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Abstract

We examine an owner’s problem on how best to maintain a capital asset that is
subject to both physical wear and tear and obsolescence. The model developed is a
non-linear extension of the Thompson model, an early contribution to the optimal-
control literature on deterministic maintenance. The model is estimated from the
U.S. data on rent and maintenance expenditures on office buildings, and is then
used to carry out counterfactual simulations. It is shown that the path of an optimal
maintenance expenditure is different according to the asset being a high-deterioration
type or not (i.e., whether it wears out rapidly without maintenance or not). Also,
it is demonstrated that a high obsolescence rate and a high deterioration rate could
have different effects on an optimal maintenance policy.

1 Introduction

Maintenance and repair are a large part of economic activity. In Canada, expenditures on

maintenance and repair averaged 5.7% of the Canadian GDP over the period 1961–1993,

which was four times as large as R&D expenditures (1.4%) and only slightly smaller than

public spending on education (6.8%); McGratten and Schmitz (1999). In spite of this

significance, the economic literature on maintenance is relatively scant. This paper studies

the investment decision in capital maintenance in the presence of obsolescence. Namely,

how much should be spent on maintenance if the value of a capital asset declines as time

passes because of increased wear and tear and obsolescence?

An issue necessarily examined in this problem is a dynamic tradeoff facing an owner. A

smaller expenditure on maintenance may raise an owner’s receipts in the short run, but it

also may diminish an asset’s capability because of increased wear and tear, leading to lower
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Figure 1: Kernel estimates of “rent” or “rental rate” and maintenance

profits in the future. A maintenance policy should balance these short-term and long-

run profits, in some sense, optimally. Generally the incentive for maintenance is larger,

the larger is the foregone profit from reduced maintenance (i.e., the opportunity cost of

maintenance), while the latter may be sensitive to asset types as well as to current and

future market conditions. An owner’s investment behavior in maintenance may thereby

vary interestingly, depending on these attributes.

Figure 1 displays estimates of rent and maintenance expenditure on an office building

as functions of age. Here, the time series of rent is drawn in a solid line, while that of

maintenance expenditure is drawn in a dotted line. As can be seen, the rent steadily

declines until the building is approximately 43 years old. A possible reason for an increase

in rent beyond the age of 43 years is remodeling or refurbishing the building. To the extent

that this is the case, it could in essence be considered as a new or different building. The

rents at the ages of 4 and 43 years are about $14.0 per square foot and $6.3 per square foot,

respectively. The maintenance expenditure increases until the building is approximately 36

years old and then starts falling. The maintenance outlays at the ages of 4 years, 36 years

and 43 years are about $1.0 per square foot, $2.3 per square foot and $1.8 per square foot,

respectively.

Given these observations, one may ask why the time path for maintenance expenditure

first increases and then decreases, rather than first decreases and then increases or keeps

increasing, while that of rent steadily declines over time. What asset and market attributes

are relevant to this pattern of rent and maintenance expenditure paths?

An optimal control model of capital maintenance is developed to address these issues.

An indivisible capital asset is owned to be used for productive purposes for a length of time

and then sold. The production revenue depends on physical wear and tear and obsolescence.
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Maintenance slows down physical wear and tear but has no effect on obsolescence. The

model developed here may be viewed as a nonlinear extension of Thompson’s model (1968),

an early contribution to the literature, which is reviewed shortly.

It will be shown analytically that an optimal maintenance policy may vary qualitatively

with asset type, i.e., whether an asset wears out rapidly without maintenance or not.

Specifically, if an asset deteriorates quickly with time and use without maintenance, then

an optimal maintenance should decrease. If an asset wears out slowly without maintenance,

an increasing maintenance expenditure can be optimal. The results are intuitive, since if

the deterioration of an asset without maintenance is slow, then the forgone profit from a

smaller initial investment in maintenance may not be large. In that case, a minor scratch

may optimally be left being unrepaired, to be maintained in the future. If the asset wears

out rapidly without maintenance, then such a policy causes a significant loss in the future

profit. This dependence of an optimal maintenance policy on asset type has not been

explored fully in the literature and thereby merits emphasis.

The optimal control literature on capital maintenance dates from Näslund (1966). Ex-

plicit modeling starts with Thompson (1968) and Kamien and Schwartz (1971). While

Thompson proposes a deterministic maintenance model, the model due to Kamien and

Schwartz is probabilistic. A key characteristic of deterministic capital maintenance is that

a capital asset does not break down during the service life for which a given maintenance

policy is established; it can deteriorate but still remains operable at some level. A prob-

abilistic maintenance model considers the possibility of the cessation of production even

in the provision of certain maintenance. While Thompson (1968) relates the physical con-

dition of an capital asset to an owner’s operating receipts, Kamien and Schwartz (1971)

relate it to the probability of breakdown and consider a constant production revenue.

Both studies have been advanced by subsequent researchers, such as Arora and Lele

(1970), Virtanen (1982), Mehrez and Berman (1994), Dogramaci and Fraiman (2004) and

Bensoussan and Sethi (2007). 1 There is a large body of literature on maintenance and

replacement under Markovian deterioration. A recent extensive review is in Wang (2002).

This paper studies a deterministic maintenance problem and adds to the optimal-control

literature on deterministic capital maintenance. First, the model developed here is a non-

linear model in maintenance expenditure, a control variable. Being linear in maintenance

1Arora and Lele (1970) suggest a minor modification of the Thompson model. Virtanen (1982) incorpo-
rates a possibility of breakdown into the Arora and Lele model. Mehrez and Berman (1994), based also on
the Arora and Lele model, introduce a hazard rate and the opportunity of a chain of replacement, where
the hazard rate is about technological breakthrough. Dogramaci and Fraiman (2004), on the other hand,
include the possibility of a chain of replacement in the model of Kamien and Schwartz. Bensoussan and
Sethi (2007) reformulate Kaimien and Schwartz’s original problem using dynamic programming technique.
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expenditure, the previous models in the literature, including Thompson (1968), seek an

optimal maintenance policy that is bang-bang and exclusively focus on the switching time

(i.e., the timing to start and stop maintenance efforts). In contrast, our model is a non-

linear extension of the Thompson’s model (1968). This enables us to explore interesting

properties on the evolution of an optimal maintenance expenditure policy.

Second, we distinguish between maintenance and partial replacement. In the previous

models in the literature, maintenance is assumed to be effective at preventing both physical

wear and tear and obsolescence. However, it may be called partial replacement rather than

maintenance that counteracts the impact of obsolescence. Assuming that maintenance is

effective at preventing physical wear and tear but has nothing to do with the impact of

obsolescence, we make this distinction explicit. A simulation will demonstrate that an

increase in physical wear and tear may have a different effect on maintenance expenditure

than that of obsolescence. Although both reduce an owner’s receipts, an increase in physical

wear and tear can optimally induce more maintenance, whereas an increase in obsolescence

always reduces optimal maintenance incentives. An optimal maintenance policy may vary

if partial replacement is considered to be a part of maintenance efforts or not, so the

distinction matters.

