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Abstract

A large society is confronted with a dichotomous choice. There are predetermined weights

with which the members’ votes are summed up and the society chooses the alternative that wins

the plurality. The members’ information about the alternatives are endogenous: they invest some

efforts before making their votes, and the levels of the investments determine the accuracies of their

votes. We find that removing off the existing vote weight disparity could deteriorate the society’s

performance, but whether it would occur or not can be figured out by just checking the sign of

some covariances.
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1 Introduction

In collective decision processes, there are sometimes essential vote weight disparities among members

(maybe due to historical reasons). Once the disparity is recognized as unignorably large, the correction

becomes public concern. The correction would remedy inequity among members. However, once

considering (i) the role of the collective decision process for aggregating dispersed information among

members and (ii) the existence of their efforts to gather such information (or cast their votes more

carefully), another aspect arises: it would also change their incentives to make such efforts, which

might result in the worse performance of the collective decision.

To approach this aspect, we develop an election model with vote weight disparities and accuracy

improvement costs, and investigate its asymptotic properties. (Theorem.) We find that (i) the per-

formance could be damaged by removing off the existing disparity, but (ii) whether it would happen

or not can be simply figured out by just checking the sign of some covariances. (Corollaries 1 and 2.)

The next section presents the model, and the results and discussions are in Section 3. The proof

of Theorem is in Appendix.

2 Model

There is a set of voters, Nn = {1, 2, ..., |Nn|}, the size of which is an odd number and limn→∞ |Nn| = ∞.

The strategy of each voter i ∈ Nn is the accuracy of his vote, qi ∈ [1/2, 1], for which he incurs

the investment costs of Ci(qi). Ci(q) is strictly increasing, strictly convex and twice continuously

differentiable in q, and C(1/2) = 0. If the society succeeds in adopting the right policy, he receives

the utility ri. Otherwise, he receives 0.

The policy is chosen between two (symmetric) alternatives by majority vote, where the vote of each

voter i is multiplied by an integer mi: i.e., the alternative that acquires strictly more than
∑

i mi/2

votes wins. For simplicity, denote Mn ≡
∑

i mi. To avoid tie-breaking, we assume that Mn is an odd

number.

We assume that the accuracies of voters are independent: let {xi(qi)}i∈Nn be independent random

variables such that

xi(qi) =
{

1 with probability qi, and
0 with probability 1− qi.

(1)

xi = 1 corresponds to the event that a voter i votes for the right alternative, and xi = 0, for the wrong
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one.1 Then, the probability that the right alternative is chosen is

Pr

(∑

i

mixi(qi) >
Mn

2

)
. (2)

In summary, given strategies {qj}j∈Nn , the payoff to each voter i is

ri Pr


∑

j

mjxj(qj) >
Mn

2


− Ci(qi). (3)

Voters are classified in finite (K < ∞) subgroups, {Nk
n}k=1,...,K . If i ∈ Nk

n , then (ri,mi, Ci) =

(rk,mk, Ck). Denote αk
n ≡ |Nk

n |/|Nn|. Let each subgroup account for positive share: αk ≡ limn→∞ αk
n >

0 for all k. To make sure some smoothness, we assume that a positive (but arbitrarily small) fraction

of voters have a unit vote: mk = 1 for some k.2

We focus on symmetric pure Nash equilibria: i.e., an equilibrium is characterized by {qk
n}k=1,...,K

such that for all k and for all i ∈ Nk
n ,

qk
n = qi ∈ arg max

qi

ri Pr


∑

j

mjxj(qj) >
Mn

2


− Ci(qi). (4)

The probability in the equilibrium that the right alternative is chosen is

Pr


∑

k

∑

i∈Nk
n

mkxi(qk
n) >

Mn

2


 . (5)

The probability in the equilibrium that the right alternative wins the majority in a subgroup k is

Pr


 ∑

i∈Nk
n

xi(qk
n) >

|Nk
n |

2


 . (6)

For the cases of K = 1, Martinelli (2004) shows that if C ′
1(1/2) = 0 and 0 < C ′′

1 (1/2) < ∞, then

(5) converges to Φ(d) as n grows, where Φ is the cumulative distribution function of N(0, 1), and d

solves
φ(d)

d
=

C ′′
1 (1/2)

4
, (7)

1We do not explicitly consider strategic voting here. For discussions on strategic and naive voting, see, e.g., Austen-
Smith and Banks (1996).

