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1 Introduction

It is common that public facilities, such as parks and libraries, are provided by centralized author-

ities to avoid several problems arising from their non-rivalry and non-excludability. However, in

most communities, it is also common that the construction of low benefit-to-cost public facilities

have been carried out usually. Recently, especially in Japan, this bad habit gradually tends to

be revised upward by the trend of public opinion, and the authorities are required to analyze

the cost-benefit of any project before the construction in order to allocate limited tax revenue

efficiently.

Because consumers bear transport costs to travel to a public facility, and in addition, they

may not enjoy by a dense of crowd, it may be less appealing or worthless for some consumers

even if the facility itself is beneficial. Thus, spatial characteristics, such as infrastructure for

transportation and distribution of consumers, are important in determining social value of a public

facility. To accomplish provision of public facilities efficiently, the authority should deliberate how

many facilities it provides and where to construct each facility at the expense of limited resources

with taking these characteristics into considerations. However, the characterization of the optimal

number and location of public facilities has not been investigated completely.1

In this paper, using a variant of the spatial differentiation model of Hotelling (1929) where

transport cost of a consumer who uses a public facility depends on the distance between their

locations, we consider the optimal number and location problem of public facilities without obli-

gation of use. Especially, we investigate the effect of spatial characteristics such as infrastructure

for transportation and distribution of consumers to the optimal number of public facilities.

The remainder of this paper is organized as follows: Section 2 describes the model; Section 3

characterizes the result; Section 4 concludes.

1A recent work by Berliant et al. (2006) tackled the problem by a general equilibrium welfare analysis.
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2 The model

There are available homogeneous public facilities without obligation of use within a city [0, l]

where l > 0. The quantity of the public facility at each location is zero (not built) or one

(built). Denote a facility located at x as facility x. A set X of public facilities, where X ⊂ [0, l]

and |X| < +∞, stipulates the number and location of facilities provided. It takes social cost

C (|X|) to provide a set X of facilities, where C : R+ → R is a C2 function of n which satisfies

limn→0+ Cn (n) = 0 < C ′ (n) , C ′′ (n).

Consumers are uniformly distributed with density f > 0 along the city. Denote a consumer

located at i as consumer i. Given a set X of facilities, the consumers use one or zero unit of the

facility. Let σX
i ∈ ΣX

i ≡ X ∪ {∅} be the facility consumer i uses for any i (∅ means that she

uses nothing). Let σX ∈ ΣX ≡ ΠiΣX
i be a profile such that the facility consumer i uses is σX

i

for any i. Let mx

(
σX

)
be a measure of consumers using the facility x given a profile σX . If

a consumer uses a public facility, she derives a surplus which depends on how many consumers

access it, but bears her own transport cost which depends on the distance to it: if σX
i ∈ X 6= ∅

given a profile σX , consumer i obtains v
(
mσX

i

(
σX

))
where v is a C2 function of m which satisfies

v′ (m) , v′′ (m) ≤ 0 < v (0), but bears her own transport cost t
(
i− σX

i

)2 where t > 0. If she uses

nothing, her utility is 0. To sum up, given a set X of facilities and a profile σX ∈ ΣX , the utility

of consumer i is given by

ui
(
σX ; X

) ≡





0 if σX
i ∈ {∅}

v
(
mσX

i

(
σX

))− t
(
i− σX

i

)2 if σX
i ∈ X 6= ∅.

Social valuation of a set X of facilities with a profile σX is given by

V
(
σX ; X

) ≡
∫ l

0

ui
(
σX ;X

)
fdi (1)
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and social welfare of a set X of facilities with a profile σX is given by

W
(
σX ; X

) ≡ V
(
σX ; X

)− C (|X|) . (2)

In this paper, we assess social welfare of a set X of facilities at a Nash equilibrium σ̂X ∈ ΣX in

the game given the set of facilities. The problem is now to maximize (2) with respect to
(
σ̂X ;X

)
.

3 The result

To begin with, it is convenient to characterize the properties of a Nash equilibrium of the game.

Consider a set X 6= ∅ of public facilities. For any x ∈ X, denote a set of consumers using facility x

given a profile σX as Dx

(
σX

) ≡ {
i ∈ [0, l] | σX

i = x
}
. Denote a left-hand boundary of consumers

using facility x as ḋx

(
σX

) ≡ inf Dx

(
σX

)
and a right-hand boundary of consumers using facility

x as d̈x

(
σX

) ≡ supDx

(
σX

)
. Let

(
σX

i , σ̂X
−i

)
be a profile such that the facility consumer i uses is

σX
i and the facility consumer j uses is σ̂X

j for any j except i.