The rest of the paper is organized as follows. In Section 2, the model is explained. In

Section 3, an optimal policy is characterized. In Section 4, the parameters of the model

are estimated from the data on rent and maintenance expenditure of an office building

displayed in Figure 1. Section 5 concludes.

2 The Model

Time is continuous and is indexed by t ∈ [0, Z] with 0 < Z < ∞. An indivisible capital

asset is owned at t = 0, used for productive purposes for a length of time and then sold

by t = Z. Let T ∈ (0, Z] be a sale date. An owner receives a flow of nonnegative production

revenue over (0, T ) and a lump-sum resale profit at t = T . These receipts are larger, the

more relatively capable is the asset at the moment. Specifically suppose that the relative

capability of the asset at time t is given by

c(t)− c(t) = [c(0)− c(t)] + [c(t)− c(0)] ≡ a(t) + b(t)

where c(t) is the capability of an asset that embodies the best technology available at

time t, c(t) is the capability of the owner’s asset at time t, a(t) is the state of deterioration

caused by increased wear and tear and b(t) is the state of obsolescence due to technical

advances. Let R(a(t) + b(t)) and S(a(t) + b(t)) be the production revenue and the resale
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price respectively. Assume that both decrease more than proportionally as a(t) + b(t)

increases. That is,

R′(·) < 0, R′′(·) < 0, S ′(·) < 0, S ′′(·) < 0.

The owner invests in maintenance at a constant marginal and average cost that is unity.

Let m(t) be the maintenance expenditure at time t. Assume that maintenance is effective

at preventing or decreasing the process of physical wear and tear at a diminishing rate but

has no effect on the impact of obsolescence. Specifically, a(t) and b(t) follow the transition

functions

ȧ(t) = αa(t)− z(m(t)), a(0) = a0, a(T ) = aT , a(t) ≥ a0

ḃ(t) = β, b(0) = 0
(1)

for some positive constants α and β and the maintenance production function z that is

increasing and concave and vanishes when m(t) = 0:

z′(m(t)) > 0, z′′(m(t)) < 0, z(0) = 0.

In words, without maintenance the state of deterioration a(t) grows at the constant rate α

for all t ∈ (0, Z), and the state of obsolescence b(t) evolves at the constant rate β for

all t ∈ (0, Z). A large α is associated with fast deterioration in the absence of maintenance.

So, the larger is α, the faster the asset wears out without maintenance. A large a0 indicates

that the asset is low-tech relative to those of the same vintage, since a(0) = c(0) − c(0).

A large β implies fast technological progress. So, the higher is β, the faster an old asset

becomes obsolete. In order to study a non-trivial maintenance problem, suppose a0 > 0.

The condition b(0) = 0 is by construction. For ease of notation, let z′(0) ≡ limm→0 z
′(m).

Likewise let z′′(0) ≡ limm→0 z
′′(m).

Assume that the owner has a constant discount rate r ∈ (0, 1). For a given T , the

owner’s discounted profit at time 0 is

J ≡
∫ T

0

e−rt [R(a(t) + b(t))−m(t)] dt+ e−rTS(aT + b(T )). (2)

The owner’s problem is to choose a sale date T ∈ (0, Z] and a maintenance expenditure

policy m(t) ∈ [0,∞) for 0 < t ≤ T as well as aT ∈ [a0,∞), so as to maximize J in (2)

subject to (1). This is an inequality constrained terminal-date, free terminal-point and

salvage value control problem with a control variable m(t), a state variable a(t) and an

inequality state constraint a(t) ≥ a0. A solution of this program is an optimal policy that

will be denoted by {T ∗,m∗, a∗T}. It is assumed that an optimal policy exists.
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A few notations are added regarding the horizon (0, T ). An open subinterval of (0, T )

will be denoted by I if a(t) > a0 for all t ∈ I. An open subinterval of (0, T ) will be denoted

by B if a(t) = a0 for all t ∈ B.

In what follows, we suppress the time argument t in the variables m, a and b for ease

of notation. For instance, m is meant to be evaluated at time t unless otherwise noted.

3 An Optimal Policy

This section uses the Maximum Principle to describe an optimal policy {T ∗,m∗, a∗T}. With

the costate function µ(t), form the current-valued Hamiltonian H as

H = H(a,m, µ) = R(a+ b)−m+ µ [αa− z(m)] .

Then, the Maximum Principle says that if {T ∗,m∗, a∗T} maximizes J in (2) subject to (1),

then at each instant t it maximizes H subject to (1) as well.

Proposition 1. Suppose that {T ∗,m∗, a∗T} exists. Then, necessarily,

(i) At an optimal sale date T ∗,

R(a∗T + b)−m∗ ≥ rS(a∗T + b)− S ′(a∗T + b)(αa∗T − z(m∗) + β) (3)

with equality when T ∗ < Z.

(ii) An optimal maintenance policy m∗ for t ∈ (0, T ∗) satisfies
1 = −µz′(m∗), t ∈ I and 1 < −µz′(0)

m∗ = 0, t ∈ I and 1 ≥ −µz′(0)

m∗ = z−1(αa0), t ∈ B.

(4)

Here µ satisfies the differential equation

µ̇ =

{
(r − α)µ−R′(a∗ + b), t ∈ I

0, t ∈ B
(5)

with the terminal condition

µ = S ′(a∗T + b), t = T ∗. (6)

The first part of Proposition 1 describes an optimal sale date T ∗. The left-hand side

(LHS) of (3) is the marginal benefit to the owner from postponing the sale by an instant.

By a momentary delay, the owner earns the net profit R(a∗T + b) − m∗. However, at the

same time he must give up the interest of the salvage value rS(a∗T + b). Also the resale
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price declines by −Ṡ = S ′(ȧ∗ + ḃ). These are the marginal costs of postponing the sale.

Together (3) states that an optimal sale date should equalize as nearly as possible one to

the other.

Part (ii) of the proposition characterizes an optimal maintenance expenditure m∗ for

t ∈ (0, T ∗) and an optimal endpoint a∗T . An interpretation is as follows. Begin with (4).

Suppose t ∈ I. On the right-hand side (RHS), µ is the current marginal value to the owner

of the deterioration rate a∗ at time t. Recalling that a is a bad, µ may be thought of as the

maximum discounted foregone profit from a unit increase in the deterioration rate a∗ at

time t (in current value). Adding an additional dollar expenditure on maintenance to m∗

at time t prevents a from increasing by z′(m∗). So, the product −µz′(m∗) is the marginal

benefit to the owner from an additional dollar expenditure on maintenance at time t.