2More precisely, it is sufficient for utilizing the local limit theorem of Mcdonald (1979).
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where φ is the probability density function. Note that for any d ∈ (0,∞), there exists C ′′
1 (1/2) ∈

(0,∞) that satisfies (7). Moreover, as we can see in Martinelli (2004) (or (19) in Appendix here),

the requirement of C ′
1(1/2) = 0 is equivalent to just requiring that voters do not give up positive

investments as long as there remains a possibility of affecting the outcome. Thus, we can interpret

any probability of the right choice (not worse than a fair coin toss) in reality as a limit behavior of

the model here with no vote weight disparity and an identical cost function that is not so implausible.

We find in the next section that such interpretations are also possible with any other disparities.

3 Results and Discussions

For simplicity, denote average values as A[y] ≡ ∑
k αkyk.

Theorem. Suppose that C ′
k(1/2) = 0 and 0 < C ′′

k (1/2) < ∞ for all k. Then, as n grows, (5) converges

to Φ(d) where d solves
φ(d)

d
=

1
4

A[m2]
A[rm2/C ′′(1/2)]

. (8)

Moreover, for all k, (6) converges to Φ(
√

αkek) where ek solves

ek =
rkmk

C ′′
k (1/2)

√
A[m2]

A[rm2/C ′′(1/2)]
d. (9)

Thus, any probability of the right choice with any distribution of voters’ utilities and vote weights

can be justified. Moreover, if we accept the ability indifference (i.e., Ck = C̄ for all k), then we can

predict the probability with no disparity, and simply by just checking the sign of the covariance of

utilities and squared vote weights, figure out whether the performance would deteriorate or not. We

summarize these implications below.

Corollary 1. Consider any {(αk, rk, m̂k)} and P ∈ (1/2, 1). Then, there exists C̄ with C̄ ′(1/2) = 0

and 0 < C̄ ′′(1/2) < ∞ such that: if {mk} = {m̂k} and Ck = C̄ for all k, then (5) converges to P .

Moreover, for any such C̄: if mk = 1 for all k, then (5) converges to P0 = Φ(d0) where d0 solves

φ(d0)
d0

=
A[rm̂2]

A[r]A[m̂2]
φ(d)

d
(10)

where d solves Φ(d) = P . (10) implies that P0 < P if and only if

Cov
(
r, m̂2

)
> 0. (11)
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It is sometimes difficult to know about voters’ utilities as well as their abilities. However, present

behaviors of voters under the existing disparity may provide us some information about them. The

following corollary states that learning how often the right alternative wins the majority in each

subgroup under the existing disparity, {Pk}, is enough to predict the performance with no disparity,

even though we do not impose the restriction of identical abilities there.

Corollary 2. Consider any {(αk, m̂k)} and {Pk} with 1/2 < Pk < 1 for all k. Then, there exists

{Ck} with C ′
k(1/2) = 0 and 0 < C ′′

k (1/2) < ∞ for all k and {rk} such that: if {mk} = {m̂k}, then

(6) converges to Pk for all k. Moreover, for any such {Ck} and {rk}: (i) if {mk} = {m̂k}, then (5)

converges to P = Φ(d) where

d =
A[m̂e]√
A[m̂2]

(12)

where ek solves

Pk = Φ(
√

αkek) (13)

for all k, and (ii) if mk = 1 for all k, then (5) converges to P0 = Φ(d0) where d0 solves

φ(d0)
d0

=
A[m̂e]

A[e/m̂]A[m̂2]
φ(d)

d
. (14)

(14) implies that P0 < P if and only if

Cov
(
e/m̂, m̂2

)
> 0. (15)

Finally, we briefly discuss how biased the prediction will be if one ignores the endogeneity.3 It

is equivalent to regarding {ek} as given exogenously: he expects that the probability of the right

choice would become P̂0 = Φ(d̂0) under no disparity from P = Φ(d) with d in (12) under the existing

disparity, where

d̂0 =
A[1e]√
A[12]

= A[e]. (16)

Thus, he concludes that the performance would not be damaged if and only if

d̂0 = A[e] ≥ A[m̂e]√
A[m̂2]

= d. (17)

3There are many literatures on the effects of vote weight with exogenous competences. See, e.g., Nitzan and Paroush
(1982).
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Then, can it happen that he concludes that the performance would deteriorate by removing existing

disparity away though actually it would not? Surely it can. Consider cases with ek = am̂b
k for all k.