Lemma 1. Take any X 6= ∅ and any Nash equilibrium σ̂X ∈ ΣX . Take any i, j ∈ [0, l] with i < j,

σ̂X
i 6= ∅ and σ̂X

j 6= ∅. Then, we have σ̂X
i ≤ σ̂X

j .

Proof. Suppose, on the contrary, σ̂X
j < σ̂X

i . Consider a deviation of consumer i from σ̂X
i to σ̂X

j .

Then, we have

ui
(
σ̂X

j , σ̂X
−i

)
= v

(
mσ̂X

j

(
σ̂X

j , σ̂X
−i

))− t
(
i− σ̂X

j

)2

= v
(
mσ̂X

j

(
σ̂X

j , σ̂X
−j

))− t
(
i− σ̂X

j

)2

≥ v
(
mσ̂X

i

(
σ̂X

i , σ̂X
−j

))− t
(
j − σ̂X

i

)2
+ t

(
j − σ̂X

j

)2 − t
(
i− σ̂X

j

)2

> v
(
mσ̂X

i

(
σ̂X

i , σ̂X
−i

))− t
(
i− σ̂X

i

)2

= ui
(
σ̂X

)
.

Hence, she can increase her payoff by the deviation, which is a contradiction.
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Lemma 2. Take any X 6= ∅ and any Nash equilibrium σ̂X ∈ ΣX . Then, Dx

(
σ̂X

)
is a non-empty

interval for any x ∈ X.

Proof. First, we show that Dx

(
σ̂X

)
is not empty. Suppose, on the contrary, Dx

(
σ̂X

)
= ∅.

Consider a deviation of consumer x from σ̂X
x to x. Then, we have

ux
(
x, σ̂X

−x

)
= v

(
mx

(
x, σ̂X

−x

))− t (x− x)2 = v (0) > ux
(
σ̂X

)
.

Hence, she can increase her payoff by the deviation, which is a contradiction.

Next, we show that Dx

(
σ̂X

)
is an interval. If ḋx

(
σ̂X

)
= d̈x

(
σ̂X

)
, the proof ends. Suppose

ḋx

(
σ̂X

) 6= d̈x

(
σ̂X

)
. Take any i ∈

(
ḋx

(
σ̂X

)
, d̈x

(
σ̂X

))
. Note that there exists j ∈

[
ḋx

(
σ̂X

)
, i

)

and k ∈
(
i, d̈x

(
σ̂X

)]
such that σ̂X

j = σ̂X
k = x. Suppose x ≤ i. Given the other consumers’

strategies, if consumer i uses facility x, her utility is

ui
(
x, σ̂X

−i

)
= v

(
mx

(
x, σ̂X

−i

))− t (i− x)2

= v
(
mx

(
x, σ̂X

−k

))− t (i− x)2

> v
(
mx

(
x, σ̂X

−k

))− t (k − x)2

= uk
(
σ̂X

)

≥ uk
(∅, σ̂X

−k

)

= ui
(∅, σ̂X

−i

)
.

Therefore, we have σ̂X
i 6= ∅. In the case where i < x, the similar argument also holds. By Lemma

1, we conclude that σ̂X
i = x.

By Lemmas 1 and 2, for any X = (xj)
n
j=1 where x1 < · · · < xn and any Nash equilibrium

σ̂X ∈ ΣX , we have

0 ≤ ḋx1

(
σ̂X

) ≤ d̈x1

(
σ̂X

) ≤ · · · ≤ ḋxn

(
σ̂X

) ≤ d̈xn

(
σ̂X

) ≤ l
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and all consumers in
(
ḋx

(
σ̂X

)
, d̈x

(
σ̂X

))
use facility x. In addition, social valuation (1) of a set

X of public facilities with a Nash equilibrium σ̂X ∈ ΣX can be rewritten as

V
(
σ̂X ;X

)
=

∑

x∈X

∫ d̈x(σ̂X)

ḋx(σ̂X)

{
v

(
mx

(
σ̂X

))− t (i− x)2
}

fdi

=
∑

x∈X

[
v

(
mx

(
σ̂X

))
mx

(
σ̂X

)− 1
3
tf

{(
d̈x

(
σ̂X

)− x
)3

−
(
ḋx

(
σ̂X

)− x
)3

}]

with mx

(
σ̂X

)
=

(
d̈x

(
σ̂X

)− ḋx

(
σ̂X

))
f .