Since the marginal cost of maintenance is one, (4) indicates that an optimal maintenance

policym∗ for t ∈ I should equalize as nearly as possible the marginal benefit of maintenance

to its marginal cost at each point in time. If t ∈ B, then (4) simply says that the owner’s

investment in maintenance should be just as much as he needs to keep a∗ = a0 or ȧ∗ = 0

at the moment t.

Look at condition (5). Suppose t ∈ I. On the LHS, µ̇ is the rate of change in the

marginal value of the deterioration rate a∗ at time t. On the RHS, R′(a∗ + b) is the rate of

decline in the production revenue from a unit increase in the deterioration rate a∗ at time t.

To consider r − α, suppose that a capital asset suffers from a small scratch today and is

about to wear out without maintenance. Then, the marginal value µ of the deterioration

rate a∗, which is negative, grows at the rate r if this small scratch is left unrepaired, while

the foregone profit −µ from doing so grows at the rate α. Then, the term r − α may be

viewed as the effective discount rate, and the product (r − α)µ may be considered as the

effective interest of the marginal value of the deterioration rate a∗ at time t. Together, (5)

says that the change in the marginal value of the deterioration rate a∗ at time t should

be the sum of the effective interest of the deterioration rate a∗ at time t and the marginal

decline in the production revenue from a unit increase in the deterioration rate a∗ at time t.

Alternatively, if t ∈ B, then (5) says that the marginal value of the deterioration rate a∗

should be time-invariant.

Turn to condition (6). S ′(a∗T + b(T ∗)) is the rate of decline in the resale price from a

unit increase in the deterioration rate a∗ at time T ∗. So, (6) states that the marginal value

of the deterioration rate a∗ at time T ∗ should be the marginal decline in the resale price

from a unit increase in the deterioration rate a∗ at the moment.

Lastly, the assertion that µ is the marginal value of the deterioration rate a∗ at time t
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may be confirmed as follows. Assume I = (0, T ∗) and solve (5) with (6):

µ(t) = e(r−α)t

[
e−(r−α)T ∗

S ′(a∗T + b(T ∗)) +

∫ T ∗

t

e−(r−α)sR′(a∗(s) + b(s))ds

]
. (7)

As mentioned above, S ′(a∗T + b(T ∗)) is the marginal decline in the resale price from a

unit increase in the deterioration rate a∗ at time T ∗ and R′(a∗(s) + b(s)) is the marginal

reduction in the production revenue from a unit increase in the deterioration rate a∗ at

time s. These are the losses incurred by the owner at each moment in time over [t, T ∗],

if a∗ increases by one unit over [t, T ∗]. All of these are discounted to time t based on the

effective discount rate r−α. Adding up over [t, T ∗], the RHS is the cumulative discounted

loss (or the opportunity cost) incurred by the owner from a unit increase in a∗ over [t, T ∗].

So, it seems natural that µ is taken to be the marginal value of the deterioration rate a∗

at time t.

Proposition 1 shows the properties that an optimal sale date T ∗ and maintenance pol-

icy {m∗, a∗T} necessarily possesses. The next proposition establishes a sufficiency result.

That is, for a given T ∗, if a policy satisfies (4)–(6) then it is optimal.

Proposition 2. Given T ∗, suppose that an optimal policy exists. Given T ∗, suppose

that {m∗, a∗T} is a policy satisfying (4)–(6). Then, {m∗, a∗T} is optimal.

Any maintenance policy that satisfies the foregoing necessary conditions (4)–(6) in

Proposition 1 is in fact optimal. Hence, the necessary conditions are also sufficient.

Given an optimal sale T ∗, the rest of this section discusses the qualitative properties

of an optimal maintenance expenditure m∗ and its associated deterioration rate a∗ for t ∈
(0, T ∗). We restrict our attention to instances where m∗ > 0 and a∗ > a0 for all t.

Suppose that a capital asset suffers from a small scratch and is about to wear out

without maintenance. Then, the owner may be indifferent between this small scratch being

maintained today and it being left unrepaired today and maintained tomorrow if r = α,

since the value of the former grows at the same rate as the (negative) value of the latter.

Apparently, the necessity of maintenance is larger, the higher is the rate at which the

foregone profit from less immediate maintenance increases through time; i.e., for a larger α.

So, it can be optimal to leave a small scratch unrepaired today to be fixed in the future

if α is small relative to r, but it may not be optimal otherwise. Thus, capital assets may be

divided into two types. An asset is said to be of a high deterioration type if r < α, and of

a low deterioration type if r > α. The next propositions reveal the qualitative properties

of the paths for an optimal maintenance expenditure m∗ and its associated deterioration
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(a) r < α (b) r > α

Figure 2: Phase diagrams

rate a∗ over (0, T ∗) for each of these asset types in turn, based on the phase analysis

on (ṁ∗, ȧ∗).

Lemma 1. In the (m∗, a∗)-space;

(i) The ȧ∗=0-isocline exists and is upward sloping, through (limm∗→0+ m∗, lima∗→0+ a∗)

and is time-invariant.

(ii) The ṁ∗=0-isocline exists if r > α, is upward sloping and shifts down as time passes.

Lemma 1 establishes the basic properties of the isoclines of ȧ∗=0 and ṁ∗=0 in the (m∗, a∗)-

space. It says that the ȧ∗=0-isocline exists irrespective of the value of r−α, and is upward

sloping, through the origin (roughly speaking), and not changing through time. In contrast,

the ṁ∗=0-isocline exists if r > α, is upward sloping and shifts down through time.

Figure 2(a) draws the ȧ∗=0-isocline in the (m∗, a∗)-space when r < α, and Figure 2(b)

draws the ȧ∗=0- and the ṁ∗=0-isoclines in that space when r > α. Since the ṁ∗=0-isocline

is time-variant, the two isoclines in Figure 2(b) may be thought of as a snap shot at some

time t ∈ (0, T ∗).

Proposition 3. Let r < α. Then, m∗ < z−1(αa0), ṁ∗ < 0, ȧ∗ > 0, and ä∗ > 0 for

all t ∈ (0, T ∗)

Proposition 3 provides the qualitative properties of the paths for an optimal mainte-

nance expenditure m∗ and its associated deterioration rate a∗ for t ∈ (0, T ∗), when an

asset concerned is of a high deterioration type. It says that the maintenance expenditure

reaches the maximum at the initial date, which is less than z−1(αa0), and steadily and

strictly decreases with time in an optimal plan. Also, the associated deterioration rate
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takes the minimum value at the initial date and steadily and strictly increases with time

at an increasing rate.

Proposition 3 is based on the phase analysis on (ṁ∗, ȧ∗). Figure 2(a) is the phase di-

agram in the (m∗, a∗)-space when r < α. Each of the horizontal arrows above and below

the ȧ∗=0-isocline indicates the direction of movement of an optimal maintenance expen-

diture m∗. Likewise, each of the vertical arrows indicates the direction of movement of

its associated deterioration rate a∗. The horizontal break line is a∗ = a0. This inter-

sects the ȧ∗=0-isocline at (m∗, a∗) = (z−1(αa0), a0). The initial maintenance outlay must

be less z−1(αa0); otherwise, a
∗ = a0 at the next moment. Since (m∗(0), a∗(0)) is above

the ȧ∗=0-isocline, maintenance expenditure decreases through time and the deterioration

rate increases though time at time 0 and thereafter in an optimal plan.

