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Assumptions on competitive structure is often crucial to estimate marginal costs and to obtain

counterfactual predictions. In this paper, tests for price competition among multi-products firms

are introduced, which is based on firm’s revealed preference (or, revealed profit). In contrast to

other approaches based on estimated demand functions such as the conduct parameter estimation,

it does not require any IVs. Simulations show that the competitive structure itself might put tight

restrictions on data even if data is a small panel consisting of 6 products and 3 periods. In this paper,

I employ a class of demand structure introduced by Nocke and Schutz (2016), discrete-continuous

model, which nests the multinomial logit demand and CES demand functions.

1 Introduction

In the literature of Industrial Organization, we often assume specific competitive structures, such

as price competition or quantity competition. Sometimes, such a competitive structure is crucial

in empirical research. For instance, we often back out marginal cost from the first order conditions

based on estimated demand functions. Results of counterfactual analysis, which often provides the

main policy implication in research with structural models, also depends on the assumed competi-

tive structures. Even though we can obtain estimates of parameters in a structural model, which

fits to data the best, it is still possible that the structural model itself does not fit to the data. In

other words, data might not be rationalized by any possible parameters. Furthermore, it might not
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be rationalized by any realizations of structural error terms. In this paper, I provide a systematic

way to detect data which is inconsistent with price competition among single/multi-products firms

under a class of demand structure introduced by Nocke and Schutz (2016).

For consumer’s behavior, Afriat (1967) shows that finite data satisfies GARP if and only if it

is rationalized by utility maximization given a price vector. In other words, if the data violates

GARP, then it cannot be explained by any (locally non-satiated) utility functions. Brown and

Matzkin (1996) extend this idea to the general equilibrium framework. Carvajal et al. (2013) apply

the idea to Cournot competition, and show that the Cournot rationalizability can be checked by

the existence of parameters which satisfy some conditions. Carvajal et al. (2014) introduced a

few variants of Carvajal et al. (2013); a test for multi-products Cournot competition, and a test

for a price competition in a differentiated market. However, for the price competition, they focus

on a competition where each firm produces a single product, while price competition with multi-

products firms are often examined in the empirical IO literature (e.g., Berry et al. (1995), Goldberg

(1995)). One of the main difficulties to extend Carvajal et al. (2014)’s test to competition among

multi-products firms arises from substitution effects among products produced by the same firm

(or, cannibalization effects). We can circumvent such a difficulty by employing an important class

of demand structure, discrete-continuous model introduced by Nocke and Schutz (2016), which

nests the multinomial logit demand function and CES demand function as special cases.

In order to test the competitive structure, we can also estimate the conduct parameter. Bresna-

han (1982) shows that we can identify the conduct parameter in an industry if there are rotation

of demand functions over time. (See Bresnahan (1989) for estimations and its applications.) Alter-

natively, if we have data on cost structure, we could compare marginal costs backed out from the

model and the actual cost data since different competitive structures give different FOCs, which

returns different estimates of marginal costs (e.g., Wolfram (1999)). The revealed preference test

examined in this paper provides an alternative approach with advantages and disadvantages. First

advantage is the revealed preference test in this paper does not require any IVs while both the

estimation of conduct parameter requires appropriate IVs and the approach by Wolfram (1999)

also requires IVs to consistently estimate demand functions, which is used to estimate marginal

costs. The reason why we don’t need IVs is that demand functions are assumed to be know to
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each firm (but not to econometrician).1 As long as the firms’ maximize their own profits (known

to themselves), it puts some data restrictions. It is analogous to Afriat (1967)’s theorem which

characterize data restrictions satisfied as long as consumers maximize their own utility (known to

themselves, but not known to the econometrician). Second, we only need market level price and

quantity data, but not other characteristics, to implement the test. Therefore, this test can be used

as a pretest/sanity-check before detailed estimation.

A disadvantage is that the test is a joint test of competitive structure and demand/cost func-

tions. Therefore, rejection of the model might imply other types of competition under a discrete-

continuous demand structure, price competition under other demand functions, or other compe-

titions under other demand functions. Even though discrete-continuous model includes the logit

demand function and CES demand function as special cases, it also has IIA property. Therefore,

the main theorem in this paper does not hold for random coefficient logit model (e.g., Berry et al.

(1995)). Another issue is that cost functions are assumed to be constant over time, which can be

arbitrary convex functions. Therefore, the test should be implemented for short panel data where

cost structure is not supposed to change during the range. In practice, if a researcher have a long

panel data, then data can be cut into many short panels, the test can be implemented to each

short data, and the rejection ratio can be reported. It is worth noting that even if data is as short

as 3 periods, the model can put very tight restrictions especially when each firm produces many

products. It is exemplified in simulations in Section 3.

The remaining of the paper is organized as follows. In section 2, I introduce the model and state

the main results. In section 3, I examine the performance of the test introduced in the previous

section. I summary in section 4.

