level sufficientarian ordering such that
δL = supa∈RL

g(a). All axioms other than the principle of transfers across the
threshold follow from Theorem 2. To prove that the remaining property is satisfied,
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suppose that n ∈ N, u, v ∈ R
n, for all i, j ∈ {1, . . . , n}, and ε > 0 are such that

ui = vi + ε ≤ vj − ε = uj < θ ≤ vj and uk = vk for all k ∈ {1, . . . , n} \ {i, j}. By
definition of R, we have to show that uPv, that is,

g(vi + ε) − sup
a∈RL

g(a) + g(vj − ε) − sup
a∈RL

g(a) > g(vi) − sup
a∈RL

g(a)

or, equivalently,

1

2
[g(vi + ε) + g(vj − ε)] >

1

2
[g(vi) + sup

a∈RL

g(a)]. (14)

Define the function ḡ : RL ∪ {θ} → R by letting ḡ(a) = g(a) for all a ∈ RL and
ḡ(θ) = supa∈RL

g(a). Because g is strictly concave, so is ḡ. Thus, (14) is equivalent
to

1

2
[ḡ(vi + ε) + ḡ(vj − ε)] >

1

2
[ḡ(vi) + ḡ(θ)]

which follows from the strict concavity of ḡ because vi < vi + ε ≤ vj − ε < θ.

‘Only if.’ Clearly, R must be a generalized critical-level sufficientarian ordering
by virtue of Theorem 2. By way of contradiction, suppose that δL > supa∈RL

g(a).
Consider a two-person distribution (θ, θ − t), where t > 0 and a sufficiently small
transfer from individual 1 to individual 2 in the amount of ε > 0. Then, the resulting
distribution is (θ − ε, θ − t + ε). We note that

g(θ − t) − δL > g(θ − ε) + g(θ − t + ε) − 2δL,

provided that ε is sufficiently small. This implies (θ, θ − t)P (θ − ε, θ − t + ε), a
violation of the principle of transfers across the threshold.

Thus, if the principle of transfers across the threshold is added to our list of
axioms, the resulting orderings are such that there exists a function g ∈ G and
δH ∈ R with g(θ) ≤ δH < supa∈RHE

g(a) such that, for all n, m ∈ N, for all u ∈ R
n,

and for all v ∈ R
m, uRv if and only if

∑
i∈Ln(u)

[
g(ui) − sup

a∈RL

g(a)

]
>

∑
i∈Lm(v)

[
g(vi) − sup

a∈RL

g(a)

]

or ∑
i∈Ln(u)

[
g(ui) − sup

a∈RL

g(a)

]
=

∑
i∈Lm(v)

[
g(vi) − sup

a∈RL

g(a)

]

and ∑
i∈En(u)∪Hn(u)

[g(ui) − δH ] ≥
∑

i∈Em(v)∪Hm(v)

[g(vi) − δH ] .
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5 Resolving a population-ethics dilemma

As noted in Section 2, a generalized critical-level sufficientarian ordering applies, as
a tie-breaking device, a critical-level generalized-utilitarian ordering to the lifetime
utilities of those at or above the threshold. In the context of population ethics, it
is known that critical-level generalized utilitarianism cannot escape a well-known
population-ethics dilemma: none of the members of this class allows us to avoid
both Parfit’s (1976, 1982, 1984) repugnant conclusion and Arrhenius’s (2000) sadis-
tic conclusion. As we illustrate later, this population-ethics dilemma also applies
to other well-established utilitarian population principles. In contrast to these dif-
ficulties, generalized critical-level sufficientarianism has a subclass that allows us to
avoid the dilemma.

An ordering R implies the repugnant conclusion if, for all n ∈ N, for all ξ ∈ R++,
and for all ε ∈ (0, ξ), there exists m ∈ N with m > n such that

(ε, . . . , ε︸ ︷︷ ︸
m

)P (ξ, . . . , ξ︸ ︷︷ ︸
n

).