Proposition 4. Let r > α. Then, m∗ either first increases and then decreases, or evolves

monotonically. Moreover, if ṁ∗ ≤ 0 at some t′ ∈ (0, T ∗), then ṁ∗ < 0 for all t ∈ (t′, T ∗).

Proposition 4 states the qualitative properties of the path of the optimal maintenance

expenditure m∗ for t ∈ (0, T ∗), when an asset is of a low deterioration type. It says that

the evolution of an optimal maintenance expenditure is one of the following three patterns:

(i) it increases with time till some time t′ ∈ (0, T ∗) and steadily declines with time beyond

time t′; (ii) it keeps increasing with time; or (iii) it keeps falling with time. Rephrased, it

rules out time paths that are cyclical or are U-shaped (i.e., first decrease and then increase).

Figure 2(b) is the phase diagram of (ṁ∗, ȧ∗) in the (m∗, a∗)-space when r > α. Recalling

that the ṁ∗=0-isocline is time-variant, this diagram should be thought of as a snap shot at

some time t ∈ (0, T ∗). Moreover, since the ṁ∗=0-isocline shifts down as time passes, the

value of the a∗-intercept of the ṁ∗=0-isocline is the largest at the initial date and decreases

as time passes. As before, the arrows indicate the directions of movement of an optimal

maintenance expenditure m∗ and its associated deterioration rate a∗. Also, the horizontal

break line is a∗ = a0.

In order to track the content of this proposition in Figure 2(b), there are three cases

to consider. First, suppose that the ṁ∗=0-isocline has an initial a∗-intercept, ι0, that is

greater than a0. The initial maintenance outlay is less than z−1(αa0); otherwise, a
∗ = a0

at the next moment. So, {m∗(0), a∗(0)} is below the ṁ∗=0-isocline and above the ȧ∗=0-

isocline, implying that both m∗ and a∗ are increasing with time early on. If ι0 is not far

greater than a0, then the trajectory of (m∗, a∗), which may be heading to the upper right,

may encounter the ṁ∗=0-isocline, which is shifting down, at some time t′ ∈ (0, T ∗). If so,

then the value of m∗ is the largest at time t′ and starts declining beyond time t′ while a∗

keeps increasing. Alternatively, if ι0 is far greater than a0, then the trajectory of (m∗, a∗)
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may not reach the ṁ∗=0-isocline before time T ∗. So, in this case, both m∗ and a∗ increase

monotonically over (0, T ∗). There is yet another case. Suppose that the ṁ∗=0-isocline has

an initial m∗-intercept that is greater than z−1(αa0). In this case, clearly {m∗(0), a∗(0)}
is above both of the ṁ∗=0- and the ȧ∗=0-isoclines. Since the ṁ∗=0-isocline shifts down

as time passes, this implies that m∗ decreases with time while a∗ increases with time

over (0, T ∗).

Propositions 3 and 4 show that the time path of an optimal maintenance expenditurem∗

may vary qualitatively according to the asset’s type. Specifically, it is shown that if an asset

is of a high deterioration type (that is, an asset wears out quickly without maintenance), an

optimal maintenance is always decreasing. If an asset is of a low deterioration type (that

is, an asset wears out slowly without maintenance), an increasing maintenance expenditure

may be optimal. The results are intuitive since, if an asset deteriorates slowly even without

maintenance, then the forgone profit from spending fewer initial dollars on maintenance

may not be large. In that case, a minor scratch may optimally be left being unrepaired,

to be maintained later. If the asset wears out rapidly, such a policy causes a significant

loss in the future profit due to possibly large accumulated physical wear and tear. This

dependence of an optimal maintenance policy on asset type has not hitherto been explored

fully in the literature and hence merits emphasis.

We conclude this section with the following comparative dynamics results. As before, we

continue to restrict our attention to instances where m∗ > 0 and a∗ > a0 for all t ∈ (0, T ∗),

given T ∗.

Proposition 5. ∂m/∂β > 0 for all t ∈ (0, T ∗] does not occur in an optimal plan.

Proposition 5 is the comparative dynamics result on the effect of an increase in the

obsolescence constant β on the path of an optimal maintenance expenditure m∗ for t ∈
(0, T ∗) where m∗ > 0 and a∗ > a0 for all t. It says that an increase in β does not raise the

maintenance investment for all t ∈ (0, T ∗) in an optimal plan. So, increased obsolescence

should reduce maintenance efforts at some t ∈ (0, T ∗).

Given T ∗, let V be the owner’s maximized net discounted production profit; that is,

V (α, β) ≡
∫ T ∗

0

e−rt [R(a∗ + b)−m∗] dt.

The following proposition establishes how V changes with respect to the decay and obso-

lescence constants α and β.

Proposition 6. Vα(α, β) < 0, Vβ(α, β) < 0 and Vββ(α, β) > 0.

11



mean std. dev. min max
size (square feet) 254, 670 304, 530 10, 656.6 2, 860, 100

maintenance/sq. ft. (1997) 1.5936 0.97363 0 6.3168
rent/sq. ft. (1997) 10.352 5.316 0.06557 43.432

age 26.875 22.614 2 144

Table 1: Summary statistics

Proposition 6 characterizes the properties of the maximized net discounted production

profit V . It says that the maximized net discounted production profit V decreases with

the decay constant α, and also that V decreases with the obsolescence constant β at a

diminishing rate. So, V is convex in β.

4 Estimation

This section analyzes U.S. data on rent and maintenance expenditures on office buildings

in the context of the model set out above.

4.1 Data

The office building data were collected by Gort, Greenwood and Rupert (1999) and were

originally assembled from the Building Owners and Managers Association International

(BOMA). The data set consists of two panels: a five-year panel and a nine-year panel. The

five-year panel covers approximately 200 office buildings across the United States from 1989

to 1997. The nine-year panel covers approximately 800 office buildings across the United

States from 1993 to 1997. Both include information on age, size, rent and several categories

of expenses.

Table 1 displays some summary statistics for the sample. The average size building

is 254, 670 square feet, the size of the smallest is 1, 0656.6 square feet. and the size of the

largest is 2, 860, 100 square feet. The oldest building is 144 years old and the newest is 2

years old. (In each panel, each building was in every year of the sample.)