2 The model

In this paper, I consider a standard framework for a competition in a differentiated market, where

each firm produce different products. Each products can be similar but not completely same. We

assume that demand functions can change over time, potentially because of change in consumer’s

taste or product’s characteristics (which might be observed or unobserved by the econometrician). I

1In other words, this test is robust to an unobserved heterogeneity as long as demand is assumed in a class of
discrete-continuous model.
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denote J = {1, 2, ..., J} as a set of products and Qj,t : RJ+ → R+ as a demand function of product

j ∈ J at time t ∈ {1, ..., T}. The demand is assumed to be in a class of discrete/continuous model

explained later. Firm f produces a set of products Jf ⊂ J s.t. Jf ∩ Jg = φ for f 6= g and denote

Jf = |Jf |. A cost function of product j ∈ J , Cj : R+ → R , is assumed to be convex and twice

continuously differentiable. In this paper, I focus on time-invariant cost functions, which plays the

similar role as time-invariant preference in Afriat (1967).2 Then, the profit function for firm f at

time t is written as πf, t =
∑

j∈Jf {Qj,t (p) pj − Cj (Qj,t (p))}.

In the following, I mainly utilize the FOC of the profit functions and cost convexity to de-

rive testable data restrictions, which should be satisfied regardless of the level of parameters and

structural error terms. Using the profit function defined above, FOC w.r.t. pj is written as

0 = Qj,t (p) +
∑
k∈Jf

{
pk − C ′k,t (Qk,t (p))

} ∂Qk,t (p)

∂pj
.

2.1 Example: Logit Demand Function

Before going to the main result with a general specification, I exemplify that some data cannot

be explained by price competition with the logit demand function, which is a special case of the

discrete/continuous model. By using the logit demand function, Qj,t (p) = Mt
exp(vjt−αpjt)

1+
∑
k exp(vkt−αpkt) for

some Mt, α ∈ R+ and (vj,t)j∈J ∈ R
J , the first order condition is rewritten as;

0 = Qj,t (p)−
{
pj − C ′j,t (Qj,t (p))

}
αQj,t (p) +

∑
k∈Jf

{
pk − C ′k,t (Qk,t (p))

} α

Mt
Qk,t (p)Qj,t (p)

By rearranging it, we obtain the following equation;

pj − C ′j,t (Qj,t (p)) = α+
1

Mt

∑
k∈Jf

{
pk − C ′k,t (Qk,t (p))

}
Qk,t (p) .

Here, RHS is common among goods produced by the same firm. Therefore,

pj − C ′j,t (Qj,t (p)) = pk − C ′k,t (Qk,t (p)) (1)

2Carvajal et al. (2013) also provide a revealed preference test with a cost shifter common among all products,
and Carvajal et al. (2014) provide a revealed preference test with some observed cost shifters. They are potential
directions of the future research.
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Figure 1: Example: Logit Demand Function

for any j, k ∈ Jf . By combining with the increasing marginal cost assumption, it rejects the

following data ; (pj,τ , qj,τ )j=1,2, τ=s,t s.t. {1, 2} ⊂ Jf , p1,s > p1,t, p2,s < p2,t, q1,s < q1,t, and q2,s >

q2,t (see Fig. 1). Suppose that data satisfy eq.(1) at time s. Then, if marginal costs are increasing

in own quantity, then p1,t − C ′1,t (q1,t) < p1,s − C ′1,s (q1,s) = p2,s − C ′2,s (q2,s) < p2,t − C ′2,t (q2,t).

Therefore, eq.(1) is not satisfied at time t. Thus, this data (pj,τ , qj,τ )j=1,2, τ=s,t cannot be explained

by (a repetition of static) price competition under logit demand functions. It means that this data

cannot be explained by any sets of parameters including demand parameters and non-parametric

cost functions.

There are two important features of this result. First, the rejection or acceptance is not proba-

bilistic even if the model has (only) the structural error term in the logit demand function. When

we estimate logit demand functions from aggregate data, vj,t is decomposed to vj,t = x′j,tβ + ξj,t

where xj,t is a vector of product j’s observed characteristics, ξj,t is unobserved characteristics, and

β is a vector of parameters. In the logit demand estimation, ξj,t is treated as a structural error

term. However, eq.(1) should be satisfied regardless of the realization of ξj,t as long as firms are

competing in prices under logit demand functions. (Recall that I did not put any assumptions on

vj,t.) This is because the realization of (ξj,t)j∈J is assumed to be known to each firm (but not to

the econometrician), which is often assumed in the literature of empirical IO.

Second, the above data is not rejected by the logit demand assumption alone, but it can be

rejected if combined with price competition and cost convexity. For any data (pj,t, qj,t)j=1,2 at each
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t, we can back out the corresponding (vj,t)j∈J by the inversion of market share function as in Berry

(1994). If we only assume logit demand function, any changes in data over time can be captured

by changes in (vj,t)j∈J over time. On the the hand, if we also assume price competition and convex

cost function, then eq.(1) and the increasing marginal cost provide the restrictions over time.

In the following part, I provide a set of inequalities as a systematic way to detect data inconsis-

tent with price competitions, and show that such conditions are actually sufficient for rationalization

by the price competition. Instead of the logit demand function, I employ a class of demand functions

by Nocke and Schutz (2016), which nests the logit demand function and CES demand function.