In the following, we characterize the optimal number and location of public facilities. The

characterization consists of two steps: first, we consider the optimal location of public facilities

given the number of them provided; next, given optimal location, we determine the optimal number

of facilities.

3.1 Optimal location given the number of public facilities

In this subsection, we consider the optimal location of public facilities given the number of them

provided. Take any n ∈ N and consider a set X = (xj)
n
j=1 of public facilities where x1 < · · · < xn.

Given t, v and f , let ε > 0 be the (unique) number which satisfies

v (2εf) = tε2.

Note that if a length of the interval of consumers using a certain facility is greater than 2ε, the

farthest consumer who uses the facility derives a surplus less than or equal to v (2εf) but must bear

transport cost greater than tε2, which implies that her utility is negative. Thus, 2ε corresponds to

a (potential) maximal length of the interval a single facility can attract.

Hereafter, we assume an additional condition on congestiability of facilities, summarized as:

Assumption 1. (v (m)m)′ |m=2εf > 0.

Note that v (m)m represents consumers’ surplus from a facility if a measure of the consumers

using it is m and satisfies (v (m)m)′′ ≤ 0. Noting also that 2εf is a (potential) maximal measure
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of consumers using a facility, this assumption assures that congestion is not so tragic such that

the pie from a facility is damaged by congestion in a Nash equilibrium.

For illustrative purposes, the following two examples, where the proofs are in Appendix, are

now in order:

Example 1. Suppose n < l
2ε . If |x1− 0|, |l−xn| ≥ ε and |xj − xj−1| ≥ 2ε for any j ∈ {2, · · · , n},

for any Nash equilibrium σ̂X ∈ ΣX , we have

ḋxj

(
σ̂X

)
= xj − ε

d̈xj

(
σ̂X

)
= xj + ε

for any xj ∈ X. Moreover, we have V
(
σ̂X ;X

)
= 4

3 tε3fn.

Example 2. Suppose n ≥ l
2ε . If |x1−0|, |l−xn| = l

2n and |xj−xj−1| = l
n for any j ∈ {2, · · · , n},

for any Nash equilibrium σ̂X ∈ ΣX , we have

ḋxj

(
σ̂X

)
= xj − l

2n

d̈xj

(
σ̂X

)
= xj +

l

2n

for any xj ∈ X. Moreover, we have V
(
σ̂X ;X

)
=

(
v

(
lf
n

)
− tl2

12n2

)
lf .

Our first result on the efficient provision problem of public facilities is that the locations in

above examples are optimal:

Proposition 1. Take any n ∈ N and consider a set X∗ =
(
x∗j

)n

j=1
of public facilities where

x∗1 < · · · < x∗n. Then, it is optimal given the number n of public facilities if and only if the

following conditions are met: if n < l
2ε , we have |x∗1 − 0|, |l − x∗n| ≥ ε and |x∗j − x∗j−1| ≥ 2ε

for any j ∈ {2, · · · , n}; otherwise, we have |x∗1 − 0|, |l − x∗n| = l
2n and |x∗j − x∗j−1| = l

n for any

j ∈ {2, · · · , n}.

Proof. Take any X with |X| = n and any Nash equilibrium σ̂X ∈ ΣX . Let m̄
(
σX

) ≡
P

x∈X mx(σX)
|X|
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and d̄x

(
σX

) ≡ ḋx(σX)+d̈x(σX)
2 . Note that

V
(
σ̂X ; X

) ≤
∑

x∈X


v

(
mx

(
σ̂X

))
mx

(
σ̂X

)− 1
3
tf





(
d̈x

(
σ̂X

)− ḋx

(
σ̂X

)

2

)3

−
(
− d̈x

(
σ̂X

)− ḋx

(
σ̂X

)

2

)3







with eq. iff x = d̄x

(
σ̂X

)
for any x ∈ X

=
∑

x∈X

(
v

(
mx

(
σ̂X

))
mx

(
σ̂X

)− 1
12

t

f2
mx

(
σ̂X

)3
)

≤ n

(
v

(
m̄

(
σ̂X

))
m̄

(
σ̂X

)− 1
12

t

f2
m̄

(
σ̂X

)3
)

with eq. iff mx

(
σ̂X

)
= m̄

(
σ̂X

)
for any x ∈ X

= n

∫ m̄(σ̂X)
2f

− m̄(σ̂X)
2f

(
v

(
m̄

(
σ̂X

))− ti2
)
fdi.

