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1 Introduction

The topic of large-buyer discounts has generated considerable interest among antitrust policymak-

ers, business journalists, and academic economists. The conventional wisdom is that large buyers

are somehow better bargainers than small buyers in price negotiations with a seller. Theoretical

analyses of such a bargaining model (Horn and Wolinsky 1988, Stole and Zwiebel 1996, Chipty

and Snyder 1999, Inderst and Wey 2003, Raskovich 2003) concluded that large-buyer discounts

are not guaranteed but depend on the curvature of the total surplus function over which the parties

bargain.

Figure 1 captures the logic behind the theoretical argument. Suppose for simplicity that buyers

are final good consumers or are downstream firms which sell their output on separate markets.

The total surplus over which the parties bargain, W (Q), is equal to total benefits (downstream

consumer surplus or revenue) minus total costs (upstream and downstream production costs) as

a function of the quantity, Q, sold to buyers who reach an agreement with the seller. Suppose a

buyer with demand for q units trades with the seller. Assuming that others come to an efficient

agreement with the seller, the buyer may be regarded as the marginal player, contributing marginal

surplus A to the total. In Figure 1A, in which the total surplus function is concave, A is quite

small, and so whatever the sharing rule implicit in the bargaining process, the buyer will not

obtain very much surplus per unit. Now consider a second buyer who is twice as big as the

first, having demand for 2q units. The relevant marginal surplus over which the large buyer and

seller bargain becomes A +B, which is much greater per unit than A due to the concavity of the

surplus function. The large buyer’s greater per-unit surplus translates into a lower per-unit price

than paid by the small buyer.

Contrast this result with the case of a linear total surplus function in Figure 1B. Taking the

small buyer to be the marginal player, the surplus over which he bargains to satisfy his q units of

demand is A. Taking the large buyer to be the marginal player, to fulfill his 2q units of demand,
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he bargains over the surplus A + B, which is twice as large as A by the linearity of the surplus

function. Thus, the large and small buyer contribute the same marginal surplus per-unit and, as

a result, pay the same per-unit price.

The case of a convex total surplus function in Figure 1C is more complicated. The surplus

over which the small buyer bargains, A, is much larger per unit than that over which the large

buyer bargains, A + B. Hence we might expect large-buyer premia to emerge in equilibrium.

However, buyers’ contributions to surplus at the margin may be so high that the low prices they

pay as a result are insufficient to cover the seller’s costs. Multiple equilibria may arise with

one buyer or another paying more to prevent the seller from taking his outside option not to

produce. As our analysis in Section 3 will show, the set of equilibrium outcomes may range from

large-buyer premia, to prices independent of size, to large-buyer discounts.1

We test this theory in an experimental setting with three treatments corresponding to markets

with concave, linear, and convex total surplus functions. We generate curvature in the surplus

function by varying the seller’s marginal cost function, with increasing marginal costs leading to

a concave total surplus function, constant marginal costs leading to a linear total surplus function,

and decreasing marginal costs leading to a convex total surplus function.

Our results support the qualitative predictions of the theory for buyer-size discounts. Sub-

stantial large-buyer discounts are observed in the increasing marginal cost treatment (i.e., concave

total surplus function). Large buyers’ per-unit bids are 12 percent lower on average than small

buyers’ in this treatment. Sellers are also more likely to accept low bids from large buyers.

Thus, the large-buyer discount is larger, 14 percent, for accepted bids. In the cases of constant

and decreasing marginal costs, large and small buyers bid virtually the same per-unit price on
1Alternative theories can generate buyer-size discounts in the absence of curvature of the surplus function. In Katz

(1987) and Scheffman and Spiller (1992), large buyers’ credible threat of backward integration limits prices charged
to them. In Snyder (1996, 1998), collusion is difficult to sustain in the presence of larger buyers. In McAfee and
Schwartz (1994), Dobson and Waterson (1997), and Chen (2003), downstream product market competition affects
firms’ negotiations with an input supplier. In Chae and Heidhues (2004) and DeGraba (2005), sellers favor large
buyers because of risk aversion.
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average, and sellers’ acceptance probabilities do not differ between them.

The fact that buyer-size discounts emerge in the cases predicted by theory and only those

cases is notable for several reasons. First, the underlying bargaining game involves a consid-

erable amount of strategic uncertainty. Buyers must form conjectures about the simultaneous

bids of other heterogeneous buyers and the sequential rationality of the seller’s response to these

bids. The solution concept employed by the theoretical papers we test, typically subgame-perfect

equilibrium, effectively requires buyers to regard themselves as marginal in just the right way

depending on their size. The solution concept may not be a good predictor of observed outcomes

in our experimental setting. Indeed, observed buyer bids differ markedly from the corresponding

theoretical predictions for a number of cases (average bids are higher than theory predicts for

the constant and decreasing marginal cost treatments; small-buyer bids are lower than theory

predicts for the increasing marginal cost treatment). Despite the fact that the theory’s quantita-

tive predictions concerning buyer-bid levels do not always hold in the experiments, the theory’s

qualitative predictions concerning buyer-size discounts do hold. Second, the experimental bar-

gaining literature underscores that fairness and equity concerns may inhibit convergence to the

subgame-perfect equilibrium in settings such as the ultimatum game, even with repeated play and

high stakes (see, e.g., Slonim and Roth 1998). Despite the latitude for fairness considerations and

their ability to account for some observed divergences from equilibrium play in our experiments,

buyer-size discounts nonetheless emerge only where predicted by the theory.

To our knowledge, ours is the first direct test of the bargaining literature cited in the first para-

graph. A few empirical papers have provided indirect tests (Ellison and Snyder 2002, Sorensen

2003). In the particular industries studied, large-buyer discounts were found in markets with

competing suppliers but not with monopoly suppliers. Although this result does not support the

bargaining literature cited above, it is not a direct rejection since the theory does not say large-

buyer discounts must emerge in equilibrium—large-buyer discounts may not emerge if the total

surplus function is not concave. Chipty and Snyder (1999) estimate the curvature of the total
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surplus function in cable television. Their estimates could be used to determine which case from

the bargaining theory applies to cable television, but their paper is not a direct test of the theory

since they have no data on prices paid by buyers.

While ours is the first experimental study of size as a source of buyer discounts, previous

experimental papers have studied other sources of buyer discounts. Ruffle (2000) examines

buyers’ ability to extract price concessions from competing sellers through demand withholding.

Davis and Wilson (2006) analyze the impact of strategic buyers on market outcomes after a seller

merger. Engle-Warnick and Ruffle (2005) show that two buyers achieve significantly lower prices

against a monopoly seller than do four buyers. None of these studies varies buyer size within a

market to measure buyer-size discounts, nor do they vary the shape of the total surplus function

to test the bargaining theories cited in the first paragraph, as we do in the present paper.