2.2 Discrete-Continuous Demand Function

In the following, I employ the discrete-continuous demand function introduced by Nocke and Schutz

(2016), where the demand function for product j is written as Qj (p) = m
−h′j(pj)

h0+
∑
k∈I

hk(pk) where hj (·)

is decreasing and log-convex for every j and m is a positive constant. An important example of this

demand function is the logit model, where hj (pj) = exp (vj − αpj) and m = M/α where vj ∈ R is

the value of goods j, α > 0 is a coefficient for prices, M > 0 is the size of the market, and h0 is the

exponentiated value of the outside option. 3

In this paper, I utilize the fact that we can express the partial derivatives of discrete-continuous

demand function in a simple form;

∂Qj,t (p)

∂pj
= mt

−h′′j,t (pj)

h0,t +
∑

k∈I
hk,t (pk)

+mt

(
−h′j,t (pk)

h0,t +
∑

k∈I
hk,t (pk)

)2

= mt

−h′′j,t (pk)

h0,t +
∑

k∈I
hk,t (pk)

+m−1
t (Qj,t (p))2

= Qj,t (p)

{
−h′′j,t (pk)

−h′j,t (pk)
+m−1

t Qj,t (p)

}

= −m−1
t Qj,t (p)

{
mt

h′′j,t (pk)

−h′j,t (pk)
−Qj,t (p)

}
3As discussed by Nocke and Schutz (2016), discrete-continuous model with the outside option can be normalized

to discrete-continuous model without the outside option, Q̃j (p) = m
−h̃′

j(pj)∑
k∈I

h̃k(pk)
, by letting h̃j (pj) = 1

J
h0 + hj (pj).

In this paper, h0 is explicitly denoted just to explain intuition of the results in later parts.
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and

∂Qk,t (p)

∂pj
= m

−h′k,t (pk)(
h0,t +

∑
k∈I

hk,t (pk)
)2

(
−h′j,t (pj)

)
.

= m−1Qk,t (p) ·Qj,t (p) ∀k 6=j

It is worth noting that mt
h′′j,t(pk)

−h′j,t(pk)
−Qj,t (p) is positive because of the log concavity of hj (·). 4

By using the above expression, the FOC is written as follows;

0 = 1 +
∑
k∈Jf

{
pk − C ′k,t (Qk,t (p))

} ∂Qk,t (p)

∂pj

1

Qj,t (p)

= 1−m−1
t

{
pj − C ′j,t (Qj,t (p))

}{
mt

h′′j,t (pk)

−h′j,t (pk)
−Qj,t (p)

}
+m−1

t

∑
k∈Jf , k 6=j

{
pk − C ′k,t (Qk,t (p))

}
Qk,t (p)

= mt −
{
pj − C ′j,t (Qj,t (p))

}
mt

h′′j,t (pk)

−h′j,t (pk)
+
∑
k∈Jf

{
pk − C ′k,t (Qk,t (p))

}
Qk,t (p)

Therefore, if the data {p̄, q̄} is generated by the price competition with (unknown) discrete-

continuous demand function, there exists αjt, δjt s.t.

0 = mt − {p̄j − δj,t}mtαj,t +
∑
k∈Jf

{p̄k − δj,t} q̄k,t, (2)

which corresponds to
h′′j,t(p̄j)

−h′j,t(p̄j)
and C ′j (q̄j,t), respectively.

On the other hand, since δj,t corresponds to C ′j (q̄j,t) and C ′j (·) is assumed to be increasing, δj,t

must be higher than δj,s (s 6= t) if q̄j,t is larger than q̄j,s. This is summarized as an inequality;

0 ≤ (δj,s − δj,t) (q̄j,s − q̄j,t) . (3)

By combining eq.(2) and eq.(3), we can obtain a set of necessary conditions. Furthermore, it turns

out to be also sufficient conditions for data to be rationalized by price competition. It is summarized

in the following theorem.

4The log-concavity implies
h′′j (p)

−h′
j(p)

>
−h′

j(p)

hj(p)

(
>

−h′
j(p)

h0+
∑
hk(p)

)
.
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Theorem1 (Discrete-Continuous): The set of observations {p̄, q̄} is Bertrand rationalizable

under convex cost function and discrete/continuous demand function if and only if there are

real numbers αj,t, δj,t, mt for any t ∈ T and j ∈ J , such that the following holds;

1. αj,t > 0, δj,t > 0, mt > 0;

2. 0 = mt − {p̄j,t − δj,t}mtαj,t +
∑

k∈Jf {p̄k,t − δk,t} q̄k,t; and

3. 0 ≤
(
δj,t′ − δj,t

) (
q̄j,t′ − q̄j,t

)
.