Suppose n < l
2ε . Noting that v (2εf) = tε2, we have

n

∫ m̄(σ̂X)
2f

− m̄(σ̂X)
2f

(
v

(
m̄

(
σ̂X

))− ti2
)
fdi ≤ n

∫ ε

−ε

(
v (2εf)− ti2

)
fdi with eq. iff m̄

(
σ̂X

)
= 2εf

=
4
3
tε3fn.

Suppose n ≥ l
2ε . Then, noting that v

(
lf
n

)
≥ t

(
l

2n

)2
, we have

n

∫ m̄(σ̂X)
2f

− m̄(σ̂X)
2f

(
v

(
m̄

(
σ̂X

))− ti2
)
fdi ≤ n

∫ l
2n

− l
2n

(
v

(
lf

n

)
− ti2

)
fdi with eq. iff m̄

(
σ̂X

)
=

lf

n

=
(

v

(
lf

n

)
− tl2

12n2

)
lf.

Thus, we obtain the result.

Remember that 2ε is a (potential) maximal length of the interval a single public facility can

attract. Thus, n < l
2ε corresponds to the case where the number of public facilities is relatively

small so that not all consumers access the public facility no matter how it is located. The lemma

implies that the public facility should be disposed as follows: (i) facilities attract as many con-
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sumers as possible; (ii) each facility attracts the same number of consumers; (iii) each facility

attracts consumers in the neighborhood of it.

3.2 Optimal number of public facilities

In this subsection, we consider the optimal number of public facilities given optimal location. By

Proposition 1, the problem is reduced to maximizing

W ∗ (n) ≡ V ∗ (n)− C (n)

with respect to the number n of public facilities, where

V ∗ (n) ≡ max
{(σ̂X ;X)|σ̂X∈ΣX is NE,|X|=n}

V
(
σ̂X ; X

)

=





4
3 tε3fn if n < l

2ε

(
v

(
lf
n

)
− tl2

12n2

)
lf otherwise.

For convenience, we neglect the integer problem of the number of public facilities. Let V ∗
n

(
l
2ε−

) ≡

limn→ l
2ε− V ∗

n (n) and V ∗
n

(
l
2ε+

) ≡ limn→ l
2ε + V ∗

n (n). Note that V ∗
n

(
l
2ε−

) ≤ V ∗
n

(
l
2ε+

)
. Then, we

have the following result:

Proposition 2. The number n∗ of public facilities is optimal only if

V ∗
n (n∗) = Cn (n∗)

holds. Moreover, if Cn

(
l
2ε

) ≤ V ∗
n

(
l
2ε−

)
or V ∗

n

(
l
2ε+

) ≤ Cn

(
l
2ε

)
, the converse is also true.

There are some remarks on the proposition: (i) note first that the equation is a variant of

Samuelson (1954)’s condition where the public facility should be provided up to the level at which

its marginal social valuation under the optimal location is equal to its marginal cost. (ii) if

Cn

(
l
2ε

) ≤ V ∗
n

(
l
2ε−

)
or V ∗

n

(
l
2ε+

) ≤ Cn

(
l
2ε

)
hold, the optimal number is uniquely determined.
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(iii) even if V ∗
n

(
l
2ε−

)
< Cn

(
l
2ε

)
< V ∗

n

(
l
2ε+

)
holds, the number of the solutions to the equation is

at most two so that we can easily find out the optimal number.

Given (t, v, f, l), let n∗ (t, v, f, l) be the optimal number of facilities. Then, for any θ ∈ {t, f, l},

we have

∂n∗ (t, v, f, l)
∂θ

= −W ∗
nθ (n∗ (t, v, f, l))

W ∗
nn (n∗ (t, v, f, l))

= − V ∗
nθ (n∗ (t, v, f, l))

V ∗
nn (n∗ (t, v, f, l))− C∗nn (n∗ (t, v, f, l))

everywhere except at n∗ (t, v, f, l) = l
2ε . In addition, if a total measure of consumers keeps constant,

say, lf = F , the effect of the city length l to the number is

∂n∗
(
t, v, F

l , l
)

∂l
= −V ∗

nf

(
n∗

(
t, v, F

l , l
)) (−F

l2

)
+ V ∗

nl

(
n∗

(
t, v, F

l , l
))

V ∗
nn (n∗ (t, v, f, l))− C∗nn (n∗ (t, v, f, l))

everywhere except at n∗
(
t, v, F

l , l
)

= l
2ε .