2 Experimental Design

To test for the relationship between the curvature of the surplus function and buyer-size discounts,

we designed three separate markets or treatments. The three treatments differ only in the shape of

the seller’s marginal cost function: a treatment with an increasing marginal cost function (IMC),

constant marginal cost function (CMC), and decreasing marginal cost function (DMC). In each

market, three buyers face a single seller. Two of the buyers are small, with unit demand for the

fictitious commodity, and the other buyer is large, with demand for two units.2

The buyers’ per-unit gross surplus is vi = 100, implying total gross surplus of Vi = 100 for

a small buyer and Vi = 200 for the large buyer. The seller can supply up to four units to the

buyers, so there is no binding capacity constraint. We control for the total cost of supplying all
2Exogenous variation in buyer size allows for a simple, direct test of the theory but is also of practical relevance

for wholesale and intermediate-good markets in which a monopolist sells to independent local buyers whose size is
exogenous, reflecting varying downstream demand that each buyer faces in its local market. It is also of relevance
in markets in which buyers are chain stores whose size is determined by the number of retail outlets in the chain.
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four units by setting it equal to 80 in all three treatments. In the IMC treatment, the seller’s first

unit of production costs 0, the second unit costs 5, the third unit 15, and the fourth 60. The DMC

treatment uses the same numbers but in reverse order, so the first unit costs 60, the second unit

15, the third 5, and the fourth 0. In the CMC treatment, all four units have the same marginal

cost of 20. Combining the gross surplus and cost parameters yields the total surplus functions

graphed in Figure 2. The IMC treatment leads to a concave surplus function, CMC to a linear

one, and DMC to a convex one.

Twelve subjects participate in each experimental session. After reading the instructions, nine

of the subjects are randomly selected to play the role of buyer and three to play the role of seller.

This role remains fixed throughout the experiment.

The experiment consists of 60 rounds. In each round, all three markets are simultaneously

conducted (one IMC, one CMC and one DMC market) and with probability 1/3 each subject is

assigned to each of these markets. Thus, over the course of the 60-round experiment, all subjects

participate in each of the three markets. This design feature permits within-subject comparisons

across markets. Further, we used a random matching scheme. That is, the cohort of three buyers

and one seller that constitutes a market each round is randomly determined. We selected this

design feature to minimize repeated-game effects.3 A final random element in the design is the

designation of the large and two small buyers in each market. In a each market, two buyers are

randomly assigned the role of small buyer and one buyer the role of the large buyer in each of

the 60 rounds. The randomization scheme was performed once, prior to conducting any of the

experiments. The outcome of the randomization scheme was used for all six sessions. In this

way, we minimize between-session differences unrelated to behavior.

Trading takes place in a posted-bid market (first analyzed by Plott and Smith 1978), involving

the following sequence of events. First, each subject is informed of the market to which he has
3Subjects who play together repeatedly even for a known, fixed number of rounds sometimes exhibit supergame-

style strategies, especially when the number of rounds is large (Selten and Stoecker 1986).
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been assigned and buyers are told whether they have a demand for one or two units that round.

Each buyer i then privately and independently chooses a bid, pi. A small buyer’s bid reflects

the price he is willing to pay to fulfill his unit demand, while the large buyer’s bid reflects the

per-unit price he is willing to pay for the bundle of two units. The large buyer is not given the

option of bidding separate amounts for the two units. The seller observes each buyer bid for

xi ∈ {1, 2} units and decides whether to accept (ai = 1) or reject (ai = 0) each one. The seller

does not have the discretion to supply one of the large buyer’s two units and reject the other.4

Buyers earn a payment equal to net consumer surplus aixi(vi−pi), and sellers earn a payment

equal to total revenue,
∑

i piaixi, minus the total cost of producing realized sales. Rejected bids

yield zero profit for the buyer and the seller; the seller does not incur the cost of unsold units.

Buyers’ valuations, seller costs, and the structure of the market are all made common knowl-

edge by reading aloud the subjects’ instructions (available from the authors upon request). As

mentioned, subjects are told that cohorts would be randomized in each round, but were not told

with whom they were playing in a market. Feedback at the end of a round is minimal, again

with the aim of minimizing repeated-game effects or possible collusion. Each buyer learns only

whether his bid was accepted and his resulting payoff. Buyers do not observe any other buyers’

bids in their own or the other two markets, nor the sellers’ decisions on other bids.

At the completion of 60 rounds, all subjects were paid their experimental earnings in cash.

All subjects were given an initial endowment of 1,000 experimental “points” at the beginning

of the experiment. For every 250 points accumulated, the subject received £1. In total, 72

subjects participated in one of six experimental sessions conducted in the Experimental Economics

Laboratory at Royal Holloway, University of London. Each session, including the instructions,
4Our choices to exclude large buyers from bidding different prices for its two units and sellers from supplying

large buyers with only one unit follow from an effort to simplify subjects’ task. These design features maintain the
same decision problem for the buyer whether large or small—he simply chooses one bid in either case—and the
same decision problem for the seller whether it faces a large or small buyer—he simply chooses to accept/reject the
bid in either case. With subjects playing in different treatments during a session, buyers alternating size and with
considerable strategic uncertainty about other buyers’ play, our experimental setting is already quite complex.
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five practice rounds, and a post-experiment questionnaire, lasted between 120 and 160 minutes.

On average, sellers earned £22 and buyers £19 each, including the initial endowment.

3 Theoretical Predictions

In this section, we derive the pure-strategy, subgame-perfect equilibria of our experimental game.

Our experimental setting differs slightly from any of the related theoretical papers because we

have adopted a different bargaining game. Rather than Nash bargaining (as in Horn and Wolinsky

1988, Chipty and Snyder 1999, and Raskovich 2003), or specific bargaining procedures giving

rise to the Shapley value (as in Stole and Zwiebel 1996 and Inderst and Wey 2003), we adopt

a simpler, and thus more tractable, bargaining game for an experimental setting, namely one in

which parties make take-it-or-leave-it offers. The equilibrium outcomes are qualitatively similar

to those in these other papers, but to derive the equilibria formally requires new propositions.

Since these propositions are of some independent interest, we first prove a general version of them,

and then proceed to derive their implications for the specific parameters used in our experiment.

Suppose there are N buyers indexed by i = 1, . . . , N . Let B = {1, . . . , N} denote the set of

buyers. Each buyer i has inelastic demand for xi ∈ N units, with Vi representing the buyer’s total

gross surplus for the bundle of xi units, and vi = Vi/xi representing the buyer’s gross surplus

per unit. Let X =
∑

i∈B xi. In the first stage of the bargaining game, each buyer i makes a

simultaneous offer of a bid per unit pi ∈ [0,∞) to the single seller in the market. In the second

stage of the bargaining game, the seller decides whether to accept the bid of each buyer i, the

decision denoted ai ∈ {0, 1}. Equivalently, the seller chooses the set of accepted buyer bids

A = {i ∈ B|ai = 1}. Market sales are Q =
∑

i∈B aixi.

Denote the seller’s total cost of producing Q by C(Q), its marginal cost of producing the last

of Q units by MC(Q) = C(Q)− C(Q− 1), its incremental cost of producing Q2 on top of Q1

by IC(Q2, Q1) = C(Q1 + Q2)−C(Q1) =
∑Q2

j=1 MC(Q1 + j), and its average incremental cost
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of producing Q2 on top of Q1 by AIC(Q2, Q1) = IC(Q2, Q1)/Q2. Normalize C(0) = 0.