The first set of conditions comes from underlying specifications of demand and cost functions;

αj,t > 0 comes from an assumption that hj is decreasing and log-convex, δj,t > 0 comes from

increasing cost functions, mt > 0 comes from the assumption that quantity of each goods are

non-negative. The proof of sufficiency consists of two steps. First, I re-construct demand and cost

functions from αj,t and δj.t which satisfies the conditions. Since the demand and cost functions

are re-constructed to satisfy
h′′j,t(p̄j)

−h′j,t(p̄j)
= αj,t and C ′j (q̄j,t) = δj.t, data p̄ and q̄ satisfies FOC under

re-constructed demand and cost functions. In the second step, I show that the FOC is a sufficient

condition for profit maximization given other firms’ prices. It is not trivial since the profit function

does not satisfy quasi-concavity. In this paper, the sufficiency is proved by the unique solution of

FOC, which comes from the unique “common ι-markup” and a mapping from ι-markup to price

vectors as in Nocke and Schutz (2016). See the Appendix for the full proof.

It is worth noting that the second condition is not linear in general because of an interaction

of δj,t and αj,t in contrast to Carvajal et al. (2013, 2014). It prevents us from using algorithms for

linear programming. To implement the above test, we can consider an algorithm similar to moment

inequalities. (See Section 3 for more details.)

Since the logit demand function can be represented as a special case of discrete-continuous

choice where
h′′j,t(pj)

−h′j,t(pj)
=

h′′k,t(pk)

−h′k,t(pk)
= αt for all j, k ∈ J and for all pj , pk ∈ R+, the following

corollary can be obtained easily.

Corollary1 (Logit): The set of observations {p̄, q̄} is Bertrand rationalizable under convex cost

function and logit demand function if and only if there are real numbers αt, δj,t, mt for all

t ∈ T and j ∈ J , such that the following holds;

1. αt > 0, δj,t > 0, mt > 0 ;
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2. 0 = mt − {p̄j − δj,t}mtαt +
∑

k∈Jf {p̄k − δj,t} q̄k,t; and

3. 0 ≤
(
δj,t′ − δj,t

) (
q̄j,t′ − q̄j,t

)
.

It is worth noting that the above logit function allows the price coefficient αt to vary over time.

Another version of the corollary with constant α can be also obtained by replacing αt to α for all

t in the above statement.

In the logit specification, we can interpret the revealed preference test in comparison with

an alternative procedure to check the competitive structure. Usually, a parameter of demand

function, α, is estimated from aggregated data, and δ’s are backed out from the first order condition.

Potentially, we could check whether the obtained δ’s are reasonable or not. Corollary 1 implies the

similar procedure without the estimation of α. It check the monotonicity of δ recovered from any

possible α > 0. Potential advantage of such a test is that the test is robust to any endogenous

quality since FOC should be still satisfied as long as firms know the quality even if it is unobserved

to the econometrician.

As discussed in Subsection 2.1, the rejected data cannot be explained by a peculiar realization

of some random components ξj,t, and any data can be rationalized if we only assume the logit

demand function, but not price competition and increasing marginal costs.

2.3 More Strict Test with Additional Assumptions

Even though the above results provides some non-trivial constraints, the rejection power of Theorem

1 is not so strong as we can see in simulations in Section 3. We can obtain a more strict test

by combining the demand assumption introduced by Carvajal et al. (2014). Even though it is

straightforward that the additional assumption in the model provides additional constraints in

data, it is less clear that discrete-continuous demand function and the additional assumptions

have a non-empty intersection and that we can re-construct a demand system which satisfy both

conditions.

In order to define the additional restrictions, I introduce some notations first. Denote εjt (p) :

RJ+ → R as the relative decrease in the demand of good j at time t in response to an infinitesimal
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increase in its price. That is, given the demand function Qjt for good j at time t ,

εjt (p) = −∂Qj, t (pj , p−j)

∂pj

1

Qjt (p)

Therefore, the own price elasticity is expressed as pjεjt (p).

Then we can define the following properties of demand functions.

Definition: A system of demand functions satisfies co-evolving property if, for any s and t∈ T ,

either

εjs (p) ≥ εjt (p) for all p ∈ RJ+ and all j ∈ J , or (4)

εjs (p) ≤ εjt (p) for all p ∈ RJ+ and all j ∈ J (5)

The co-evolving demand property is introduced to capture an idea of common demand shock in

Carvajal et al. (2013), which is a key component to obtain non-trivial restriction on data in their

work. As we can see in the above equations, if a relative slope of demand is higher for firm j in a

market t, then so as for other firms k 6= j. In other words, we can construct a common order of

demands over T according to the relative slopes for all firms.