Figure 1 displays plots of the Kernel estimates of rent and maintenance expenditure on

an office building as functions of age. Here, we have chosen a Gaussian (normal) kernel

function, one of the most common choice of kernel function, with the bandwidth that is

optimal in the sense of minimizing the MISE (mean integrated squared error) in an asymp-

totic sense.2 As can be seen, the rent declines over time until the building is approximately

2An alternative common choice of kernel function is a bisquare function. We also tried this function.
The results were similar.
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43 years old. A possible reason for an increase in rent beyond the age of 43 years is remod-

eling or refurbishing the building. To the extent that this is the case, it could in essence

be considered as a new or different building. The rents at the ages of 4 years and 43 years

are approximately $14.0 per square foot and $6.3 per square foot respectively. The mainte-

nance expenditure increases until the building is about 36 years old and then starts falling.

The maintenance outlays at the ages of 4 years, 36 years and 43 years are approximately $1

per square foot, $2.3 per square foot and $1.8 per square foot respectively.

4.2 Parameterization

The maintenance production function has the form

z(m) = ζ ln(m+ 1),

so that z′(m) = ζ/(m + 1) > 0 and z′′(m) = −ζ/(m + 1)2 < 0 as specified in Section 2.

The production revenue function has the form

R(a+ b) = max{0, ρ0 + ρ1 ln(ρ2 − a− b)},

so that R′(a + b) = −ρ1/(ρ2 − a − b) < 0 and R′′(a + b) = −ρ1/(ρ2 − a − b)2 < 0 as long

as ρ1 > 0 and ρ− a− b > 0. The resale price function has the form

S(a+ b) = σ0 + σ1R(a+ b),

so that S ′(a + b) = σ1R
′(a + b) < 0 and S ′′(a + b) = σ1R

′′(a + b) as long as R′(a + b) < 0

and R′′(a + b) < 0. Here, the resale price is simply a fraction of the production revenue

plus some constant.

With this parameterization, the model’s parameters are r, a0, α, β, ρ0, ρ1, ρ2, σ0, σ1

and ζ. These values are estimated as follows. Fix a sale date T ∗. Given parameter values

of r, α, β, a0, ρ0, ρ1, ρ2 and ζ, conditions (4) and (5) and the transition function (1)

together with a guess on the initial maintenance expenditure m∗(0) imply time series of

the deterioration rate a∗, the obsolescence rate b, rent R(a∗ + b) and maintenance expen-

diture m∗ as well as the costate variable µ for t = (0, T ∗] with the left-continuity of m∗ at

the sale date T ∗ assumed. A set of the parameter values and the initial maintenance ex-

penditure is chosen so that the time paths for rent and maintenance expenditure generated

by the model fit closely to the data. Applying the estimates of a∗, b and µ at time T ∗,

condition (6) implies the value of parameter σ1. With this, condition (3) implies the value

of parameter σ0.
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r a0 α β ρ0 ρ1 ρ2 σ0 σ1 ζ
0.08 1.073 0.045 0.115 4.5 4.25 7.85 −149.85 16.71 0.05

Table 2: The parameter estimates
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Figure 3: Actual and estimated time paths

4.3 Parameter Values

Parameter values are presented in Table 2. Figure 3 repeats the plots of Figure 1 and

superimposes the model’s predicted time paths for rent and maintenance expenditure with

an assumed optimal sale date of 43 years. Figure 3 shows that the model succeeds in

tracking the monotonic decline in rent and the non-monotonic time path for maintenance

expenditure that first increases and then decreases. The model underestimates the rent

and its declining rate for the first ten years but accurately tracks the time path for the 15

years from the age of 25 years to the age of 40 years. Although the model overestimates

maintenance expenditure for the 25 years from the age of 5 years to the age of 30 years

and underestimates its increasing rate, it predicts that maintenance expenditure reaches

the maximum at the age of 37.2 years. In sum, we believe that the model does a reasonable

job of predicting the data and that the actual and predicted time paths for rent and

maintenance expenditure are both close to each other.

The two-sample Kolmogorov-Smirnov test (KS test) is one of the most useful and general

nonparametric methods of comparing the “closeness” of two samples. We have conducted

the KS test and not been able to reject the null hypothesis that the two datasets (actual

and predicted) are from the same distribution at the 1% significance level. Table 3 is the

result of the KS test and includes the KS statistics and the p-values for each of the rent

and maintenance expenditure data sets.
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KS-statistics p-value
rent 0.1625 0.22014

maintenance 0.1625 0.22014

Table 3: KS test (no. observation = 90)
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Figure 4: Estimated time path for the deterioration rate

We conclude this subsection with Figure 4, which is the plot of the model’s predicted

deterioration rate. We see that even with an increasing maintenance expenditure for the

first 35 years, the deterioration rate monotonically increases from 1.073 to 1.71 at an almost

constant annual rate.

4.4 Counterfactual Simulation

In this section, we use the estimated model to predict the time paths for the optimal

maintenance expenditure and its associated rent and deterioration rates for various values

of the decay parameter α, the obsolescence parameter β and the initial condition a0.

First, the model is simulated for various values of the decay parameter α. A large α

implies a fast deterioration of a capital asset without maintenance. Figure 5 is the plot of

the time paths of rent, optimal maintenance expenditure and the deterioration rate gen-

erated by the model when α = 0.045 (estimated from the data), when α = 0.054 (raised

by 20%) and when α = 0.063 (raised by 40%). In all cases, r < α, so the asset is a low

deterioration type. First, we see that the optimal sale date is approximately 43 years,

30 years and 24 years when α = 0.045, 0.054 and 0.063 respectively. Hence, the optimal

lifetime is shortened by an increased α. Also, we see that the time series of the optimal

maintenance expenditure is very much different for each α. First, when α = 0.054, an opti-
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Figure 5: Estimated time paths for various α

mal maintenance expenditure still follows the increase-decrease pattern but is flatter than

when α = 0.045. Second, when α = 0.063, the path for an optimal maintenance expendi-

ture is almost non-increasing. The reason that the time path for an optimal maintenance

expenditure changes in this fashion as α increases is that an increase in α induces more

maintenance effort early on but reduces the maintenance incentives later on. In spite of

larger investments in maintenance for the first 10–15 years, the deterioration rate is much

higher for increased α and increases at an increasing rate. Consequently, the rent is lower,

the larger is α.

Figure 6 simulates and plots the time paths for rent, optimal maintenance expenditure

and the deterioration rate for various values of the obsolescence parameter β; that is,

when β = 0.115 (estimated from the data), when β = 0.138 (raised by 20%) and when β =

0.161 (raised by 40%). A large β is the indication of fast technological progress, so the
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Figure 6: Estimated time paths for various β

higher is β, the faster an old asset becomes obsolete. As β increases, we see that the asset is

sold sooner. Approximately, the sale date is 43 years, 35 years and 27 years when β = 0.115,

0.138 and 0.161 respectively. So, an optimal lifetime is shorter, the large is β. An increase

in β reduces the optimal maintenance expenditure at every point in time, and thus increases

the deterioration rate and lowers the rent for all t ∈ (0, T ∗).