A full characterization of the subgame-perfect equilibria of this game for general parameter

configurations turns out to be quite complicated. In our experiments, we chose the parameters

so that all buyers are served in equilibrium. This simplifies the characterization of equilibria

considerably. We will thus restrict attention to the case in which all buyers are served for the

remainder of the section. The following proposition provides a sufficient condition for all buyers

to be served in equilibrium. The proofs of all propositions appear in the appendix.

Proposition 1. All buyers are served (formally, the set of buyers whose bids are accepted A
equals the set of all buyers B) in any pure-strategy, subgame-perfect equilibrium if, for all
i ∈ B,

vi > max
{Q≤X}

MC(Q). (1)

Condition (1) specifies that all buyers’ per-unit valuations exceed the marginal cost of producing

any unit. If condition (1) holds, but not all buyers are served in a particular outcome, the outcome

cannot be an equilibrium. Rather than earning zero profit, an excluded buyer could offer a bid

between its valuation and the incremental cost of being served that would be strictly profitable

for the seller to accept regardless of which other buyers were also being served. This accepted

bid would generate positive profit for the buyer. Note that the condition in the proposition is

satisfied by the experimental parameters since vi = 100, which is greater than 60, the highest

marginal cost of producing any unit in the experiment.

The next set of propositions characterize the pure-strategy, subgame-perfect equilibria in which

all buyers are served for marginal cost functions of different shapes.

Proposition 2. Suppose marginal costs are non-decreasing, i.e., MC(Q + 1) ≥ MC(Q) for all
Q ∈ {1, 2, . . . , X}. Buyer bids {pi|i ∈ B} form a pure-strategy, subgame-perfect equilibrium in
which all buyers are served if and only if, for all i ∈ B,

pi = AIC(xi, X − xi) ≤ vi. (2)

Proposition 3. Suppose marginal costs are strictly decreasing, i.e., MC(Q + 1) < MC(Q) for
all Q ∈ {1, 2, . . . , X}. Buyer bids {pi|i ∈ B} form a pure-strategy, subgame-perfect equilibrium
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in which all buyers are served if and only if pi ≤ vi for all i ∈ B and, for all subsets S ⊆ B,

IC
(∑

i∈S

xi, X −
∑
i∈S

xi

)
≤

∑
i∈S

pixi ≤ C
(∑

i∈S

xi

)
. (3)

Proposition 2 subsumes the cases of strictly increasing marginal costs and everywhere constant

marginal costs, which correspond to two of our experimental treatments, as well as marginal cost

functions that are strictly increasing over some regions and constant over others. In view of

Proposition 2, characterization of the equilibrium with all buyers being served under constant or

increasing marginal costs is quite simple. Each buyer bids an amount that exactly covers the

incremental cost of being served on top of the other N − 1 buyers’ purchases. Any less than

this and the seller would gain by rejecting the bid; any greater than this and the buyer could

profitably lower the bid and still not have it rejected by the supplier.

As Proposition 3 shows, characterization of equilibria under decreasing marginal costs is more

complicated. There is a continuum of equilibria. Within the bounds provided by condition (3),

any set of bids summing exactly to the total cost of serving all buyers forms an equilibrium in

which all buyers are served. The first inequality in (3) ensures that the seller does not have an

incentive to reject a subset of buyer bids. The second inequality in (3) ensures that a buyer does

not have an incentive to lower his bid because it would be rejected by the seller. To see this,

note that if a buyer deviated to a lower bid, the second weak inequality would become strict for

all subgroups containing the deviating buyer, implying that the seller would earn negative profit

if it accepted the bids of any subgroup containing the deviating buyer. The seller would earn

more (zero rather than negative profit) by simply rejecting all bids.

Figure 3 summarizes the implications of Propositions 2 and 3 in the case of our experimental

parameters. The 45-degree line represents equal average large-buyer and small-buyer per-unit

bids; large-buyer discounts are found in the region below the 45-degree line, and small-buyer

discounts above it. For the IMC treatment, Proposition 2 implies that small buyers bid psi =

AIC(1, 3) = 60 in equilibrium while the large buyer bids pl = AIC(2, 2) = 37.5. The seller
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accepts all bids in equilibrium and earns 115, small buyers each earn a profit 40, and the large

buyer earns 125. The large buyer obtains a substantial discount of 22.5. For the CMC treatment,

Proposition 2 implies that the small buyers’ equilibrium bids, psi = AIC(1, 3) = 20, are the

same as the large buyer’s, pl = AIC(2, 2) = 20, and the seller accepts all bids and earns zero.

Thus, there is no buyer-size discount since the large and small buyers make the same per-unit bids

equal to the constant marginal cost. Small buyers each earn a profit of 80 while the large buyer

earns 160. In the DMC treatment, as Figure 3 indicates, there exists a continuum of equilibria.5

Equilibria may involve large-buyer discounts, small-buyer discounts, or equal per-unit prices for

large and small buyers. All buyers are served in equilibrium. Buyers’ payoffs depend on the

equilibrium; the seller earns zero in all cases.

To summarize the predictions for the three treatments, large-buyer discounts should be ob-

served in the IMC treatment and no discounts observed in the CMC treatment. The DMC

treatment may exhibit a range of outcomes including no discounts. Average bids are predicted to

be higher in IMC than the other treatments. Only in the IMC treatment is the seller predicted to

earn positive profit; in the CMC and DMC treatments, buyers’ bids sum exactly to the seller’s

total cost of 80.

4 Results

In this section, we test the implications of the theory concerning buyer-size discounts based on the

six experimental sessions we conducted. Section 4.1 focuses on tests of the comparative-statics

predictions of the theory, that is, predictions of the theory for differences between large and small

buyers. Section 4.2 focuses on explaining observed deviations from equilibrium behavior.
5Proposition 3 states that condition (3) must hold for all possible subsets of buyers. Translated into our experi-

mental setting, for a subset of one small buyer, condition (3) implies 0 ≤ psi ≤ 60, for a subset of one large buyer
5 ≤ 2p� ≤ 75, for a subset of two small buyers 5 ≤ ps1 + ps2 ≤ 75, for a subset of one large and one small buyer
20 ≤ 2p� + psi ≤ 80, and for all the buyers 80 ≤ 2p� + ps1 + ps2 ≤ 80. Combining these inequalities yields the set
of equilibria labeled DMC in Figure 3.
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4.1 Buyer-Size Discounts

Our analysis of buyer-size discounts in each of the three treatments (IMC, CMC, DMC) proceeds

by first examining the extent to which the discounts show up in descriptive statistics reported in

Table 1 and using the regression results in Table 2 to test whether the discounts are statistically

significant. Although the tables also report results based on all 60 rounds, we direct attention

to the last 30 rounds of play throughout the discussion in this subsection. This choice follows

from the insight that experimental data may be noisy in the early rounds as subjects familiarize

themselves with the environment and learn how rivals play. We will investigate these and other

dynamic effects more formally in the next subsection but note for now that all of the qualitative

results discussed in this subsection are robust to considering the entire 60 rounds of play.