According to a principle that implies the repugnant conclusion, population size can
always be substituted for quality of life—any population with an arbitrarily high
common level of lifetime well-being is declared inferior to some larger population
in which everyone’s utility is positive but arbitrarily close to neutrality. Critical-
level generalized utilitarianism implies the repugnant conclusion if and only if the
critical level α is non-positive. A prominent example of a class of principles that
imply the repugnant conclusion is given by total generalized utilitarianism, which is
the subclass of the critical-level generalized-utilitarian principles that results from
setting the critical level equal to zero—the level of utility that represents a neutral
life; see Parfit (1976, 1982, 1984).

The axiom that requires an ordering R to avoid the repugnant conclusion is
defined as the negation of the repugnant conclusion.

Avoidance of the repugnant conclusion. There exist n ∈ N, ξ ∈ R++, and
ε ∈ (0, ξ) such that, for all m ∈ N with m > n,

(ξ, . . . , ξ︸ ︷︷ ︸
n

)R(ε, . . . , ε︸ ︷︷ ︸
m

).

To define the sadistic conclusion and the axiom that requires avoiding it, we
need additional notation. Let Ω++ and Ω−− denote the sets of all positive and all
negative distributions, that is,

Ω++ =
⋃
n∈N

R
n
++ and Ω−− =

⋃
n∈N

R
n
−−.
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An ordering R implies the sadistic conclusion (Arrhenius, 2000) if there exist u ∈ Ω,
v ∈ Ω++, and w ∈ Ω−− such that (u, w)P (u, v). According to this conclusion,
it is possible that adding a number of people with equal negative utilities to an
existing population is better than adding a (possibly different) number of people with
equal positive utilities to the same existing population. Critical-level generalized
utilitarianism implies the sadistic conclusion if and only if the critical level α is
positive.

Again, the axiom that requires an ordering R to avoid the sadistic conclusion is
defined as the negation of the sadistic conclusion.

Avoidance of the sadistic conclusion. For all u ∈ Ω, for all v ∈ Ω++, and for
all w ∈ Ω−−, (u, v)R(u, w).

The following theorem identifies the members of our class that avoid the repug-
nant conclusion and the sadistic conclusion—and, notably, those that avoid both of
them.

Theorem 4. Suppose that R is a generalized critical-level sufficientarian ordering.

(a) R satisfies avoidance of the repugnant conclusion if and only if (i) θ > 0 or
(ii) δH > g(0).

(b) R satisfies avoidance of the sadistic conclusion if and only if (i) θ = 0 or (ii)
θ < 0 and δH = g(0).

(c) R satisfies avoidance of the repugnant conclusion and avoidance of the sadistic
conclusion if and only if θ = 0 and δH > g(0).

Proof. (a) ‘If.’ First, suppose that θ > 0. Let n, m ∈ N with m > n and ε ∈ (0, θ).
Define two distributions u and v by

u = (θ, . . . , θ︸ ︷︷ ︸
n

) and v = (ε, . . . , ε︸ ︷︷ ︸
m

).

Note that Ln(u) = ∅ �= Lm(v). It follows that∑
i∈Ln(u)

[g(ui) − δL] = 0 >
∑

i∈Lm(v)

[g(vi) − δL],

and we obtain uPv. Thus, R satisfies avoidance of the repugnant conclusion.
Next, suppose that δH > g(0). Since R satisfies avoidance of the repugnant

conclusion if θ > 0, we assume that θ ≤ 0. Since g is continuous and increasing on
RHE and g(θ) ≤ δH < supa∈RHE

g(a), there exists α ∈ RHE such that g(α) = δH .
Since θ ≤ 0 and g(0) < δH = g(α), we obtain α > 0 because g is increasing on RHE.
To show that R avoids the repugnant conclusion, let ξ, ε ∈ R be such that

ξ > α > ε > 0 ≥ θ.
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Let n, m ∈ N with m > n, and define the distributions u and v by

u = (ξ, . . . , ξ︸ ︷︷ ︸
n

) and v = (ε, . . . , ε︸ ︷︷ ︸
m

).