The power of the co-evolving property is emphasized in a single product example. Consider the

same prices and quantities as the previous example, but two goods are produced by different firms;

(pj,τ , qj,τ )j=1,2, τ=s,t s.t. J1 = {1}, J2 = {2} , p1,s > p1,t, p2,s < p2,t, q1,s < q1,t, and q2,s > q2,t (see

Fig. 2). Since two goods are produced by different firms, eq.(1) is no longer satisfied. However,

the co-evolving property gives us an alternative restriction. If they are single product firms, the

FOC is re-written in the following form; pj − C ′j,t (Qj,t (p)) = 1/εj,t (p̄j,t). Since the marginal

costs are increasing, we can obtain the inequality about the profit margins; 1/ε1,s (p̄s) = p̄1,s −

C ′1,s (Q1,s (p̄s)) > p̄1,t − C ′1,t (Q1,t (p̄t)) = 1/ε1,t (p̄t) for firm 1. Similarly, we also have 1/ε2,s (p̄s) <

1/ε2,t (p̄t). Therefore, the data implies ε1,s (p̄s) < ε1,t (p̄t) and ε2,s (p̄s) > ε2,t (p̄t). By combining

a property that εj,s (·) is non-decreasing in own price and decreasing in other’s price, we have

ε1,s (p) < ε1,t (p) but ε1,s (p) > ε1,t (p), which is a contradiction to the co-evolving property. In the

following, I refer εj,t (·) non-decreasing in own price as log-concave, and εj,t (·) decreasing in other’s

price as substitutable, following to Carvajal et al. (2014).
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Figure 2: Example: Rejection by Co-evolving Property

Before going to a proposition, I exemplify that the discrete-continuous model and co-evolving

property have a non-empty intersection. In the multinomial logit demand, the co-evolving property

is satisfied when vjt and vkt move similarly over time. Since the logit demand function (with common

Mt over t) requires εjt (p) = α − α
MQj,t (p), εjt (p) ≥ εjs (p) holds if and only if Qj,t (p) ≥ Qj,s (p)

holds. The co-evolving property under the logit demand function requires Qj,t (p) ≥ Qj,s (p) if

and only if Qk,t (p) ≥ Qk,s (p). It can be satisfied when the change of relative value of outside

option dominates the change in demand functions. Thus, there is a non-empty intersection of

the two property. Log-concavity (of Qj,t (p)) is also satisfied if
h′′j (pj)

−h′j(pj)
is non-decreasing in pj ,

and substitutability is always satisfied in discrete-continuous model. In the following proposition,

I combine the discrete-choice model and the co-evolving property to derive a set of necessary

necessary conditions of data to be rationalized by price competition.

Proposition 1: The set of observations {p, q} is Bertrand rationalizable under convex cost func-

tion and discrete-continuous demand function with log-concavity, and co-evolving only if there

is a permutation of T , denoted by the function σ : T → T , and real numbers αj,t, δj,t, mt for

all s, t ∈ T and j ∈ J , such that the following holds;

1. αj,t > 0, δj,t > 0, mt > 0 ;

2. 0 = mt − {p̄j − δj,t}mtαj,t +
∑

k∈Jf {p̄k − δj,t} q̄k,t;

3. 0 ≤
(
δj,t′ − δj,t

) (
q̄j,t′ − q̄j,t

)
; and
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4. if p̄j,t ≥ p̄j,s, p̄−j,t ≤ p̄−j,s and σ (t) < σ (s), then αj,k −m−1
t q̄j,t ≤ αj,s −m−1

s q̄j,s

See Appendix for the proof.

The last condition comes from the co-evolving property and log-concavity, which characterize

the common order of εjt (p) over time. Under the discrete-continuous demand model; εjt (p̄) =

h′′j,t(p̄k)

−h′j,t(p̄k)
−m−1

t Qj,t (p̄) = αj,k −m−1
t q̄j,t. The permutation σ is constructed to provide the common

order of εjt (p) (if there exists). In this proposition, I proved only the necessity of the conditions. For

the proof of sufficiency, I need to re-construct demand functions satisfying both discrete-continuous

structure and co-evolving property from any parameters satisfying the conditions 1-4.

3 Implementation and Simulation

3.1 Implementation

In the tests I introduced in this paper, I need to check the existence of a set of parameters which

satisfies all inequalities defined in each test. In contrast to Carvajal et al. (2014), constraints are

not linear in parameters. Therefore, we cannot use a technique in linear programming. 5 Therefore,

I consider a criterion function similar to that for moment inequalities;

Q (θ; p̄, q̄) =
∑(

(g (θ; p̄, q̄))−
)2

for a vector of inequalities 0 ≤ g (θ; p̄, q̄). I accept the model if and only if the minimized criteria is

(close to) zero. If the data is rationalized by the price competition, deviation of criteria from zero

should be only from computational errors since all the conditions should be satisfied for sure (i.e.,

the criteria can achieves exactly zero) . In the following simulation, I accept the model if and only

if the criteria is less than 1−10. Even though common minimization function such as ’fminsearch’

or ’fminunc’ in MATLAB cannot characterize the whole set of parameters which satisfy inequalities

(because the criteria would be flat for such a set of parameters), it is enough for our purpose to

find one parameter which satisfies the inequalities if there exists.