The result of comparative statics is summarized in Table 1. Noting that the number l
2ε of public

facilities is the boundary of whether all consumers access the public facility under the optimal

location or not, Cn

(
l
2ε

)
< V ∗

n

(
l
2ε−

)
corresponds to the case where t and l are relatively low

and public facilities should be provided sufficiently to attract all consumers. Instead, V ∗
n

(
l
2ε+

)
<

Cn

(
l
2ε

)
corresponds to the case where t and l are relatively high and public facilities should be

provided sufficiently to attract all consumers. The result of t, and l with lf constant, is summarized

in next corollary:

Corollary 1. As for the optimal number of public facilities, the followings are true:

Table 1: The result of comparative statics

n∗t n∗f n∗l n∗l |lf=F

Cn

(
l
2ε

)
< V ∗

n

(
l
2ε−

)
(t, l: small) + + + +

V ∗
n

(
l
2ε−

)
< Cn

(
l
2ε

)
< V ∗

n

(
l
2ε+

)
+ or − + + or 0 + or −

V ∗
n

(
l
2ε+

)
< Cn

(
l
2ε

)
(t, l: big) − + 0 −
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(i) the effect of t to the optimal number of public facilities is positive if t is sufficiently small,

and the effect is negative if t is sufficiently large;

(ii) if lf keeps constant, the effect of l to the optimal number of public facilities is positive if l is

sufficiently small, and the effect is negative if l is sufficiently large.

Moreover, in the case of public facilities without congestion,

(iii) as t increases, the optimal number of public facilities increases at first but finally decreases;

(iv) if lf keeps constant, as l increases, the optimal number of public facilities increases at first

but finally decreases.

Corollary 1 roughly states that the optimal number of public facilities is relatively small when

t is sufficiently low or high, and when l is sufficiently low or high if lf keeps constant. Why?

Intuitively, this reason is as follows. If t (l with lf constant) is sufficiently low, a few public

facilities are sufficient for each consumer to use the public facility with sufficiently low transport

cost. Thus, marginal social valuation by an additional public facility is low if these public facilities

have been provided, because all consumers have already accessed the public facility with sufficiently

low cost. If t (l with lf constant) is sufficiently high, marginal social valuation by an additional

public facility is originally low, because consumers continue to bear high cost to access the public

facility even if one public facility is added. In summary, if t (l with lf constant) is sufficiently low

or high, marginal social valuation by an additional public facility is low, which implies that the

optimal number of public facilities is relatively small.

4 Conclusion

In this paper, we consider the optimal number and location problem of public facilities without

obligation of use. There remains several problems: (i) in this paper, we confine our attention

only to an uniform distribution of consumers to simplify the analysis. However, of course, their

distribution is not uniform in actuality so that an analysis with more general distribution of

consumers is required; (ii) in long run, locations of public facilities are considered to be related to
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the land market (see Fujita (1986) and Sakashita (1987)), and the number is also thought to be

related. Thus, an analysis which include the influence of land market is also important.

Appendix

In this appendix, we prove the statements in Examples 1 and 2. To prove them, the following

properties, which are intuitively clear, are useful:

Lemma 3. Take any X = (xj)
n
j=1 where x1 < · · · < xn and any Nash equilibrium σ̂X ∈ ΣX .

Then, the followings are true:

(i) uḋx(σ̂X)
(
x, σ̂X

−ḋx(σ̂X)

)
, ud̈x(σ̂X)

(
x, σ̂X

−d̈x(σ̂X)

)
≥ 0;

(ii) ḋx

(
σ̂X

)
< d̈x

(
σ̂X

)
;

(iii) ud̈xj (σ̂X) (
σ̂X

)
= uḋxj+1(σ̂X) (

σ̂X
)

for any j ∈ {1, · · · , n− 1};

(iv)
(
ḋx1

(
σ̂X

)− 0
)

uḋx1(σ̂X) (
σ̂X

)
= 0,

(
l − d̈xn

(
σ̂X

))
ud̈xn(σ̂X) (

σ̂X
)

= 0 and
(
ḋxj+1

(
σ̂X

)− d̈xj

(
σ̂X

))
ud̈xj (σ̂X) (

σ̂X
)

= 0 for any j ∈ {1, · · · , n− 1}.