Since Ln(u) = ∅ = Lm(v) and g(α) = δH , we obtain∑
i∈Ln(u)

[g(ui) − δL] = 0 =
∑

i∈Lm(v)

[g(vi) − δL]

and ∑
i∈En(u)∪Hn(u)

[g(ui) − δH ] > 0 >
∑

i∈Em(v)∪Hm(v)

[g(vi) − δH ].

This implies uPv. Thus, R satisfies avoidance of the repugnant conclusion.

‘Only if.’ By way of contraposition, suppose that θ ≤ 0 and δH ≤ g(0). Let
n, m ∈ N with m > n, ξ ∈ R++, and ε ∈ (0, ξ). We define u and v by

u = (ξ, . . . , ξ︸ ︷︷ ︸
n

) and v = (ε, . . . , ε︸ ︷︷ ︸
m

).

Since θ ≤ 0, it follows that Ln(u) = ∅ = Lm(v). Furthermore, since g is increasing
on RHE, g(ξ) > g(ε) > g(0) ≥ δH . If m is sufficiently large, we obtain

0 <
∑

i∈En(u)∪Hn(u)

[g(ui) − δH ] <
∑

i∈Em(v)∪Hm(v)

[g(vi) − δH ].

Thus, vPu if m is sufficiently large. This means that R implies the repugnant
conclusion.

(b) ‘If.’ Let u ∈ Ω, v ∈ Ω++, and w ∈ Ω−−. Then there exist n, m ∈ N such
that v ∈ R

n
++ and w ∈ R

m
−−. Since R is generalized critical-level sufficientarian,

[(u, v)R(u, w) ⇔ vRw] and [(u, w)R(u, v) ⇔ wRv].

First, suppose that θ = 0. It follows that∑
i∈Lm(w)

[g(wi) − δL] < 0 =
∑

i∈Ln(v)

[g(wi) − δL].

Thus, we obtain vPw, which implies that (u, v)P (u, w).
Next, suppose that θ < 0 and δH = g(0), that is, the corresponding critical

level α is equal to zero. We distinguish two cases. First, assume that there exists
i ∈ {1, . . . , m} such that wi < θ. This implies Lm(w) �= ∅ = Ln(v), and we obtain∑

i∈Lm(w)

[g(wi) − δL] < 0 =
∑

i∈Ln(v)

[g(wi) − δL],
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which implies (u, v)P (u, w).
Now suppose that there is no i ∈ {1, . . . , m} such that wi < θ. Thus, Lm(w) =

∅ = Ln(v). Since δH = g(0), it follows that∑
Lm(w)

[g(wi) − δL] = 0 =
∑
Ln(v)

[g(wi) − δL]

and ∑
i∈Em(w)∪Hm(w)

[g(wi) − δH ] < 0 <
∑

i∈En(v)∪Hn(v)

[g(wi) − δH ].

Thus, we obtain (u, v)P (u, w).

‘Only if.’ Suppose first that θ > 0. Let a, b be such that θ > a > 0 > b.
Furthermore, let n ∈ N be such that

n[g(a) − δL] < g(b) − δL < 0.

Now define v = (a, . . . , a) ∈ R
n
++ and w = (b) ∈ R−−. Consider any u ∈ ΩHE. We

have
(u, w)P (u, v).

This means that R implies the sadistic conclusion.
Next, suppose that θ < 0 and that the corresponding critical level α is less than

zero. Let a, b be such that a > 0 > b > α. Furthermore, let n ∈ N be such that

0 < g(a) − δH < n[g(b) − δH ].

In analogy to the case θ > 0, it follows that the sadistic conclusion is implied.
Finally, suppose that the corresponding critical level α is greater than zero. Let

a, b be such that α > a > 0 > b > θ, and consider n ∈ N such that

n[g(a) − δH ] < [g(b) − δH ] < 0.