5For instance, we can just run ’linprog’ in MATLAB to check the existence the parameters if constraints are linear
in parameters.
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3.2 Simulation

In this subsection, I examine performance of the revealed preference tests in simulated data. In the

simulation, I first generate a set of prices and quantities (p̄, q̄) from FOCs under the logit demand

functions and quadratic cost functions, given a set of parameters. Next, I perturb the obtained price

and quantity. In this exercise, the perturbed data is generated by U ((1− a) p̄j, t, (1 + a) p̄j, t) and

U ((1− a) q̄j, t, (1 + a) q̄j,t) for each j ∈ J and t ∈ T , where 0 < a < 1. The draws are independent

between price and quantities and over j ∈ J and t ∈ T . For each specification and each parameter

value, I generate such perturbed data 100 times and report the rejection ratio. We can expect that

the test rejects more data when we increase a since the generated data deviates from original p̄

and q̄ more largely. Such a tendency is observed in Table 1. Even though the increase of rejection

ratio in a is observed in most specifications, some specifications slightly violate this pattern. It

is considered that, in some simulation, the minimization procedure stuck at a local minimum and

reject a simulated data falsely. More stable implementation procedures are wanted to implement

this test. In this exercise, the rejection ratio can be substantially larger for the simulation of single

product competition than that for multi-products case (e.g., comparison between competition of

single product by each firm and that of two products by each firm). It still is reasonable since, if

firms add products, different true prices and quantities can be generated given the same parameter

values.

To capture effects only from increase of the number of products, I also run an exercise where

the first, second, and third goods of a specific firm are the same (but they can be different over

periods, and different for different firms). In Table 2, it is shown that additional goods with the

same value as the existing goods provides more restrictions.

4 Summary

In this paper, I modify a test for Bertrand assumption introduced by Carvajal et al. (2014), and

made it implementable for Bertrand competition among multi-products firms. To deal with dif-

ficulties caused by cannibalization effects, I employ the discrete-continuous demand function in-

troduced by Nocke and Schutz (2016), which includes the multinomial logit demand function and

CES demand function as special cases. In the main theorem, I provide the necessary and sufficient

13
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condition for data to be rationalized by Bertrand competition among multi-products firms under

the discrete-continuous model. The test is implementable without any IVs, and the rejection by

the suggested test deterministically implies misspecification of the model rather than peculiar re-

alizations of structural error terms. The simulated data show that the model itself can provide a

tight restriction on observed data especially if each firm produces many products. Even though the

conditions obtained in the main theorem is necessary and sufficient conditions, an implementing

procedure suggested in the paper seems unstable. Elaboration of the implementation procedure is

wanted in the future research.
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Appendix

Proof of Theorem 1. For sufficiency, it is enough to construct cost functions and demand

functions for each firm which construct a profit function maximized at p̄j,t, q̄j,t.

First, consider the re-construction of demand function. If data satisfies the restriction defined

in Theorem 1, we should be able to find αj,t which corresponds to
h′′j,t(p̄j,t)

−h′j,t(p̄j,t)
for each observation,

where hj,t : R+ → R composes the true data generating process. In the reconstruction of demand

functions, I consider h̄j,t : R+ → R s.t.
h̄′′j,t(pj)

−h̄′j,t(pj)
= αj,t for all pj ∈ R+. This is an analogous

of the construction of utility function in Afriat (1967), where the gradient of utility function is

assumed to be locally constant. Since the constant
h̄′′j,t(pj)

h̄′j,t(pj)
implies that h̄j,t (pj) can be represented

as CARA function with risk averseness αj,t, h̄j,t (pj) = exp {vjt − αjtpj} for some vjt. Then, we can

construct a demand function, Q̄j,t (p) = mt
−h̄′j,t(pj)

H0+
∑
k h̄k,t(pj)

= mt
αjtexp{vjt−αjtpj}

H0+
∑
k exp{vkt−αktpj} . Here, I denote

the reconstructed demand function as Q̄j,t (p) in order to distinguish from the demand function in

true data generating process, Qj,t (p). Now, vjt can be chosen to satisfy a system of K equations;

mt
αjtexp{vjt−αjtp̄jt}

H0+
∑
k exp{vkt−αktp̄jt} = q̄jt for all j, in the same way as the inversion of share function in logit

specifications discussed in Berry (1994).

Since (δjt, qjt) satisfies co-monotone property, we can use monotone cubic interpolation to re-

construct increasing and continuously differentiable C̄ ′ (·). Then, we can re-construct C̄ (q) =
´ q

0 C̄
′ (x) dx, which is convex and twice continuously differentiable. 6

The remaining step is to prove that (p̄, q̄) is an equilibrium under reconstructed demand and

cost functions. Since the re-constructed profit function is continuously differentiable, FOC must be

satisfied at the optimal price. Therefore, it is enough to show that there is the unique solution of

FOC for each firm given other firms’ strategies. To show that, I use the common ι-markup property

examined in Nocke and Schutz (2016). The following part is closely related to the proofs in Nocke

and Schutz (2016) (especially, Lemma F), but there are a few differences. First, we don’t need to

prove the existence of the equilibrium since we already have data as a candidate of equilibrium.