Regarding the IMC treatment, the summary statistics in the first two rows of part (b) of Table 1

point to an appreciable large-buyer discount. The mean large-buyer bid is 39.5 (median = 40.0),

about five points less than the mean small-buyer bid of 44.8 (median = 45.0). The random-

effects regression in part (a) of Table 2 shows that this discount is statistically significant.6 The

standard errors are corrected for possible non-independence of observations across multiple rounds

of play for the same buyer (by clustering each buyer’s observations) and are robust to possible

heteroskedasticity (following White 1980). The regression includes dummy variables for the IMC

and DMC treatments, labeled IMC and DMC, respectively, with CMC as the omitted treatment.

To assess the magnitude of buyer-size discounts or premia, interaction terms between each of the

treatments and buyer size are included, IMC × LARGE, CMC × LARGE, and DMC × LARGE.

The dummy variable LARGE equals one for bids made by large buyers. The coefficient of –4.84

(significantly different from zero at the one-percent level) on the interaction term IMC×LARGE

in part (a) indicates nearly a five-point large-buyer discount in this treatment.
6Our experimental design obviates the need for fixed buyer effects because the buyer’s size and the treatment

in which the buyer plays is chosen at random each round. Indeed, the coefficients on the variables of interest are
virtually identical across fixed- and random-effects specifications. A Hausman test cannot reject the appropriateness
of random effects.
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The existence and magnitude of the large-buyer discount in IMC are striking when contrasted

with the absence of buyer-size discounts in the other two treatments. Theory predicts that the

mean large- and small-buyer bids should be identical in the CMC treatment. The descriptive

statistics in part (b) of Table 1 bear this out: the mean large-buyer bid in this market is 34.6

(median = 35.0) compared to 34.5 (median = 35.0) for small buyers. In the random-effects

regression in part (a) of Table 2, the coefficient of –0.86 on CMC × LARGE is not significantly

different from zero. Turning to the DMC treatment, we again find no difference between large

and small buyers’ bids. The mean large-buyer bid for the DMC treatment reported in part (b)

of Table 1 is 40.9 (median = 40.0) compared to 40.2 (median = 40.0) for small buyers. In the

random-effects regression in part (a) of Table 2, the coefficient of –0.44 on the interaction term

DMC × LARGE is not statistically different from zero.

The results are if anything stronger if we consider the subsample of accepted bids. The

justification for focusing on accepted bids is that these would be the prices observed by the

empirical researcher in a typical non-experimental market; one would not observe prices for

trades that were not executed due to a breakdown in bargaining. Summary statistics for accepted

bids are provided in the last six rows of Table 1. Comparing the large- and small-buyer bids in part

(b) of the table for the IMC treatment shows that the mean large-buyer discount increases to about

seven points and the median rises to about nine points when just accepted bids are considered.

Similarly, the regression coefficient of –5.81 on IMC × LARGE in part (b) of Table 2 is larger

(by about one point) than the corresponding coefficient for all bids reported in column (a). By

contrast, the means and medians of large and small buyers’ bids remain virtually unchanged for

the CMC and DMC treatments when we restrict attention to accepted bids and the corresponding

regression coefficients measuring a buyer-size discount continue not to be significantly different

from zero.

We next turn to an analysis of the impact of buyer size on sellers’ acceptance decisions. In the

IMC treatment, theory predicts that the seller accepts a large buyer’s bid whenever it would accept
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an equal small buyer’s bid, at least in the range of bids in our data set, but the converse is not

true.7 In the CMC treatment, theory implies that there should be no difference in the accept/reject

decision for large- and small-buyer bids since both provide the same per-unit surplus for a given

bid. There are no strong theoretical predictions for the DMC treatment in this regard because of

the multiplicity of equilibria.

The descriptive statistics in part (b) of Table 1 provide some evidence on the seller’s accep-

tance decision. Comparing the number of accepted bids in the last six rows of the table to the

total number of bids in the first six rows, the disproportionate number of rejected bids made by

small buyers in the IMC treatment stands out. For the other buyer types, rejection rates range

from two percent (large buyers in DMC) to 17 percent (large buyers in CMC). In the case of

small buyers in IMC, the rejection rate is 40 percent, with 143 out of 360 bids rejected. Compare

this with large buyers in the same treatment whose bids are rejected at the rate of only ten percent

(18 out of 180), despite bidding significantly lower than their small-buyer counterparts.

A more formal analysis of the seller’s accept/reject decision is provided by Figure 4. We

ran a probit to determine the reduced-form probability of seller acceptance as a function of a

buyer’s bid for each of the six different buyer-size/treatment combinations.8 To aid interpretation,

rather than report a table of coefficient estimates, we provide in Figure 4 a graph of the seller’s

acceptance decision based on coefficient estimates. As the figure shows, the seller acceptance

functions are similar for the large and small buyers in both the CMC and DMC treatments.
7Consider equal large- and small-buyer bids p� = ps1 = p. Let Qs2 ∈ {0, 1} be the quantity supplied to the

second small buyer. Both bids are accepted if p > IC(3, Qs2) and both are rejected if p < IC(1, Qs2). Accepting
the large-buyer bid and rejecting the small-buyer bid yields a profit of 2p− IC(2, Qs2). Accepting the small-buyer
bid and rejecting the large-buyer bid yields a profit of p − IC(1, Qs2). But 2p − IC(2, Qs2) > p − IC(1, Qs2) if
and only if p > MC(Qs2 + 2). Note that MC(Qs2 + 2) ∈ {5, 15} for our design. Since we do not observe any
small-buyer bids less than 15 in IMC, accepting the small buyer and rejecting the large buyer is never optimal for
the range of bids in our data set.

8The dependent variable in the probit is an indicator for the seller’s accept/reject decision; regressors include a
full set of dummies for buyer-size/treatment combinations and interactions between these and the buyer’s bid. We
use the results based on the last 30 rounds of bids; results based on all rounds of bids are similar. All formal
statistical tests related to this probit cited below are based on robust standard errors from a population-averaged
panel-data model, clustering on sellers (to account for possible correlation in the errors for the same seller across
multiple rounds).
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However, the acceptance function for the IMC small buyers lies well below that of IMC large

buyers, indicating that the seller is much more likely to accept a large-buyer bid than an equal

small-buyer bid. The figure highlights the seller’s distinct treatment of IMC small buyers’ bids.

For example, a bid of 40 by a small buyer in the IMC treatment has less than a 50 percent chance

of being accepted, while this same per-unit bid is accepted with near certainty when submitted

by each of the other five buyer types. In all five comparisons of the probability of acceptance

with small buyers in IMC, the difference is significantly different from zero at better than the

one-percent level in pairwise χ2 tests.

To sum up, the results for buyer-size discounts are qualitatively consistent with the comparative-

static predictions of the theory. Large buyers bid lower and sellers accept these lower bids in the

IMC treatment. There are no price discounts and sellers’ acceptance behavior is alike across large

and small buyers in the CMC treatment. These findings are all predicted by the theory. Theory

predicts a broad range of possible outcomes for the DMC treatment, including the possibility that

large and small buyers pay equal per-unit prices and sellers’ acceptance behavior is alike across

large and small buyers. Consistent with this latter possibility, large and small buyers’ bids are

about equal in the DMC treatment in our experimental data and sellers’ acceptance behavior is

about the same across large and small buyers.