Proof. Omitted.

Property (i) states that if consumers at boundaries of those using a facility use the facility,

they can obtain non-negative payoff. Property (ii) states that a measure of consumers using a

facility is positive. Properties (iii) and (iv) state that the utility of a consumer at a right-hand

boundary of those using a facility and that of one at a left-hand boundary of those using the right

next facility are zero if they are not in the same location.

Proof of Example 1

Proof. Take any Nash equilibrium σ̂X ∈ ΣX . We first show that d̈x1

(
σ̂X

)
= x1 + ε. Suppose

x1 + ε < d̈x1

(
σ̂X

)
. If consumer x1 − ε uses facility x1, her payoff is

ux1−ε
(
x1, σ̂

X
−(x1−ε)

)
= ux1+ε

(
x1, σ̂

X
−(x1+ε)

)
> ud̈x1(σ̂X)

(
x1, σ̂

X
−d̈x1 (σ̂X)

)
≥ 0,

12



which implies that ḋx1

(
σ̂X

) ≤ x1 − ε and mx1

(
σ̂X

)
> 2εf . However, if consumer d̈x1

(
σ̂X

)
uses

facility x1, her payoff is

ud̈x1(σ̂X)
(
x1, σ̂

X
−d̈x1 (σ̂X)

)
= v

(
mx1

(
x1, σ̂

X
−d̈x1 (σ̂X)

))
− t

(
d̈x1

(
σ̂X

)− x1

)2

< v (2fε)− tε2 = 0,

which is a contradiction.

Suppose d̈x1

(
σ̂X

)
< x1 + ε. If x1 − ε < ḋx1

(
σ̂X

)
, we have mx1

(
σ̂X

)
< 2εf . Consider a

deviation of consumer j ∈
(
x1 − ε, ḋx1

(
σ̂X

))
from σ̂X

j = ∅ to x1. Then, we have

uj
(
x1, σ̂

X
−j

)
= v

(
mx1

(
x1, σ̂

X
−j

))− t (j − x1)
2

> v (2fε)− tε2 = 0 = uj
(∅, σ̂X

−j

)
= uj

(
σ̂X

)
,

which is a contradiction. Thus, we must have ḋx1

(
σ̂X

) ≤ x1 − ε. Then, we have

ud̈x1(σ̂X) (
σ̂X

) ≥ ud̈x1(σ̂X)
(
x1, σ̂

X
−d̈x1 (σ̂X)

)
> uḋx1(σ̂X)

(
x1, σ̂

X
−ḋx1 (σ̂X)

)
≥ 0.

Therefore, ḋx2

(
σ̂X

)
= d̈x1

(
σ̂X

)
< x1 + ε ≤ x2 − ε. Moreover,

0 ≤ uḋx2(σ̂X)
(
x2, σ̂

X
−ḋx2 (σ̂X)

)
= v

(
mx2

(
x2, σ̂

X
−ḋx2 (σ̂X)

))
− t

(
ḋx2

(
σ̂X

)− x2

)2

< v
(
mx2

(
σ̂X

))− tε2,

which implies that mx2

(
σ̂X

)
< 2fε. Therefore, d̈x2

(
σ̂X

)
< x1 + 3ε ≤ x2 + ε. Then, we have

ud̈x2(σ̂X) (
σ̂X

) ≥ ud̈x2(σ̂X)
(
x2, σ̂

X
−d̈x2 (σ̂X)

)
> uḋx2(σ̂X)

(
x2, σ̂

X
−ḋx2 (σ̂X)

)
≥ 0.