Figures 5 and 6 show that an increase in α can have a different effect on optimal

maintenance expenditure than does an increase in β. Although both reduce the rent,

increased α can encourage maintenance efforts, especially early on, while increased β lowers

maintenance incentives all the time. This is because maintenance is effective at preventing

or decreasing physical wear and tear but has nothing to do with the effect of obsolescence.

It is partial replacement, not maintenance, that counteracts the effects of obsolescence. An

optimal maintenance plan therefore varies if partial replacement is considered to be a part of
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maintenance efforts or not. This distinction between maintenance and partial replacement

has not been made by previous optimal-control models of capital maintenance, and thus

deserves emphasis.

Figure 7 is the plot of the time series of rent, optimal maintenance expenditure and the

deterioration rate for various values of the initial condition a0; that is, when a0 = 1.073

(estimated from the data), when a0 = 1.287 (raised by 20%) and when a0 = 1.502 (raised

by 40%). A large a0 means that an asset is low-tech relative to those of the same vintage.

First, we see that the asset is sold approximately at the ages of 43 years, 30 years and 25

years when a0 = 1.073, 1.287 and 1.502 respectively. So, an optimal lifetime is shorter, the

larger is a0. Moreover, just as for an increase in β, an increase in a0 reduces optimal main-

tenance expenditure for all t ∈ (0, T ∗), and thus increases the deterioration rate and lowers

the rent at every point in time. It is intuitive that the effect of increased a0 is somewhat

similar to that of increased β, since maintenance cannot improve the inherent productivity

of the capital asset, just as for the causality between maintenance and obsolescence wherein

obsolescence affects the incentives for maintenance but not vice versa.

5 Conclusion

This paper develops an optimal-control model of deterministic capital maintenance, where

an indivisible capital asset is used for productive purposes for a length of time and then sold.

The production revenue depends on physical wear and tear and obsolescence. Maintenance

slows down physical wear and tear but has nothing to do with the effect of obsolescence.

An optimal policy is then characterized using the Maximum Principle, phase portraits and

a comparative dynamics analysis. Given the characterization, the model is then estimated

from U.S. data on rent and maintenance expenditure on office buildings.

We add to the optimal-control literature on deterministic capital maintenance. First, in

contrast to previous models in the literature, the model developed here is a nonlinear model

in maintenance expenditure, a control variable. Specifically, our model may be viewed as a

nonlinear extension of Thompson’s model (1968). With this extension, it has been shown

that an optimal maintenance policy may vary qualitatively with asset type (i.e., whether

an asset wears out rapidly without maintenance or not). The dependence of an optimal

maintenance on asset type has not hitherto been fully explored in the literature.

Second, we distinguish between maintenance and partial replacement. In the previous

models, maintenance is assumed to be effective at preventing both the process of physical

wear and tear and the effects of obsolescence. However, it is argued here that it is partial

replacement rather than maintenance that counteracts the effects of obsolescence. By as-
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Figure 7: Estimated time paths for various a0

suming that maintenance is effective at preventing physical wear and tear but has nothing

to do with the effect of obsolescence, we make this distinction explicit. Simulations demon-

strate that an increase in physical wear and tear may have a different effect on maintenance

expenditure than that of obsolescence. Although both reduce an owner’s receipts, an in-

crease in physical wear and tear can induce more maintenance efforts, whereas an increase

in obsolescence reduces maintenance incentives all the time. An optimal maintenance pol-

icy may vary if partial replacement is considered to be a part of maintenance efforts or not,

so the distinction matters.

Appendix: Proofs

Lemma 2. Suppose that {T ∗,m∗, a∗T} maximizes J in (2) subject to (1). Then, there exist

a piecewise smooth function µ(t) and a piecewise continuous Lagrange multiplier func-
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tion ν(t), such that for all t ∈ [0, T ∗]

Lm ≤ 0, m∗Lm = 0

Lmm ≤ 0

ν ≥ 0, νLν = 0

where L is the Lagrangian function defined by

L = L(a,m, µ, ν) = H + ν(a− a0).

Moreover except for the points of discontinuities of m,

ȧ∗ = Lµ, µ̇ = rµ− La.

In addition, the following transversality conditions are also necessary. At t = T ∗,

µ ≤ S ′(a∗T + b)

H ≥ rS(a∗T + b)− S ′(a∗T + b)ḃ

with equality when a∗T > a0 in the former and when T ∗ < Z in the latter.

Lemma 2 is the necessary conditions for the problem posed in Section 2. A general

statement is in many places. See, for instance, Theorem 6.1 in Caputo (2005) for the

necessary conditions for an optimal control problem with inequality state constraints, and

Theorems 10.2–10.3 in that book for the salvage-value transversality conditions for a free

endpoint and free terminal-date control problem.

Proof of Part (i) of Proposition 1. Applying the former transversality condition in Lemma 2,

the latter transversality condition becomes

R−m∗ + S ′(a∗T + b)ȧ∗ ≥ R−m∗ + µȧ∗ ≥ rS(a∗T + b)− S ′(a∗T + b)ḃ.

The claim of this proposition is just this rearranged.

Proof of Part (ii) of Proposition 1. First, note that z′(m) > 0 and Lmm ≤ 0 imply

µ ≤ 0 for all t ∈ (0, T ) in an optimal plan. Suppose t ∈ I. By hypothesis, a∗ > a0 at

every t ∈ I. So, νLν = 0 implies ν = 0. Apply this to expand La, yielding

µ̇ = (r − α)µ−R′(a∗ + b).

Let f(m) ≡ −1 − µz′(m) = Lm, indicating the rate of change in L for a unit increase

in m. If f(0) ≤ 0, then z′′(m) < 0 implies f(m) < 0 for all m > 0. That is, f(0) > f(m)

for any m > 0. Therefore, m∗ = 0 if t ∈ I and 1 ≥ −µz′(0).
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If f(0) > 0 then µ < 0. A small increase in m from zero strictly increases L, imply-

ing m∗ > 0. From m∗Lm = 0, this implies Lm = 0. Rearranging it gives −1 = µz′(m∗).

Next suppose t ∈ B. By definition, a∗ = a0 and ȧ∗ = 0 at every t ∈ B. From ȧ = Lµ,

this implies αa0 = z(m∗) for all t ∈ B. Note m∗ > 0, since z(m) > 0 if and only if m > 0

and since αa0 > 0. From m∗Lm = 0, this suggests Lm = 0. So, µ = −1/z′(m∗). Since m∗

is fixed, µ is constant and trivially continuous over B. That is, µ̇ = 0. Apply these

to µ̇ = rµ− La yielding

ν = −(r − α)/z′(m∗)−R′(a0 + b). (8)

Note that ν ≥ 0 if and only if (r−α)+R′(a0+b)z′(m∗) ≤ 0. Also ν̇ > 0 because R′(a+b) < 0

and ḃ = β > 0.