4.2 Explanations of Deviations from Equilibrium

While the theory correctly predicts the direction of buyer-size discounts in the experiment, there

remain some discrepancies between bid levels in certain treatments and the corresponding theo-

retical predictions that merit investigation. For ease of comparison, Table 3 juxtaposes the mean

bids from the experimental data from Table 1 and the theoretical predictions from Figure 3. In

the IMC treatment, the average large-buyer bid of 39.5 is close to the theoretical prediction of

37.5. The random-effects regressions from Table 2 can be used to provide a statistical test of the
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difference as well as the other differences discussed below in this section: the estimated large-

buyer bid in the IMC treatment—given by the sum of the coefficients on the constant, IMC, and

IMC× LARGE from column (b)—is not significantly different from 37.5 at the ten-percent level

in a two-tailed t test. On the other hand, the average small-buyer bid of 44.8 is lower than the

theoretical prediction of 60, significantly different at the one-percent level. (Indeed, the absence

of buyer-size discounts in the CMC and DMC treatments coupled with small buyers’ below-

equilibrium bidding in IMC make large-buyer discounts in this treatment all the more striking.)

While large and small buyer bids in the CMC treatment—34.6 and 34.5, respectively—are not

significantly different from each other, they are higher than the theoretical prediction of 20 for

both, significantly different at the one-percent level. Although large- and small-buyer bids in the

DMC treatment cannot be compared to their theoretical counterparts individually because there

is not a unique theoretical prediction for them, the average across large and small buyer bids

can be compared to theory. The average in column (a) of about 40 is higher than the theoretical

prediction of 20, significantly different at the one-percent level.

We begin with a preliminary analysis of whether the buyers, the sellers or both are responsible

for the discrepancies between bid levels and theoretical predictions. To help determine whether

buyer play is rational—“rational” will be used throughout the discussion in the narrow sense of

maximizing own monetary payoffs in a one-shot game—for each treatment and buyer-size combi-

nation, we calculate buyers’ monetary-payoff-maximizing best responses to others’ experimental

play. A divergence between mean bids and these best responses would suggest possible depar-

tures from buyer rationality. We use the results underlying Figure 4 as an input in the calculation.

Multiplying the acceptance probability from Figure 4 times the buyer’s payoff conditional on

acceptance for each bid level results in the expected buyer payoff function conditional on others’

experimental play, displayed in Figure 5. The peak of a function is a payoff-maximizing buyer’s

best response to others’ experimental behavior, recorded in column (c) of Table 3.

Comparing columns (a) and (c), we see a divergence between experimental best responses and
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mean bids in three of the six rows: for small-buyer bids in IMC and for large- and small-buyer

bids in DMC. This suggests some deviation from rational play on the buyer side at least in these

cases. On the other hand, comparing columns (b) and (c), experimental best responses diverge

from theoretical predictions in three of the six rows: for small-buyer bids in IMC and for large-

and small-buyer bids in CMC. This raises the possibility of departures from rational play on the

seller side as well, as will be examined below.

More direct evidence on the rationality of seller play can be obtained from an analysis of

individual seller acceptance decisions. A sequentially rational seller would best respond to the

set of observed bids in each round (which do not necessarily correspond to the equilibrium bids

predicted by theory, as just seen). Focusing on the last half of the rounds in each session (periods

31–60), for each treatment we have 180 seller decisions to analyze (30 periods times six sessions)

involving 540 buyer bids. In the IMC treatment, 149 out of 180 sellers’ decisions (83 percent)

are rational. Half of the irrational decisions are acceptances of all three bids when the seller

should have rejected one small-buyer bid. In CMC (where sellers’ decisions on all 540 bids can

be analyzed separately), we found 481 rational seller decisions (89 percent). Seven of these are

rejections of bids less than 20. All 59 irrational decisions are rejections of bids larger than 20,

albeit relatively low bids: the average rejected bid was 28.7, significantly less than large and

small buyers’ average bids. No bid above 40 is rejected. Finally, in DMC, bids were sufficiently

high that it is rational for sellers to accept all bids in all cases. Out of 180 sets of decisions in

DMC, 170 are rational; ten involve an irrational rejection of at least one bid.

A number of possible factors may account for the departures from rational play by buyers

and sellers. Players may care about fairness in addition to monetary payoffs; they may make

calculation errors; they may slowly learn about others’ experimental play; they may manipulate

their short-run play in a dynamic strategy to affect future outcomes, and so forth. A preference

for fairness has some intuitive appeal as an explanation. For example, a preference for fairness

on the part of sellers might explain why they reject 59 bids in the CMC treatment greater than
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20: even though accepting would have increased sellers’ monetary payoff, the bids may have

been low enough to give them a small share of the payoff relative to the buyer. A preference for

fairness on the part of buyers might explain why they bid more on average in the DMC treatment

than the monetary-payoff-maximizing best responses, since the latter would leave the buyer with

a disproportionate share of the surplus relative to the seller.

To investigate more formally the importance of fairness relative to the other factors, we

estimate a structural fairness model. A variety of different theories of fairness have been proposed

(see Fehr and Schmidt 2006 for a survey). Perhaps the most influential is Fehr and Schmidt’s

(1999) model of inequality aversion. Unfortunately, even though the Fehr-Schmidt model is

relatively simple, it is still intractable to compute the equilibrium in our setting.9 We proceed

by estimating the model on sellers in isolation. Since sellers moves second in the stage game,

conditional on the bids they receive, their behavior can be characterized as a simple discrete-

choice problem.

Sellers must decide whether to accept or reject each of three bids, leading to a choice among

23 = 8 possible acceptance configurations. Seller i’s utility from choosing acceptance configu-

ration k from among the eight possibilities, is

uik = xik − αi

N − 1

∑
j �=i

max(xjk − xik, 0) − βi

N − 1

∑
j �=i

max(xik − xjk, 0) +
εik

λ
, (4)

where xik is seller i’s monetary payoff from decision k, αi measures the disutility from payoff

disadvantages relative to the buyers (indexed by j) from whom seller i receives bids, βi measures

the disutility from seller i’s payoff advantages relative to these buyers, εik is a logit error term, λ

is a term scaling the precision of the error, and N is the number of players in the market (four in

our experiments). Fehr and Schmidt’s (1999) model is reproduced in the first three terms on the
9In our setting, the seller may accept multiple offers and the total surplus function is potentially nonlinear. The

sequential-move games for which Fehr and Schmidt (1999) explicitly derive equilibria all have the flavor of the
simpler ultimatum game.
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right-hand side of (4). Seller i enjoys a higher monetary payoff but dislikes inequality relative to

its transacting partners. Including separate coefficients α and β allows the disutility from earning

less surplus than transacting partners to potentially differ from the disutility of earning more.

The last term, εik/λ, has been appended to the Fehr-Schmidt model in the spirit of McKelvey

and Palfrey’s (1998) quantal response equilibrium. This last term allows for tractable estimation

of the model. It captures any sort of deviation from seller rationality including computation

errors and dynamic strategies to affect future play beyond the stage game. The smaller is λ, the

more important are these other factors relative to fairness in explaining deviations from seller

rationality.