As in the previous case, the sadistic conclusion is implied. Thus, θ = 0 or θ < 0 and
α = 0.

Part (c) follows immediately from combining (a) and (b).

The possibility of avoiding both the repugnant conclusion and the sadistic con-
clusion is in stark contrast to two well-known utilitarian population principles other
than critical-level generalized utilitarianism. Ng’s (1986) number-dampened utili-
tarianism and its generalizations presented by Blackorby, Bossert, and Donaldson
(2005) and Asheim and Zuber (2014) cannot avoid both the repugnant and sadistic
conclusions. Its most general form examined in Asheim and Zuber (2014) evaluates

social states by means of the value f(n)
n

∑n
i=1[g(ui) − g(α)], where α ∈ R+ and f

is a non-decreasing positive-valued function of population size. Rank-discounted
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utilitarianism proposed by Asheim and Zuber (2014) cannot escape the dilemma
either. It employs the value

∑n
r=1 βr[g(u[r]) − g(α)], where β ∈ (0, 1) and u[ ] is a

non-decreasing rearrangement of u; see also Asheim and Zuber (forthcoming) and
Pivato (2020).

Avoidance of the repugnant conclusion is a relatively weak requirement because
it is based on existential quantifiers. However, the proof of part (a) of Theorem
4 reveals that our orderings satisfy specific stronger variants. For instance, there
exists ξ ∈ R++ such that, for all n ∈ N, for all ε ∈ (0, ξ), and for all m ∈ N with
m > n,

(ξ, . . . , ξ︸ ︷︷ ︸
n

)R(ε, . . . , ε︸ ︷︷ ︸
m

).

This suggest that some existential quantifiers can be replaced with universal quan-
tifiers.

There are alternative population principles that are capable of avoiding both
the repugnant and sadistic conclusions. Prominent examples are given by maximin
and leximin principles; see, for instance, Bossert (1990), Blackorby, Bossert, and
Donaldson (1996, 2005), and Zuber (2018). Our observation that both the repugnant
and the sadistic conclusion can be avoided by generalized critical-level sufficientarian
orderings illustrates that this reconciliation can be achieved without having to give
priority to the worst-off.

6 Conclusion

This paper provides an axiomatic analysis of sufficientarianism. We examine the
relationship between critical levels and thresholds for sufficiency that result from
the strong Pareto principle. Moreover, we characterize a class of sufficientarian or-
derings with the property that the critical level need not be equal to the threshold
of sufficiency. At least one issue remains to be addressed—namely, the possibility
of several thresholds, a notion that is explored in some of the recent literature on
sufficientarianism; see, for instance, Casal (2007) and Huseby (2010). In these ap-
proaches, the lower (or lowest) threshold is assumed to represent the basic needs
for a decent human life, while higher thresholds are intended to identify levels of a
flourishing life. Integrating multiple thresholds into generalized critical-level suffi-
cientarian orderings is a challenge to be addressed in future work. For this purpose,
our new axiom of expansion independence may turn out to be helpful in extending
the single-threshold method to multiple-threshold versions. A promising approach
consists of combining the axiom with a plausible extension of absolute priority that
respects multiple layers of thresholds.

We adopt a welfarist framework throughout this paper. In contrast, contri-
butions such as those of Anderson (1999, 2007) apply sufficientarian ideas to the
capability approach, according to which absolute priority is to be given to improve-
ments in the capabilities of those who do not have enough. Each person’s capability
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is given as a set in the space of functionings and, thus, capability distributions are
to be compared. See also Alcantud, Mariotti, and Veneziani (2019) who examine
sufficientarianism in the context of opportunities or chances of success. Clearly,
these are perfectly legitimate alternatives but we do not pursue them. It seems to
us that welfarism rests on a solid normative foundation, which is why we focus on
the variant of sufficientarianism explored here.