Condition (6) is merely the former transversality condition in Lemma 2.

Proof of Proposition 2. If L is concave in (m, a) and S(aT + b) is concave in aT , then

from the Mangasarian sufficient conditions the claim follows. See, for instance, Theo-

rem 10.4 in Caputo (2005). A sufficient condition for L to be concave in (m, a) is that the

Hessian of L is negative semi-definite. If D2L indicates the Hessian of L, then

D2L =

[
Lmm Lma

Lam Laa

]
=

[
−µz′′(m) 0

0 R′′(aT + b)

]
.

Since Lmm ≤ 0, Laa < 0 and |D2L| ≥ 0, the determinant test establishes that L is concave

in (m, a). Also SaT aT (aT + b) = S ′′(aT + b) < 0. Hence S is concave in aT . Applying the

Mangasarian sufficient conditions completes the proof.

Proof of Part (i) of Lemma 1. Set ȧ∗ = 0, yielding the ȧ∗=0 isocline a∗ = z(m∗)/α

in the (m∗, a∗)-space. Since α > 0, this is well-defined and increasing (and concave).

Since limm→0 + z(m) = 0, the isocline includes the vector (limm∗→0+ m∗, lima∗→0+ a∗). Since α

is constant, the isocline does not change with time.

Lemma 3. Given T ∗, suppose m∗ > 0 and a∗ > a0 for all t ∈ (0, T ∗). Then, m∗ satis-

fies ṁ∗ = x(m∗)G(m∗, a∗, b), where x(m) = −z′(m)/z′′(m) and G(m, a, b) = r−α+R′(a+

b)z′(m).

Proof of Lemma 3. By Proposition 1, 1 = −µz′(m∗) for all t ∈ (0, T ∗). Rearranging

it, µ = −1/z′(m∗) for any t ∈ (0, T ∗). Differentiate the both sides with respect to time,

yielding

µ̇ = z′′(m∗)ṁ∗/z′(m∗)2.

Apply these to µ̇ = rµ− La in (5) and rearrange the terms. The claim follows.

21



Proof of Part (ii) of Lemma 1. By Lemma 3, ṁ∗ = 0 occurs if and only if r > α,

since z′ > 0, z′′ < 0 and R′ < 0. So, the ȧ∗=0 isocline exists if and only if r > α. The rest

of the claim follows from the lemma below.

Lemma 4. Let r > α and let m∗ > 0 and a∗ > a0 for all t ∈ (0, T ∗) given T ∗. Suppose that

a set {(m∗, i(m∗; b))} of vectors in (m∗, a∗)-space indicates the ṁ∗=0 isocline at time t ∈
(0, T ∗). Then, im(m

∗; b) > 0 and ib(m
∗; b) < 0.

Proof of Lemma 4. Lemma 3 shows ṁ∗ = x(m∗)G(m∗, a∗, b). Set G(m∗, a∗, b) = 0.

Note Ga(m
∗, a∗, b) < 0, since x(m) > 0, z′ > 0 and R′′(a + b) < 0. Apply the Implicit

Function Theorem to rewrite a∗ = i(m∗, b) where Ga(m
∗, i(m∗, b), b) = 0. Then, the set of

vectors {(m∗, i(m∗, b))} corresponds to the ṁ∗ = 0 isocline at time t. Since Gm(m
∗, a∗, b) >

0 and Gb(m
∗, a∗, b) < 0, the Implicit Function Theorem also proves im(m

∗; b) = −Gm/Ga >

0 and ib(m
∗, b) = −Gb/Ga < 0.

Proof of Proposition 3. Draw the phase diagram on (ṁ∗, ȧ∗) in (m∗, a∗)-space. First,

the transition function on a in (1) implies that the area above the ȧ∗=0-isocline is where

a∗ increases over time, while the area below is where a∗ is decreases over time. Second,

Lemma 3 implies ṁ∗ ≤ 0 if r − α < 0, since z′ > 0, z′′ < 0 and R′ < 0. From these pieces

of information, we can draw a phase portrait as in Figure 2(a).

The initial maintenance expenditure is less z−1(αa0); otherwise, a
∗ = a0 at the next

moment. Since (m∗(0), a∗(0)) is above the ȧ∗=0-isocline, the maintenance expenditure

decreases through time and the deterioration rate increases though time at time 0 and also

thereafter in an optimal plan.

Differentiate the both sides of the transition function ȧ = αa − z(m) with respect to

time, yielding

ä = αȧ− z′(m)ṁ.

Since a∗ increases through time and m∗ decreases through time, this suggests ä∗ > 0 for

all t ∈ (0, T ∗).

Proof of Proposition 4. Draw the phase diagram on (ṁ∗, ȧ∗) in (m∗, a∗)-space. First,

the transition function on a in (1) implies that the area above the ȧ∗=0-isocline is where a∗

increases over time, while the area below is where a∗ decreases over time. Second, the

transition function on m∗ in Lemma 3 implies that the area above the ṁ∗=0-isocline is

where m∗ decreases over time, while the area below is where m∗ increases over time. From

these pieces of information, we can draw a phase portrait as in Figure 2(b). Note that
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the ȧ∗=0-isocline shifts down as time passes, so its intercept to the a∗-axis at time t can

be much larger or smaller.

There are at least three cases to consider. First, suppose that the ṁ∗=0-isocline has an

initial a∗-intercept, ι0, that is greater than a0. The initial maintenance outlay is less

than z−1(αa0); otherwise, a∗ = a0 at the next moment. So, {m∗(0), a∗(0)} is below

the ṁ∗=0-isocline and above the the ȧ∗=0-isocline, implying that both m∗ and a∗ are in-

creasing with time early on. If ι0 is not far greater than a0, then the trajectory of (m∗, a∗),

which may be heading to the upper-right, may encounter the ṁ∗=0-isocline, which is shift-

ing down, at some time t′ ∈ (0, T ∗). If so, the value of m∗ is the largest at time t′ and starts

declining beyond time t′ while a∗ keeps increasing. Alternatively, if ι0 is far greater than a0,

then the trajectory of (m∗, a∗) may not able to reach the ṁ∗=0-isocline before time T ∗. So,

in this case, both m∗ and a∗ increase monotonically over (0, T ∗). There is yet another case.

Suppose that the ṁ∗=0-isocline has an initial m∗-intercept that is greater than z−1(αa0).

In this case, clearly {m∗(0), a∗(0)} is above both of the ṁ∗=0- and the ȧ∗=0-isoclines.

Since the ṁ∗=0-isocline shifts down as time passes, this implies that m∗ decreases with

time while a∗ increases with time over (0, T ∗). The other cases are that the initial intercept

of the ṁ∗=0-isocline to the a∗-axis is between zero and a0 and that the initial intercept of

the ṁ∗=0-isocline to the m∗-axis is between zero and z−1(αa0). They may be discussed in

a similar fashion to the first case.