Table 4 presents maximum-likelihood estimates of the α̂, β̂, and λ̂, assuming parameters

are constant in the population.10 Focusing on the results for all treatments in part (b) of the

table (using the last 30 rounds of data), estimates of both fairness parameters α̂ = 0.068 and

β̂ = 0.133 are positive, and β̂ is significantly different from zero. There is some instability

among the fairness parameters across treatments: β̂ is significantly greater than zero for most

subsamples, and α̂ is significantly positive in DMC.11

These estimates thus provide some evidence that fairness plays a role in deviations by sellers

from payoff maximization. However, analysis of the relative magnitudes of the estimated pa-

rameters suggests that the overall role of fairness is dwarfed by other factors. The error term

εik/λ, which in our setting has the interpretation of deviations from rational play caused by fac-

tors beside fairness, has a standard deviation of π/λ
√

6. Substituting λ̂ = 0.130, this standard

deviation equals 10. A standard deviation this high would be generated by adding noise in the
10We also estimated (4) allowing α̂ and β̂ to vary across the 18 different sellers. The procedure failed to converge

or failed to generate an invertible covariance matrix for a number of the subsamples. For those that did (for
example, the subsample of all treatments and the last 30 rounds), a likelihood ratio test strongly rejected the equality
of parameters across sellers. The resulting λ̂ was quite close to that reported in Table 4, so the estimates in the table
provide a view of the importance of fairness relative to other factors on average in the sample.

11The parameter instability across treatments indicates possible misspecification in the fairness model. Searching
for the best-fitting among the large set of alternative fairness models is beyond the scope of this paper. We estimated
several alternative models that produced a better fit than Fehr and Schmidt (1999), but the overall picture that
fairness plays only a limited role in explaining deviations from rationality was unchanged.
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form of an equal chance of adding or subtracting 10 points from each seller decision. A rise or

fall of 10 payoff points dominates any estimated fairness effects. For example, considering the

estimate α̂ = 0.068 (insignificantly different from zero, but we will still take the point estimate

for the sake of this exercise), for the seller to be willing to give up 10 payoff points, each buyer’s

advantage over the seller would have to be reduced by over 146 points (146 ≈ 10/α̂). This is an

order of magnitude greater than buyer-seller advantages observed on average in the data (18.1).

Similarly, considering the estimate β̂ = 0.133, for the seller to be willing to give up 10 payoff

points, each buyer’s payoff would have to be increased 74 points to narrow their shortfall relative

to the seller, over 2.5 times higher than seller-buyer advantages observed on average in the data

(29.5).

Another way to gauge the relative importance of fairness versus other factors in explaining

deviations from rationality is to look at the buyer side. Since sellers were selected randomly

from the pool of subjects, we can assume that their fairness parameters are representative of the

population, and thus that buyers share the same parameters.12 We will see how much a buyer’s

best responses to others’ experimental play changes if we alter the buyer’s utility function to reflect

this amount of fairness. The best response to others’ experimental play for a buyer with fairness

preferences can be computed following the same steps used to derive column (c) of Table 3

but substituting the new utility function. The resulting best responses are given in column (d).

Including fairness in the utility function hardly changes the best responses from column (c). The

greatest change is for small-buyer bids in IMC. Even there, the change of 1.4 points accounts

for only 14 percent of the discrepancy between the payoff-maximizing best response of 54.8 in

column (c) and the mean bid of 44.8 in column (a).

By this measure, at most 14 percent of players’ (specifically buyers’) deviation from rational

play is accounted for by fairness. Indeed, the raw data itself suggests limits to how much fairness
12Given the instability of parameters across treatments, it is quite possible that estimates of buyers’ fairness

parameters would differ from those in Table 4. However, the exercise of simulating buyer best responses with these
fairness parameters still is a useful exercise to gauge the economic magnitudes of α̂ and β̂.
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would emerge from any empirical model. As mentioned, only a minority of observations involve

irrational play. Among these, fairness preferences do not seem to be consistent across treatments.

Irrational seller play in IMC consists of accepting bids that a payoff-maximizer would reject,

while in CMC it consists of rejecting profitable bids.

Some evidence on the contribution of other factors besides fairness to departures from rational

play comes from examining the λ̂. Restricting attention to the results for all treatments in Table 4,

and comparing λ̂ in part (a) to that in part (b), we see a substantial increase in λ between the first

and last 30 rounds, statistically significant at the one-percent level. This increase in λ, equivalent

to a fall in the scaled error εik/λ in equation (4), suggests that factors causing departures from

rational play other than fairness decline in importance as experimental play progresses. One

explanation would be that sellers make fewer computation errors as they learn to play the game

better over time. Another would be that as the end of the game draws nearer, there is less value

in distorting stage-game play in order to gain a dynamic advantage. For example, in a model in

which sellers’ fairness parameters αi are private information, a seller might reject more offers

than statically optimal in order to signal a high value of αi and raise buyer offers in future rounds.

Such signaling would be less useful over time as buyers’ posteriors on the distribution of fairness

parameters become tighter and as the future horizon over which to earn a return from signaling

shrinks. Since players were shuffled anonymously between markets, the benefit of such signaling

or other dynamic strategies is considerably reduced; but such strategies remain a possibility.

Comparing the λ̂ across treatments, the lowest value is 0.076 for the DMC treatment in part

(a) of the table, suggesting that factors other than fairness led to the biggest departures from

seller rationality in early-round play of the DMC treatment compared to others. This pattern is

consistent with computation errors. As suggested by the lengthy proof of Proposition 3, which

applies to the DMC case, compared to relatively shorter proof of Proposition 2, which applies

to the IMC and CMC cases, computations are more difficult for DMC than the other treatments,

with few shortcuts to the brute force method of computing the payoff from all eight acceptance
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configurations to ensure an optimal decision.13 On the other hand, it is hard to see why dynamic

strategies would be more important in the DMC treatment than others, although this possibility

cannot be ruled out in the absence of a general dynamic theory.

Table 4 provides evidence on the dynamics of seller behavior. Evidence on the dynamics

of buyer behavior is provided by Table 5, which reports a single random-effects regression of

bids on lagged bids and lagged seller rejections. Each regressor is interacted with a dummy

variable for the first 30 rounds of play (column (a)) and the last 30 rounds (column (b)), with

the difference between these two reported in the final column. The coefficient on “bid last round

played same treatment” falls significantly between the first and the second 30 rounds, whereas

the coefficient on “bid last round played same treatment and size role” increases significantly.

These opposite trends suggest that buyers learn the difference between markets and size roles

over time, playing more consistently within them and differentiating their strategies across them.

Buyers respond to rejections by increasing their bids. The response is sharpest for closely related

past experience (same size role and treatment). For example, the coefficient of 0.134 in the last

row of column (a) suggests that a rejection in the same size role and treatment leads to a 13.4

percent increase in a bid in the first 30 rounds of play. The buyer does respond to a rejection

in the last round even for unrelated roles although less so. A comparison of column (b) with

column (a) reveals that buyers respond less to rejections over time, a decline that is significant

in two of the three cases. This reduced sensitivity suggests that they become more confident in

their strategies and learn less from seller responses over time.
13Among other shortcuts, in IMC and CMC, it is optimal for a payoff-maxmizing seller to accept all bids if each

exceeds the relevant marginal cost conditional on all others being accepted. This simple check does not suffice for
DMC, as can be shown in the example in which one small buyer bids 80 and the other two buyers bid 4 per unit
each.
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5 Conclusion

An accumulation of results from theoretical bargaining models links the existence of buyer-size

discounts to the curvature of the total surplus function over which the seller and buyers negotiate.