Appendix: Independence of the axioms

This appendix establishes the independence of the axioms used in Theorem 2. Let
g : R → R be an increasing and strictly concave (and, thus, continuous) function
and define the ordering R1 as follows. For all n, m ∈ N, for all u ∈ R

n, and for all
v ∈ R

m,

uR1v ⇔
n∑

i=1

[g(ui) − g(θ)] ≥
m∑

i=1

[g(vi) − g(θ)],

that is, R1 is the critical-level generalized-utilitarian ordering associated with g and
the critical level of utility given by θ. The ordering R1 satisfies all of the axioms in
the theorem except absolute priority.

Let α1 = θ + 1 and αi = θ for all i ∈ N \ {1}. Let g ∈ G and define, for all
n, m ∈ N, for all u ∈ R

n, and for all v ∈ R
m, uR2v if and only if∑

i∈Ln(u)

[g(ui) − g(θ)] >
∑

i∈Lm(v)

[g(vi) − g(θ)]

or ∑
i∈Ln(u)[g(ui) − g(θ)] =

∑
i∈Lm(v)[g(vi) − g(θ)] and∑

i∈Hn(u)∪En(u)[g(ui) − g(αi)] ≥
∑

i∈Hm(v)∪Em(v)[g(vi) − g(αi)].

The ordering R2 satisfies all of our axioms except anonymity. Consider u = (θ +
1, θ − 1) and v = (θ − 1, θ + 1). Then, vP2u follows since g(u2) = g(v1) and
g(θ + 1) − g(α1) < g(θ + 1) − g(α2).

Let g : R → R be a continuous and increasing function that is strictly concave
on RL and convex on RHE. Define the ordering R3 as follows. For all n, m ∈ N, for
all u ∈ R

n, and for all v ∈ R
m, uR3v if and only if∑

i∈Ln(u)

[g(ui) − g(θ)] >
∑

i∈Lm(v)

[g(vi) − g(θ)]

or∑
i∈Ln(u)

[g(ui)−g(θ)] =
∑

i∈Lm(v)

[g(vi)−g(θ)] and
∑

i∈Hn(u)

[g(ui)−g(θ)] ≤
∑

i∈Hm(v)

[g(vi)−g(θ)].
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The ordering R3 satisfies all axioms except strong Pareto.
Let g ∈ G and δL ≥ supa∈RL

g(a), and define, for all n, m ∈ N, for all u ∈ R
n,

and for all v ∈ R
m, uR4v if and only if∑

i∈Ln(u)

[g(ui) − δL] >
∑

i∈Lm(v)

[g(vi) − δL]

or ∑
i∈Ln(u)

[g(ui) − δL] =
∑

i∈Lm(v)

[g(vi) − δL] and

1

|Hn(u) ∪ En(u)|
∑

i∈Hn(u)∪En(u)

g(ui) ≥ 1

|Hm(v) ∪ Em(v)|
∑

i∈Hm(v)∪Em(v)

g(vi).

The ordering R4 satisfies all of our axioms except existence independence.
To present an example that shows that continuity below the threshold is not

implied, we need some additional notation and definitions. We use 1n to denote
the vector that consists of n ∈ N ones. For n ∈ N and u ∈ R

n, let (u(1), . . . , u(n))
denote a permutation of u such that u(1) ≥ . . . ≥ u(n); that is, the utilities in such
a permutation are ranked from highest to lowest, with ties being broken arbitrarily.
For each n ∈ N, the leximin ordering Rn

lex on R
n is defined by letting, for all

u, v ∈ R
n, uRn

lexv if and only if u is a permutation of v or there exists j ∈ {1, . . . , n}
such that u(i) = v(i) for all i > j and u(j) > v(j). Given a threshold level θ, the
corresponding critical-level leximin ordering Rlex on Ω is defined by letting, for all
n, m ∈ N, for all u ∈ R

n, and for all v ∈ R
m,

uRlexv ⇔ [n = m and uRn
lexv] or

[n > m and uRn
lex(v, θ1n−m)] or

[n < m and (u, θ1m−n)Rm
lexv] .