Therefore, we just need to show that those data can be an equilibrium. Second, we consider more

general cost specification than Nocke and Schutz (2016). It complicates the inversion from µf to

6Carvajal et al. (2013, 2014) re-construct a cost function as an upper envelop of linear cost functions, whose slope
is determined by δj,t’s. Instead, in this paper, I use cubic interpolation to have the differentiability, which is necessary
to invert ι-markup.
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price vectors since marginal cost is not a constant, but a function of quantity of the product. Third,

the re-constructed demand function is a special case of the demand function in Nocke and Schutz

(2016). Therefore, we can circumvent a difficulty from a general cost function by specifying shape

of the demand function.

In the following, I omit the subscript for time t since I consider repetition of static NE and

the following logic is applied for each t. Then, I denote the reconstructed demand function as

Q̄j (p) = m
−h̄′j(pj)

H0+
∑
k h̄k(pj)

= m
αjexp{vj−αjpj}

H0+
∑
k exp{vk−αkpj} and h̄′j (pk) = −αjexp {vj − αjpj}, h̄′′j (pk) =

α2
jexp {vj − αjpj}, and

h̄′′j (pk)

−h̄′j(pk)
= αj . Since we now consider a maximization problem of a specific

firm given other firm’s strategy, let denote h̄0 +
∑

k/∈Jf h̄k (pk) = H0 and Jf = {1, ..., n} without

loss of generality. By the FOC, we have the following for any j

{
pj − C̄ ′j

(
Q̄j (p)

)} h̄′′j (pj)

−h̄′j (pj)
= 1 +m−1

∑
k∈Jf

{
pk − C̄ ′k

(
Q̄k (p)

)}
Q̄k (p) (6)

Since RHS is same for any j ∈ Jf , the solution of system of equations defined by (6) for any j ∈ Jf

satisfies

νj (p) ≡
{
pj − C̄ ′j

(
Q̄j (p)

)}
αj = µf

for any j ∈ Jf . Let ν (p) = [ν1 (p) , ..., νn (p)]′. Then, p = ν−1
(
1µf

)
≡ r

(
µf
)
≡
[
r1

(
µf
)
, ..., rn

(
µf
)]′

at the solution of (6). Then, we can rewrite the condition (6) as

µf = 1 +m−1
∑
k∈Jf

{
rk

(
µf
)
− C̄ ′k

(
r
(
µf
))}

Q̄k

(
r
(
µf
))

= 1 +m−1
∑
k∈Jf

{
rk

(
µf
)
− C̄ ′k

(
r
(
µf
))}

αk︸ ︷︷ ︸
µf

1

αk
Q̄k

(
r
(
µf
))

= 1 +m−1µf
∑
k∈Jf

1

αk
Q̄k

(
r
(
µf
))

⇔ 0 = 1 + µf

m−1
∑
k∈Jf

1

αk
Q̄k

(
r
(
µf
))
− 1

 ≡ ψ (µf)

Then, the uniqueness of the solution of FOC is proved by strict monotonicity of ψ
(
µf
)
. Again,

the existence of the solution can be omitted since the data satisfies FOC by the construction of
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(
Q̄j (·) , C̄j (·)

)
j∈Jf

. By taking a derivative w.r.t. µf

ψ′
(
µf
)

=
∑
k∈Jf

exp
{
vk − αkrk

(
µf
)}

H0 +
∑

l exp {vl − αlrl (µf )}
− 1

︸ ︷︷ ︸
<0

+µfm−1
∑
k∈Jf

1

αk

∂Q̄k (p)

∂p
|p=p̄︸ ︷︷ ︸

1×n

r′
(
µf
)

︸ ︷︷ ︸
n×1︸ ︷︷ ︸

≡A

It is enough to show that A ≤ 0.

A = µfm−1

[
1

α1
, ...,

1

αn

]
︸ ︷︷ ︸

1×n

∂Q̄ (p)

∂p′
|p=p̄︸ ︷︷ ︸

n×n

∂ν−1 (m)

∂m′
|m=1µf︸ ︷︷ ︸

n×n

1︸︷︷︸
n×1

= µfm−1 1′︸︷︷︸
1×n

Λ−1 ∂Q̄ (p)

∂p′
|p=p̄︸ ︷︷ ︸

n×n

∂ν−1 (m)

∂m′
|m=1µf︸ ︷︷ ︸

n×n︸ ︷︷ ︸
≡B

1︸︷︷︸
n×1

where Λ =


α1 · · · 0

...
. . .

...

0 · · · αn

. Since µf > 0 and m > 0, it is enough to show that B is negative

semi-definite.

In order to consider derivatives of ν−1 (m), we first consider the derivative of ν. Recall that

νj (p) ≡
{
pj − C ′j

(
Q̄j (p)

)}
αj . then, partial derivatives are;

∂νk (p)

∂pk
= αk

(
1− c′′

(
Q̄k (p)

) ∂Q̄k (p)

∂pk

)
∂νk (p)

∂pj
= −αkc′′

(
Q̄k (p)

) ∂Q̄k (p)

∂pj
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Then,

∂ν (p)

∂p′
= Λ

I −

c′′
(
Q̄1 (p)

) ∂Q̄1(p)
∂p1

c′′ (Q1 (p)) ∂Q1(p)
∂pn

c′′ (Qn (p)) ∂Qn(p)
∂p1

c′′ (Qn (p)) ∂Qn(p)
∂pn




= Λ

{
I − Γ (p)

∂Q (p)

∂p′

}

where Γ (p) =


c′′ (Q1 (p)) · · · 0

...
. . .