In theory, large-buyer discounts emerge if the total surplus function is concave; there are no

discounts if the total surplus function is linear, and a range of possible outcomes if it is convex.

We test the theory in markets in which large and small buyers bargain simultaneously with a

single seller. The markets differ in the curvature of the total surplus function. By varying the

seller’s marginal cost function, we obtain concave, linear, and convex surplus functions from

increasing, constant, and decreasing marginal cost curves, respectively. Our results support the

qualitative predictions of the theory. Large-buyer discounts are observed where predicted—in the

treatment with the concave total surplus function—and only where predicted.

The main deviation from theory is that the levels of certain bids differ from the theoretical

predictions. Structural estimates of a formal model of inequality aversion provide evidence that

preferences for fairness lead to some deviations from payoff maximization in the stage game,

but other factors including possibly computation errors or dynamic strategies in a repeated-game

context seem to be more important.

Some implications for real-world industries can be drawn from our experimental results.

According to our results, large-buyer discounts that stem from the bargaining theory we test

should arise in industries in which the seller’s cost function exhibits increasing marginal cost

(i.e., decreasing returns). Empirical estimates of cost functions provide examples of decreasing

returns, at least for large enough production levels, in residential water supply (Kim 1985),

electricity generation (Pollitt 1995), electricity distribution (Kwoka 2005), trucking (Spady and

Friedlaender 1978), and for some automobile manufacturers (Friedlaender, Winston, and Wang

1983). In industries with constant or increasing returns, alternative theories, including those

discussed in the Introduction, may account for any observed large-buyer discounts.
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Appendix
Proof of Proposition 1 Suppose vi > max{Q≤X} MC(Q) for all i ∈ B. Consider any outcome
in which there are some buyers whose bids are not accepted by the seller; i.e., B − A, the
complement of A in B, is nonempty. Let i ∈ B − A. Buyer i earns zero profit in this outcome
since its bid per unit, pi, is rejected. If pi > max{Q≤X} MC(Q), the seller’s rejecting pi cannot
be subgame perfect. By accepting, the seller could increase its profit by

pixi − IC
(
xi,

∑
j∈A

xj

)
= xi

[
pi − 1

xi

xi∑
k=1

MC
(
k +

∑
j∈A

xj

)]

> xi

[
pi − max

{Q≤X}
MC(Q)

]
,

which is positive by assumption.
Assume therefore that pi ≤ max{Q≤X} MC(Q). The buyer could raise so that it is in the

interval (max{Q≤X} MC(Q), vi). If the seller’s strategy is subgame perfect, it would accept such
a bid by the calculations in the previous paragraph. This bid would be profitable for the buyer
since it is strictly less than vi. Q.E.D.

Proof of Proposition 2 Assume

MC(Q) ≥ MC(Q − 1) for all Q ∈ {1, 2, . . . , X}. (A1)

To prove necessity, consider a set of buyer bids {pi|i ∈ B} forming a pure-strategy, subgame-
perfect equilibrium in which all buyers are served. If the seller deviates by rejecting buyer i’s
bid, its profit falls by

pixi + C(X − xi) − C(X) = xi[pi − AIC(xi, X − xi)].

For this deviation to be unprofitable, pi ≥ AIC(xi, X − xi). An argument similar to the proof
of Proposition 1 shows that pi ≤ AIC(xi, X − xi) or else buyer i could deviate by lowering
its price and be assured that this bid is still accepted. Combining these two inequalities yields
pi = AIC(xi, X − xi). Finally, for buyer i not to deviate by dropping out of the market
(equivalently, bidding pi = 0), pi ≤ vi. This proves (2) must necessarily hold in a pure-strategy,
subgame-perfect equilibrium in which all buyers are served.

To prove sufficiency, suppose AIC(xi, X − xi) ≤ vi for all i ∈ B. Consider the proposed
equilibrium in which buyer i bids pi = AIC(xi, X − xi) for all i ∈ B and the seller accepts the
set of bids giving it the highest profit (in case of ties, assume the seller accepts the largest set of
such bids). We will argue that this proposed equilibrium is subgame perfect, and the seller serves
all the buyers. It is tautological that the seller’s strategy is part of a subgame-perfect equilibrium.
There remain two claims to be proved: first, that buyers have no incentive to deviate given the
seller’s strategy and second that the players’ strategies lead all buyers to be served. We will prove
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these claims in reverse order.
To show the seller’s strategy leads it to accept all bids, we have to show that the seller cannot

gain from rejecting a subset S ⊆ B of them. The change in the seller’s profit from so doing is

IC
(∑

i∈S

xi, X −
∑
i∈S

xi

)
−

∑
i∈S

pixi ≤
∑
i∈S

IC(xi, X − xi) −
∑
i∈S

pixi

=
∑
i∈S

xi[AIC(xi, X − xi) − pi].

The first line holds by (A1). The second line holds by algebraic manipulation. The last expression
is zero since pi = AIC(xi, X − xi).

To show the buyers have no incentive to deviate given the seller’s strategy, note first that
buyers have no incentive to raise bids because they are all accepted in equilibrium. Buyer i has
no incentive to lower its bid since this would lead the seller to reject it by the argument in the
second paragraph above. Q.E.D.

Proof of Proposition 3 Assume marginal costs are strictly decreasing, i.e.,

MC(Q) < MC(Q− 1) for all Q ∈ {1, 2, . . . , X}. (A2)

To prove necessity of the conditions in Proposition 3, consider a set of buyer bids {pi|i ∈ B}
forming a pure-strategy, subgame-perfect equilibrium in which all buyers are served. As argued
in the proof of Proposition 2, pi ≤ vi is a necessary condition. We then need to show that the two
inequalities in (3) are necessary conditions. The seller can deviate by rejecting a subset S ⊆ B
of buyer bids. For this deviation to be weakly unprofitable,

IC
(∑

i∈S

xi, X −
∑
i∈S

xi

)
≤

∑
i∈S

pixi. (A3)

Thus, the first inequality in (3) is a necessary condition.
To prove that the second inequality in (3) is also necessary, we will proceed in several steps.

The first step is to show that the seller makes zero profit in a subgame-perfect equilibrium in which
all buyers are served. Suppose to the contrary

∑
i∈B pixi−C(X) > 0. Let pi = max{pj|j ∈ B}.