For all n ∈ N and for all u ∈ R
n, define

Kn(u) = {i ∈ {1, . . . , n} | ui < θ − 1}.
For all n ∈ N and for all u ∈ R

n, if Kn(u) = ∅, then we write ω∅ = (ui)i∈Kn(u).
Using the leximin orderings Rn

lex for n-dimensional utility distributions and the
critical-level leximin ordering Rlex associated with the threshold θ, we define the
extended critical-level leximin ordering R∗

lex on ∪n∈N(−∞, θ−1)n ∪{ω∅} as follows.
For all n, m ∈ N, for all u ∈ R

n, and for all v ∈ R
m,

(ui)i∈Kn(u)R
∗
lex(vi)i∈Km(v) ⇔ [Kn(u) = Km(v) = ∅] or

[Kn(u) = ∅ �= Km(v) and (θ1|Km(v)|)R
|Km(v)|
lex (vi)∈Km(v)] or

[Kn(u) �= ∅ = Km(v) and (ui)i∈Kn(u)R
|Kn(u)|
lex (θ1|Kn(u)|)] or

[Kn(u) �= ∅ �= Km(v) and (ui)i∈Kn(u)Rlex(vi)i∈Km(v)].
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Let g : R → R be increasing and strictly concave (and, thus, continuous). We
define the ordering R5 as follows. For all n, m ∈ N, for all u ∈ R

n, and for all
v ∈ R

m, uR5v if and only if

(ui)i∈Kn(u)P
∗
lex(vi)i∈Km(v)

or

(ui)i∈Kn(u)I
∗
lex(vi)i∈Km(v) and

∑
i∈Ln(u)\Kn(u)

[g(ui) − g(θ)] >
∑

i∈Lm(v)\Km(v)

[g(vi) − g(θ)]

or

(ui)i∈Kn(u)I
∗
lex(vi)i∈Km(v) and

∑
i∈Ln(u)\Kn(u)

[g(ui) − g(θ)] =
∑

i∈Lm(v)\Km(v)

[g(vi) − g(θ)] and

∑
i∈Hn(u)

[ui − θ] ≥
∑

i∈Hm(v)

[vi − θ].

The ordering R5 satisfies all the axioms except continuity below the threshold. Show-
ing that expansion independence is satisfied is not trivial and, thus, we provide a
detailed proof. Let n, m ∈ N. We show that there exist k ∈ N with k > max{n, m}
and λ, μ ∈ [θ − 1, θ) ⊂ RL that satisfy the requisite condition. Note that any k ∈ N

with k > max{n, m} and any λ, μ ∈ [θ− 1, θ) satisfy that, for all u ∈ R
n
L and for all

v ∈ R
m
L ,

(ui)i∈Kn(u) = (ūi)i∈Kk(ū) and (vi)i∈Km(v) = (v̄i)i∈Kk(v̄) (15)

where ū = (u, λ, . . . , λ︸ ︷︷ ︸
k−n

) and v̄ = (v, μ, . . . , μ︸ ︷︷ ︸
k−m

). Thus, by the definition of R5, it

suffices to show that there exist k ∈ N with k > max{n, m} and λ, μ ∈ [θ − 1, θ)
such that, for all u ∈ R

n
L and for all v ∈ R

m
L ,

(ui)i∈Kn(u)I
∗
lex(vi)i∈Km(v) ⇔ (ūi)i∈Kk(ū)I

∗
lex(v̄i)i∈Kk(v̄) (16)

and ∑
i∈Ln(u)\Kn(u)

[g(ui) − g(θ)] ≥
∑

i∈Lm(v)\Km(v)

[g(vi) − g(θ)]

⇔
∑

i∈Lk(ū)\Kk(ū)

[g(ūi) − g(θ)] ≥
∑

i∈Lk(v̄)\Kk(v̄)

[g(v̄i) − g(θ)]
(17)

where ū = (u, λ, . . . , λ︸ ︷︷ ︸
k−n

) and v̄ = (v, μ, . . . , μ︸ ︷︷ ︸
k−m

).