Proof of Proposition 5. We employ the dynamic envelope method proposed by Caputo

(2005). To begin, consider the following primal, fixed endpoint and fixed time control

problem:

V (ω) ≡ max
m≥0

∫ T

0

e−rt [R(a+ b)−m] dt subject to (1)

where ω = (β, a0, aT , T ). By using the Maximum Principle, the maximized value function V

is also written out with the Hamiltonian H as

V (ω) =

∫ T

0

e−rt [H(a∗,m∗, µ;ω)− µ [αa∗ − z(m∗)]] dt.

Let B(ω′) be a four-dimensional open ball centered at the given parameter value ω′ of

radius δ > 0. The dynamic “primal-dual” problem corresponding to this primal problem

is defined by

max
ω

ϕ(ω) ≡
∫ T

0

e−rt [R(a∗(t;ω∗) + b(t;ω))−m∗(t;ω∗)] dt− V (ω)

s.t. αa∗(t;ω∗)− z(m∗(t;ω∗))− µ̇(t;ω∗), a∗(0;ω∗) = a0, a∗(T ;ω∗) = aT
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where (a∗(t;ω∗),m∗(t;ω∗)) is the optimal pair of curves given that the parameter vector ω

is fixed at the arbitrary value ω∗ = (β∗, a0, aT , T ) ∈ B(ω′), and µ∗(t;ω∗) is its associated

costate function. By construction, ϕ(ω) ≤ 0 for all ω ∈ B(ω′′) with equality when ω = ω∗.

Noticing that the correct multiplier function for the state equation constraint is µ(t;ω∗),

form the Lagrangian L of this dynamic primal-dual problem as

L(ω) ≡
∫ T

0

e−rt {R(a∗(t;ω∗) + b(t;ω))−m∗(t;ω∗) + µ(t;ω∗) [αa∗(t;ω∗)− z(m∗(t;ω∗))

−µ̇(t;ω∗)]} dt− V (ω)

=

∫ T

0

e−rt {H(a∗(t;ω∗),m∗(t;ω∗), µ(t;ω∗);ω)− µ(t;ω∗) [αa∗(t;ω∗)− z(m∗(t;ω∗))]} dt

− V (ω).

Using the integration by parts and then using the initial and terminal condition constraints

yield

L(ω) =
∫ T

0

e−rt [H(a∗(t;ω∗),m∗(t;ω∗), µ(t;ω∗);ω) + µ̇(t;ω∗)a∗(t;ω∗)] dt

− µ(T ;ω∗)aT + µ(0;ω∗)a0 − V (ω).

By the first-order necessary condition for the primal-dual problem, Lω(ω) ≡ 0. So,

Lβ(ω) =

∫ T

0

e−rtHβ(a
∗(t;ω∗),m∗(t;ω∗), µ(t;ω∗);ω)dt− Vβ(ω) ≡ 0. (9)

Moreover, the second-order necessary condition together with the fact that β does not

appear in the transition function nor in the endpoint constraints on a∗ suggests that Lββ(ω)

be negative semidefinite (n.s.d.) for all ω ∈ B(ω′) free of constraint.

Differentiating (9) with respect to β and remembering b = βt, the negative semidefi-

niteness of Lββ implies

Lββ =

∫ T

0

e−rtR′′(a∗(t;ω∗) + b(t;ω))t2dt− Vββ(ω) ≤ 0.

Since R′′ < 0 for all ω ∈ B(ω′), this in turn implies Vββ(ω) ≥ 0 for all ω ∈ B(ω′), or that V

is convex in β for all ω ∈ B(ω′).

From the first-order necessary condition (9) and the convexity of V in β,

Vββ(ω) =

∫ T

0

e−rt

[
Hβa(t;ω

∗)
∂a∗(t;ω∗)

∂β
+Hββ(t;ω

∗)

]
dt

=

∫ T

0

e−rtR′′(a∗(t;ω∗) + b(t;ω)) t2
[
∂a∗(t;ω∗)

∂β
+ 1

]
dt ≥ 0,
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where Hβ i(t;ω
∗) = H(a∗(t;ω∗),m∗(t;ω∗), µ(t;ω∗);ω∗), i = a or β. So, it is ruled out

that ∂a∗(t;ω∗)/∂β ≥ 0 for all t ∈ (0, T ∗] in an optimal plan. Since the choice of ω∗ is

arbitrary, this holds for all ω ∈ B(ω′).

What remains to show is that if ∂m∗/∂β ≥ 0 for all t ∈ (0, T ∗] then ∂a∗/∂β ≥ 0 for

all t ∈ (0, T ∗]. This is established by contradiction. Suppose ∂m∗/∂β ≥ 0 for all t ∈ (0, T ∗]

but ∂a∗/∂β < 0 at some t′ ∈ (0, T ∗]. To begin, let t′ = T ∗. Then, while the first-

order condition (4) insists that increased m∗(t′) be associated with more negative µ(t′),

the terminal condition (6) suggests that more negative µ(t′) be associated with larger a∗T .

A contradiction. So, t′ cannot be T ∗. Next, proceeding backwards, let t′ be the time a

moment before T ∗. Then, while condition (4) insists that increased m∗(t′) be associated

with more negative µ(t′), condition (7), which may be approximated as

µ(t′) ≈ e−(r−α)(T ∗−t′)S ′(a∗T + b(T ∗)) +R′(a∗(t′) + b(t′))(T ∗ − t′),

suggest that more negative µ(t′) be associated with larger a∗(t′). A contradiction. So,

t′ cannot be the time a moment before T ∗ either. Now, consider any t′ ∈ (0, T ∗). Pro-

vided ∂a∗/∂β ≥ 0 for all t ∈ (t′, T ∗], it is straightforward to show that conditions (4)

and (7) suggest that increased m∗(t′) be associated with increased a∗(t′). A contradiction.

Since t′ is arbitrary, there exists no t′ ∈ (0, T ∗] such that ∂a∗/∂β < 0 while ∂m∗/∂β ≥ 0

for all t ∈ (0, T ∗].

Proof of Proposition 6. The sign of the second-order derivative of V with respect to β

has been shown in the proof of Proposition 5. With ω = (β, a0, T, aT ), (9) implies

Vβ(ω) =

∫ T

0

e−rtR′(a∗(t;ω) + b(t;ω)) t dt.

Since R′ < 0, this is negative. By redefining ω by ω = (α, a0, T, aT ) and repeating the same

discussion, we have Lω(ω) ≡ 0. So,

Vα(ω) ≡
∫ T

0

e−rtHα(a
∗(t;ω),m∗(t;ω), µ(t;ω);ω)dt =

∫ T

0

e−rtµ(t;ω)a∗(t;ω)dt < 0

since µ < 0 and a∗ > a0 > 0 for all t ∈ (0, T ∗).
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