...

0 · · · c′′ (Qn (p))

. Then,

B = Λ−1∂Q (p)

∂p′
|p=p̄

∂r (m)

∂m′
|m=1µf

= Λ−1∂Q (p)

∂p′
|p=p̄

[
∂ν (p)

∂p′
|p=p̄

]−1

= Λ−1∂Q (p)

∂p′
|p=p̄

[
Λ

{
I − Γ (p)

∂Q (p)

∂p′

}]−1

= Λ−1

((
∂Q (p)

∂p′
|p=p̄

)−1
)−1{

I − Γ (p)
∂Q (p)

∂p′

}−1

Λ−1

= Λ−1

({
I − Γ (p)

∂Q (p)

∂p′

}(
∂Q (p)

∂p′
|p=p̄

)−1
)−1

Λ−1

= Λ−1

((
∂Q (p)

∂p′
|p=p̄

)−1

− Γ (p)

)−1

Λ−1

= −Λ−1

(
Γ (p)−

(
∂Q (p)

∂p′
|p=p̄

)−1
)−1

Λ−1
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Now, B is negative definite as long as ∂Q(p)
∂p′ is negative semi definite;

∂Q (p)

∂p′
=



−m−1Q1 (p) {α1m−Q1 (p)} m−1Q1 (p)Q2 (p) · · · m−1Q1 (p)Qn (p)

m−1Q1 (p)Q2 (p) −m−1Q2 (p) {α2m−Q2 (p)} m−1Q2 (p)Qn (p)

...
. . .

...

m−1Q1 (p)Qn (p) m−1Q2 (p)Qn (p) · · · −m−1Qn (p) {αnm−Qn (p)}



= m−1



−Q1 (p) {α1m−Q1 (p)} Q1 (p)Q2 (p) · · · Q1 (p)Qn (p)

Q1 (p)Q2 (p) −Q2 (p) {α2m−Q2 (p)} Q2 (p)Qn (p)

...
. . .

...

Q1 (p)Qn (p) Q2 (p)Qn (p) · · · −Qn (p) {αnm−Qn (p)}



= m−1




Q1 (p)Q1 (p) · · · Q1 (p)Qn (p)

...
. . .

...

Q1 (p)Qn (p) · · · Qn (p)Qn (p)

−m

α1Q1 (p) · · · 0

...
. . .

...

0 · · · αnQn (p)




Then,

x′
∂Q (p)

∂p′
x = m−1

x
′Q (p)Q (p)′ x−mx′


α1Q1 (p) · · · 0

...
. . .

...

0 · · · αnQn (p)

x


= m−1


(∑

i

xiQi

)2

−m
∑
i

x2
iαiQi


= m−1

(∑
i

xiQi

)2

−m−1
∑
i

x2
iQ

2
i +m−1

∑
i

x2
iQ

2
i −

∑
i

x2
iαiQi

= −m−1

∑
i

x2
iQ

2
i −

(∑
i

xiQi

)2
︸ ︷︷ ︸

>0

−m−1

∑
i

x2
iQi (mαi −Qi)︸ ︷︷ ︸

>0

 < 0

Then, −∂Q(p)
∂p′ is positive definite, so as

(
−∂Q(p)

∂p′

)−1
. Therefore, Γ (p) −

(
∂Q(p)
∂p′ |p=p̄

)−1
is
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positive definite since Γ (p) is a diagonal matrix with positive components. Therefore,

x′Bx = −x′Λ−1

(
Γ (p)−

(
∂Q (p)

∂p′
|p=p̄

)−1
)−1

Λ−1x

= −
((

Λ−1
)′
x
)′(

Γ (p)−
(
∂Q (p)

∂p′
|p=p̄

)−1
)−1

Λ−1x

= −
(
Λ−1x

)′(
Γ (p)−

(
∂Q (p)

∂p′
|p=p̄

)−1
)−1

Λ−1x

< 0

Therefore, B is negative definite, which gives ψ′
(
µf
)
< 0.

Proof of Proposition 1:

For Proposition 1, we need to derive the last condition as a necessary condition.

By co-evolving property, we can find a permutation such that σ (t) < σ (s) implies εj,t (p) ≤

εj,s (p) for all j ∈ J and for all p. Then, if p̄i,t ≥ p̄i,s, p̄−i,t ≤ p̄−i,s and σ (t) < σ (s), then

αj,t −m−1
t q̄j,t = εj,t (p̄jt, p̄−jt) ≤ εj,t (p̄js, p̄−jt) ≤ εj,s (p̄js, p̄−js) ≤ εj,s (p̄js, p̄−js) = αj,s −m−1

s q̄j,s.

Thus, αj,t −m−1
t q̄j,t ≤ αj,s −m−1

s q̄j,s �
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