First, note that, for all u ∈ R
n
L and for all v ∈ R

m
L ,

(ui)i∈Kn(u)I
∗
lex(vi)i∈Km(v) ⇔ [Kn(u) = Km(v) = ∅] or

[(ui)i∈Kn(u) is a permutation of (vi)i∈Km(v)].
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If (ui)i∈Kn(u) is a permutation of (vi)i∈Km(v), then |Kn(u)| = |Km(v)|. Thus, if n =
m, conditions (16) and (17) are satisfied for any k > max{n, m} and λ, μ ∈ [θ−1, θ)
such that λ = μ.

Next, we consider the case where n �= m. Without loss of generality, suppose that
m > n. We begin by showing that there exist k ∈ N with k > m and λ, μ ∈ [θ−1, θ)
such that

g(θ) =
(k − n)g(λ) − (k − m)g(μ)

m − n
. (18)

Since g is increasing on R, g(a) < g(θ) for all a ∈ RL. Furthermore, g is not bounded
below because of strict concavity. Thus, there exist (sufficiently large) k ∈ N with
k > m and λ ∈ (θ − 1, θ) such that

g(θ − 1) < g(λ) − m − n

k − m
[g(θ) − g(λ)] < g(λ) < g(θ).

Since g is continuous on R, it follows from the intermediate value theorem that there
exists μ ∈ (θ − 1, λ) ⊂ [θ − 1, θ) such that g(μ) = g(λ) − m−n

k−m
[g(θ) − g(λ)], that is,

g(θ) =
(k − n)g(λ) − (k − m)g(μ)

m − n
.

We now show that, for k, λ, and μ that satisfy (18), conditions (16) and (17) are
satisfied. By (15), it is straightforward that (16) is satisfied. To show that (17) holds,
let u ∈ R

n
L and v ∈ R

m
L . Since (ui)i∈Kn(u)I

∗
lex(vi)i∈Km(v) implies |Km(v)| = |Kn(u)|,

we can assume m − n = |Lm(v) \ Km(v)| − |Ln(u) \ Kn(u)|. Let ū = (u, λ, . . . , λ︸ ︷︷ ︸
k−n

)

and v̄ = (u, μ, . . . , μ︸ ︷︷ ︸
k−m

). Then, we obtain

∑
i∈Ln(u)\Kn(u)

[g(ui) − g(θ)] ≥
∑

i∈Lm(v)\Km(v)

[g(vi) − g(θ)]

⇔
∑

i∈Ln(u)\Kn(u)

g(ui) + (m − n)g(θ) ≥
∑

i∈Lm(v)\Km(v)

g(vi)

⇔
∑

i∈Lk(ū)\Kk(ū)

g(ūi) ≥
∑

i∈Lk(v̄)\Kk(v̄)

g(v̄i)

⇔
∑

i∈Lk(ū)\Kk(ū)

[g(ūi) − g(θ)] ≥
∑

i∈Lk(v̄)\Kk(v̄)

[g(v̄i) − g(θ)],

since |Lk(ū) \Kk(ū)| = |Lk(v̄) \Kk(v̄)|. Thus, R5 satisfies expansion independence.
Let g ∈ G and δL ≥ supa∈RL

g(a), and define the ordering R6 as follows. For all
n, m ∈ N, for all u ∈ R

n, and for all v ∈ R
m,

uR6v ⇔
∑

i∈Ln(u)

[g(ui) − δL] >
∑

i∈Lm(v)

[g(vi) − δL]
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or∑
i∈Ln(u)

[g(ui) − δL] =
∑

i∈Lm(v)