Therefore, ḋx3

(
σ̂X

)
= d̈x2

(
σ̂X

)
< x2 + ε ≤ x3 − ε. Moreover,

0 ≤ uḋx3(σ̂X)
(
x3, σ̂

X
−ḋx3 (σ̂X)

)
= v

(
mx3

(
x3, σ̂

X
−ḋx3 (σ̂X)

))
− t

(
ḋx3

(
σ̂X

)− x3

)2

< v
(
mx3

(
σ̂X

))− tε2,

which implies that mx3

(
σ̂X

)
< 2fε. Therefore, d̈x3

(
σ̂X

)
< x2 + 3ε ≤ x3 + ε. Iterating similar

argument yields ḋxn

(
σ̂X

)
< xn − ε and d̈xn

(
σ̂X

)
< xn + ε. However, consider a deviation of

13



consumer xn + ε from σ̂X
xn+ε = ∅ to xn. Then, we have

uxn+ε
(
xn, σ̂X

−(xn+ε)

)
> uḋxn(σ̂X)

(
xn, σ̂X

−ḋxn (σ̂X)

)
≥ 0 = uxn+ε

(
∅, σ̂X

−(xn+ε)

)
= uxn+ε

(
σ̂X

)
,

which is a contradiction. Thus, we conclude that d̈x1

(
σ̂X

)
= x1 + ε.

Next, we show that ḋx1

(
σ̂X

)
= x1− ε. Suppose ḋx1

(
σ̂X

)
> x1−ε. Then, we have mx1

(
σ̂X

)
<

2fε. Consider a deviation of consumer j ∈
(
x1 − ε, ḋx1

(
σ̂X

))
from σ̂X

j = ∅ to x1. Then, we have,

uj
(
x1, σ̂

X
−j

)
= v

(
mx1

(
x1, σ̂

X
−j

))− t (j − x1)
2

> v (2fε)− tε2 = 0 = uj
(∅, σ̂X

−j

)
= uj

(
σ̂X

)
,

which is a contradiction.

Suppose ḋx1

(
σ̂X

)
< x1− ε. Then, we have mx1

(
σ̂X

)
> 2fε. Consider a deviation of consumer

j ∈
(
ḋx1

(
σ̂X

)
, x1 − ε

)
from σ̂X

j = x1 to ∅. Then, we have

uj
(∅, σ̂X

−j

)
= 0 = v (2fε)− tε2 > v

(
mx1

(
x1, σ̂

X
−j

))− t (j − x1)
2 = uj

(
x1, σ̂

X
−j

)
= uj

(
σ̂X

)
,

which is a contradiction. Thus, we conclude that ḋx1

(
σ̂X

)
= x1 − ε.

Iterating similar argument for x2, · · · , xn, we obtain the result.

Proof of Example 2

Proof. Take any Nash equilibrium σ̂X ∈ ΣX . We first show that d̈x1

(
σ̂X

)
= x1 + l

2n . Suppose

x1 + l
2n < d̈x1

(
σ̂X

)
. If consumer x1 − l

2n uses facility x1, her utility is

ux1− l
2n

(
x1, σ̂

X
−(x1− l

2n )

)
> ud̈x1(σ̂X)

(
x1, σ̂

X
−(d̈x1 (σ̂X))

)
≥ 0,

which implies that dx1

(
σ̂X

)
= x1 − l

2n . Note that

v
(
mx1

(
x1, σ̂

X
−j

))− t (j − x1)
2 = uj

(
x1, σ̂

X
−j

) ≥ uj
(
x2, σ̂

X
−j

)
= v

(
mx2

(
x2, σ̂

X
−j

))− t (j − x2)
2
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for j ∈ Dx1

(
σ̂X

) ∩
(
x1 + l

2n , d̈x1

(
σ̂X

)]
, which implies mx2

(
σ̂X

)
> mx1

(
σ̂X

)
> lf

n . Thus,

d̈x2

(
σ̂X

)
> x2 + l

2n . Note that

v
(
mx2

(
x2, σ̂

X
−j

))− t (j − x2)
2 = uj

(
x2, σ̂

X
−j

) ≥ uj
(
x3, σ̂

X
−j

)
= v

(
mx3

(
x3, σ̂

X
−j

))− t (j − x3)
2

for j ∈ Dx2

(
σ̂X

) ∩
(
x2 + l

2n , d̈x2

(
σ̂X

)]
, which implies mx3

(
σ̂X

)
> mx2

(
σ̂X

)
> lf

n . Thus,

d̈x3

(
σ̂X

)
> x3 + l

2n . Iterating similar argument yields xn + l
n < d̈xn

(
σ̂X

)
, which is a contra-

diction.