If b < 1, then Cov(e/m̂, m̂2) < 0, and hence P0 > P . However, for b = 1,

A[m̂e]√
A[m̂2]

= a
√

A[m̂2] > aA[m̂] = A[e]. (18)

Thus, P̂0 < P < P0 everywhere within an interval b ∈ (b, 1) for some b < 1. In other words, the

prediction ignoring the endogeneity is biased in favor of status quo vote weight disparity.
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Appendix

Proof of Theorem: For simplicity, denote Sn ≡
∑

k

∑
i∈Nk

n
mkxi(qk

n) and Si
n ≡ Sn −mkxi(qk

n) for

i ∈ Nk
n . Let En ≡ E[Sn] =

∑
k |Nk

n |mkq
k
n and Vn ≡ Var(Sn) =

∑
k |Nk

n |m2
kq

k
n(1− qk

n). Define dn as

dn ≡ En −Mn/2√
Vn

.

Then, by the central limit theorem,4 (5) converges to Φ(d) if limn→∞ dn = d.

The first order conditions of (4) yield5

rk

mk∑

m=1

Pr
(

Si
n =

Mn + 1
2

−m

)
= C ′

k(q
k
n). (19)

For simplicity, let P k
n (m) ≡ Pr

(
Si

n = (Mn + 1)/2−m
)

for some (and hence for all) i ∈ Nk
n . Then,

rearranging (19) yields
√

Vn
∑mk

m=1 P k
n (m)/mk

φ(dn)
φ(dn)

dn
=

C ′
k(q

k
n)/(rkmk)

En/Mn − 1/2
Vn

Mn
. (20)

First, we show that lim supn→∞ dn < ∞. Suppose, on the contrary, that along some subsequence,

limn→∞ dn = ∞. If limn→∞ dn/|Nn|1/2 > 0, then since limn→∞
√

Vn/dn < ∞, the LHS of (20)

converges to 0. Otherwise, note that by (19), maxk

∣∣qk
n − 1/2

∣∣ → 0. Thus, Vn/|Nn| →
∑

k αkm
2
k/4 > 0.

Therefore, since mk = 1 for some k, by the local limit theorem,6

lim
n→∞

√
VnP k

n (m)
φ(dn)

= 1 for all k, for 1 ≤ m ≤ mk. (21)

Thus, the first term of the LHS converges to 1, and hence the LHS to 0 again. However, let k(n) ∈
arg maxk qk

n. Then,

C ′
k(n)(q

k(n)
n )

En/Mn − 1/2
≥

C ′
k(n)(q

k(n)
n )

q
k(n)
n − 1/2

≥ min
k

C ′
k(q

k
n)

qk
n − 1/2

→ min
k

C ′′
k (1/2) > 0 as n →∞.

Thus, contradictorily, the RHS for k(n) does not converge to 0.

Therefore, lim supn→∞ dn < ∞ holds. Then, by the local limit theorem as above, (21) holds again.

Thus, for all k, k′,

lim
n→∞

∑mk
m=1 P k

n (m)/mk∑mk′
m′=1 P k′

n (m′)/mk′
= 1,

4See, e.g., Feller (1971).
5Note that a voter can affect the “outcome” only when his vote is pivotal.
6See, e.g., McDonald (1979).
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which implies, by (19),

lim
n→∞

C ′
k(q

k
n)/(rkmk)

C ′
k′(q

k′
n )/(rk′mk′)

= 1. (22)

Therefore,

C ′
k(q

k
n)/(rkmk)

En/Mn − 1/2
=

1
P

k′ αk′
n rk′m2

k′P
k′′ αk′′

n mk′′

C′
k′ (q

k′
n ))/rk′mk′

C′k(qk
n)/(rkmk)

qk′
n −1/2

C′
k′ (q

k′
n )

→
∑

k′ αk′mk′∑
k αkrkm

2
k/C ′′

k (1/2)
as n →∞. (23)

Since limn→∞ Vn/Mn = (1/4)
((∑

k αkm
2
k

)
/ (

∑
k′ αk′mk′)

)
, (20), (21) and (23) imply that d must

solve (8).

Define dk
n as

dk
n ≡

|Nk
n |(qk

n − 1/2)√
|Nk

n |qk
n(1− qk

n)
.

Then, since

dn =
∑

k

mkd
k
n

√
|Nk

n |qk
n(1− qk

n)∑
k′ |Nk′

n |m2
k′q

k′
n (1− qk′

n )
, (24)

(22) and the central limit theorem again imply (9). 2
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