[g(vi) − δL] and (ui)i∈Hn(u)∪En(u) Rlex (vi)i∈Hm(v)∪Em(v) ,

where Rlex is the critical-level leximin ordering associated with θ. The ordering R6

satisfies all of the axioms except continuity above and at the threshold.
Let g ∈ G and δL ≥ supa∈RL

g(a). Define, for all n, m ∈ N, for all u ∈ R
n, and

for all v ∈ R
m, uR7v if and only if∑

i∈Ln(u)

[g(ui) − δL] >
∑

i∈Lm(v)

[g(vi) − δL]

or ∑
i∈Ln(u)

[g(ui) − δL)] =
∑

i∈Lm(v)

[g(vi) − δL] and |Hn(u) ∪ En(u)| > |Hm(v) ∪ Em(v)|

or∑
i∈Ln(u)

[g(ui) − δL)] =
∑

i∈Lm(v)

[g(vi) − δL] and |Hn(u) ∪ En(u)| = |Hm(v) ∪ Em(v)|

and
∑

i∈Hn(u)∪En(u)

ui ≥
∑

i∈Hm(v)∪Em(v)

vi.

The ordering R7 does not satisfy weak existence of critical levels. All other axioms
are satisfied.

Let g ∈ G and define, for all n, m ∈ N, for all u ∈ R
n, and for all v ∈ R

m, uR8v
if and only if

|Ln(u)| < |Lm(v)|
or

|Ln(u)| = |Lm(v)| and
∑

i∈Ln(u)

g(ui) >
∑

i∈Lm(v)

g(vi)

or

|Ln(u)| = |Lm(v)| and
∑

i∈Ln(u)

g(ui) =
∑

i∈Lm(v)

g(vi)

and
∑

i∈Hn(u)

[g(ui) − g(θ)] ≥
∑

i∈Hm(v)

[g(vi) − g(θ)] .

The ordering R8 violates expansion independence. This can be verified as follows.
Let n = 1 and m = 2. Expansion independence asserts that there exist k ∈ N\{1, 2}
and λ, μ ∈ RL such that, for all u ∈ R and for all v ∈ R

2, uRv if and only if
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(u, λ1k−1)R(v, μ1k−2). Let u ∈ RL and v = (λ, λ) ∈ R
2
L. By the definition of R8,

uP8v follows. On the other hand, (v, μ1k−2) = (λ, λ, μ1k−2)P7(u, λ1k−1) follows if

g(u) + (k − 1)g(λ) < 2g(λ) + (k − 2)g(μ) ⇔ g(u) < g(λ) − (k − 2)[g(λ) − g(μ)].

Note that lima→−∞ g(a) = −∞ since g ∈ G. Thus, there exists u ∈ RL that satisfies
this inequality. This means that R8 violates expansion independence. All other
axioms are satisfied.

Define, for all n, m ∈ N, for all u ∈ R
n, and for all v ∈ R

m, uR9v if and only if∑
i∈Ln(u)

[ui − θ] >
∑

i∈Lm(v)

[vi − θ]

or ∑
i∈Ln(u)

[ui − θ] =
∑

i∈Lm(v)

[vi − θ] and
∑

i∈Hn(u)

[ui − θ] ≥
∑

i∈Hm(v)

[vi − θ].

The ordering R9 does not satisfy the principle of transfers below the threshold. All
other axioms are satisfied.

Finally, let g : R → R be a continuous and increasing function that is strictly
concave on RL and strictly convex on RHE. Define, for all n, m ∈ N, for all u ∈ R

n,
and for all v ∈ R

m, uR10v if and only if∑
i∈Ln(u)

[g(ui) − g(θ)] >
∑

i∈Lm(v)

[g(vi) − g(θ)]

or∑
i∈Ln(u)

[g(ui)−g(θ)] =
∑

i∈Lm(v)

[g(vi)−g(θ)] and
∑

i∈Hn(u)

[g(ui)−g(θ)] ≥
∑

i∈Hm(v)

[g(vi)−g(θ)].

The ordering R10 does not satisfy the weak principle of transfers above and at the
threshold. All other axioms are satisfied.
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