Suppose d̈x1

(
σ̂X

)
< x1 + l

2n . Then, we have mx1

(
σ̂X

)
< lf

n . If x1 − l
2n < ḋx1

(
σ̂X

)
, consider

a deviation of consumer j ∈
(
x1 − l

2n , ḋx1

(
σ̂X

))
from σ̂X

j to x1. Then, we have

uj
(
x1, σ̂

X
−j

)
= v

(
mx1

(
x1, σ̂

X
−j

))− t (j − x1)
2

> v

(
fl

n

)
− t

(
l

2n

)2

≥ 0 = uj
(∅, σ̂X

−j

)
= uj

(
σ̂X

)
,

which is a contradiction. Thus, we must have ḋx1

(
σ̂X

)
= x1 − l

2n . Then, we have

ud̈x1(σ̂X) (
σ̂X

) ≥ ud̈x1(σ̂X)
(
x1, σ̂

X
−d̈x1 (σ̂X)

)
> uḋx1(σ̂X)

(
x1, σ̂

X
−ḋx1 (σ̂X)

)
≥ 0.

Therefore, ḋx2

(
σ̂X

)
= d̈x1

(
σ̂X

)
< x1 + l

2n = x2 − l
2n . Moreover,

v
(
mx1

(
x1, σ̂

X
−j

))− t (j − x1)
2 = uj

(
x1, σ̂

X
−j

) ≤ uj
(
x2, σ̂

X
−j

)
= v

(
mx2

(
x2, σ̂

X
−j

))− t (j − x2)
2

for j ∈ Dx2

(
σ̂X

) ∩
[
ḋx2

(
σ̂X

)
, x2 − l

2n

)
, which implies that mx2

(
σ̂X

)
< mx1

(
σ̂X

)
< lf

n . There-

fore, d̈x2

(
σ̂X

)
< x1 + 3l

2n = x2 + l
2n . Then, we have

ud̈x2(σ̂X) (
σ̂X

) ≥ ud̈x2(σ̂X)
(
x2, σ̂

X
−d̈x2 (σ̂X)

)
> uḋx2(σ̂X)

(
x2, σ̂

X
−ḋx2 (σ̂X)

)
≥ 0.
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Therefore, ḋx3

(
σ̂X

)
= d̈x2

(
σ̂X

)
< x2 + l

2n = x3 − l
2n . Moreover,

v
(
mx2

(
x2, σ̂

X
−j

))− t (j − x2)
2 = uj

(
x2, σ̂

X
−j

) ≤ uj
(
x3, σ̂

X
−j

)
= v

(
mx3

(
x3, σ̂

X
−j

))− t (j − x3)
2

for j ∈ Dx3

(
σ̂X

) ∩
[
ḋx3

(
σ̂X

)
, x3 − l

2n

)
, which implies that mx3

(
σ̂X

)
< mx2

(
σ̂X

)
. Therefore,

d̈x3

(
σ̂X

)
< x2 + 3l

2n = x3 + l
2n . Iterating similar argument yields ḋxn

(
σ̂X

)
< xn − l

2n and

d̈xn

(
σ̂X

)
< xn + l

2n . However, consider a deviation of consumer xn + l
2n from σ̂X

xn+ l
2n

= ∅ to xn.

Then, we have

uxn+ l
2n

(
xn, σ̂X

−(xn+ l
2n )

)
> uḋxn(σ̂X)

(
xn, σ̂X

−ḋxn (σ̂X)

)
≥ 0 = uxn+ l

2n

(
∅, σ̂X

−(xn+ l
2n )

)
= uxn+ l

2n

(
σ̂X

)
,

which is a contradiction. Thus, we conclude that d̈x1

(
σ̂X

)
= x1 + l

2n .

Next, we show that ḋx1

(
σ̂X

)
= x1 − l

2n . Suppose ḋx1

(
σ̂X

)
> x1 − l

2n . Then, we have

mx1

(
σ̂X

)
< lf

n . Consider a deviation of consumer j ∈
(
x1 − l

2n , ḋx1

(
σ̂X

))
from σ̂X

j = ∅ to x1.

Then, we have

uj
(
x1, σ̂

X
−j

)
= v

(
mx1

(
x1, σ̂

X
−j

))− t (j − x1)
2

> v

(
lf

n

)
− t

(
l

2n

)2

≥ 0 = uj
(∅, σ̂X

−j

)
= uj

(
σ̂X

)
,

which is a contradiction. Thus, we conclude that ḋx1

(
σ̂X

)
= x1 − l

2n .

Iterating similar argument for x2, · · · , xn, we obtain the result.
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