Then this highest-bidding buyer i can deviate to a lower bid pi − ε, where

ε =
1

2
min

⎧⎨
⎩ 1

xi

⎡
⎣ ∑

j∈B−{i}
pjxj − C(X)

⎤
⎦ , {MC(Q − 1) − MC(Q)|Q = 1, 2, . . . , X}

⎫⎬
⎭ (A4)

and still have it accepted. To see this, let S ′ be the set of buyers whose bids are accepted after
the deviation by i. The definition of ε in (A4), in particular that ε < [

∑
j∈B−{i} pjxj −C(X)]/xi,

implies that the seller continues to make strictly positive profit if it continues to accept all buyer
bids. Hence S ′ is nonempty. If i ∈ S ′, then i’s deviating bid is accepted and we are done. If
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i 	∈ S ′, then for all j ∈ S ′,

pi − ε ≥ pj − ε (A5)

≥ AIC
(
xj,

∑
k∈S′

xk − xj

)
− ε (A6)

> AIC
(
xi,

∑
k∈S′

xk

)
. (A7)

Condition (A5) holds since pi is the weakly highest bid. Condition (A6) holds since j ∈ S ′, so
accepting pj must give the seller a nonnegative profit at the margin. Condition (A7) holds since

ε < MC
(∑

k∈S′
xk

)
− MC

(
1 +

∑
k∈S′

xk

)
(A8)

≤ AIC
(
xj,

∑
k∈S′

xk − xj

)
−AIC(xi,

∑
j∈S′

xj

)
. (A9)

Condition (A8) holds by (A4). Condition (A9) holds because the average incremental cost of
producing a bundle is weakly less than the marginal cost of the first unit in the bundle and weakly
more than the last unit in the bundle by (A2). We have thus shown that i’s deviating price exceeds
the expression in (A7). But then the seller would gain from accepting buyer i’s bid in addition to
the bids in S ′. Hence buyer i’s deviating bid is profitable since it would be accepted. We have
thus established that the seller earns zero profit in a pure-strategy, subgame-perfect equilibrium
in which all buyers are served.

Combining the fact that
∑

i∈B pixi = C(X) with the fact that (A3) must hold for the set
B − S, we have ∑

i∈S

pixi ≤ C
(∑

i∈S

xi

)
.

Thus, the second inequality in (3) is a necessary condition for a pure-strategy, subgame-perfect
equilibrium in which all buyers are served.

To show sufficiency, consider a proposed equilibrium in which buyers bids are {pi|i ∈ B}
satisfying pi ≤ vi and condition (3) and in which the seller accepts the subset of bids giving it
the highest profit (in case of ties, assume the seller accepts the largest set of such bids). We will
argue that the proposed equilibrium is subgame perfect, and the seller serves all the buyers. It
is tautological that the seller’s strategy is part of a subgame-perfect equilibrium. There remain
two claims to be proved: first, that buyers have no incentive to deviate given the seller’s strategy
and second that the player’s strategies lead all buyers to be served. We will prove these claims
in reverse order. To show the seller’s strategy leads it to accept all bids, we have to show that
the seller cannot gain from rejecting a subset S ⊆ B of them. But this is ensured by the first
inequality in (3). To show that the buyers have no incentive to deviate given the seller’s strategy,
note first that buyers have no incentive to raise bids since they are all accepted in equilibrium.
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If buyer i deviates to a lower price p′i < pi, for any subset of buyers S including i,

p′ixi +
∑

j∈S−{i}
pixi <

∑
i∈S

pixi

≤ C
(∑

i∈S

xi

)
.

The first line holds since p′i < pi and the second by the second inequality of condition (3).
Therefore, it is better for the seller to reject all bids (giving it zero profit) rather than accepting
the bids in S. Since this is true for all S containing i, the deviating buyer’s bid would be rejected,
and so his deviation would be unprofitable. In sum, no buyer deviation would be accepted by
the seller, establishing sufficiency. Q.E.D.
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Table 1: Descriptive Statistics for Buyer Bids

(a) All Rounds (b) Last 30 Rounds

Mean Median Std. Dev. Obs. Mean Median Std. Dev. Obs.

All Bids

IMC Large Buyer 39.8 40.0 11.4 360 39.5 40.0 10.1 180
IMC Small Buyer 43.4 42.0 11.9 720 44.8 45.0 9.9 360

CMC Large Buyer 34.1 35.0 10.4 360 34.6 35.0 10.0 180
CMC Small Buyer 34.7 35.0 10.1 720 34.5 35.0 8.8 360

DMC Large Buyer 41.7 40.0 13.6 360 40.9 40.0 11.7 180
DMC Small Buyer 42.0 40.0 13.8 720 40.2 40.0 12.1 360

Accepted Bids

IMC Large Buyer 41.7 40.0 10.4 316 41.1 40.0 8.9 162
IMC Small Buyer 47.6 50.0 10.8 436 48.0 49.0 9.4 217

CMC Large Buyer 35.9 35.0 9.8 298 36.3 35.0 9.4 149
CMC Small Buyer 35.9 35.0 10.2 617 35.3 35.0 8.7 325

DMC Large Buyer 42.4 40.0 13.5 340 41.1 40.0 11.7 177
DMC Small Buyer 42.7 40.0 13.7 673 40.5 40.0 12.1 347



Table 2: Buyer-Bid Regressions

All Buyer Bids Accepted Buyer Bids

All Rounds Last 30 Rounds All Rounds Last 30 Rounds
(a) (b) (c) (d)

Constant 34.60∗∗∗ 35.02∗∗∗ 35.45∗∗∗ 35.52∗∗∗

(1.22) (1.14) (1.22) (1.12)

IMC 8.73∗∗∗ 9.31∗∗∗ 10.96∗∗∗ 10.53∗∗∗

(1.32) (1.17) (1.39) (1.29)

DMC 7.69∗∗∗ 5.69∗∗∗ 7.24∗∗∗ 5.40∗∗∗

(1.72) (1.56) (1.74) (1.52)

IMC × LARGE −3.62∗∗∗ −4.84∗∗∗ −5.55∗∗∗ −5.81∗∗∗

(0.88) (0.93) (1.09) (1.09)

CMC × LARGE −0.08 −0.86 0.37 −0.33
(0.71) (0.69) (0.75) (0.72)

DMC × LARGE −1.11 −0.44 −0.83 −0.54
(1.04) (0.90) (1.01) (0.90)

N 3, 240 1, 620 2, 680 1, 377

R2 0.09 0.12 0.11 0.14

Notes: Omitted treatment dummy is CMC, so coefficients on IMC and DMC reflect the difference between small-
buyer bids in these treatments and the CMC treatment. All columns are random-effects regressions accounting
for random buyer effects. Standard errors reported in parentheses below coefficient estimates are heteroskedasticity-
robust (following White 1980) and are clustered by buyer. Coefficient significantly different from zero in a two-tailed
test at the ∗∗∗one-percent level, ∗∗five-percent level, ∗ten-percent level. N is the number of observations.



Table 3: Comparison of Observed, Predicted, and Experimental-Best-Response Bids

Best Response to Others’
Experimental Behavior

Mean Theoretical Monetary Utility with
Bid Prediction Payoffs Fairness
(a) (b) (c) (d)

IMC Large Buyer 39.5 37.0 37.0 36.9
IMC Small Buyer 44.8 60.0 54.8 53.4

CMC Large Buyer 34.6 20.0 36.8 37.6
CMC Small Buyer 34.5 20.0 33.3 34.2

DMC Large Buyer 40.9 ∗ 25.5 26.3
DMC Small Buyer 40.2 ∗ 18.6 19.9

Notes: Entries in columns (a), (c), and (d) based on data from last 30 rounds of play. Column (a) is taken from
Table 1. Column (b) is based on Figure 3. Column (c) is based on Figure 5. Column (d) computed multiplying
acceptance probabilities from Figure 4 by the utility function incorporating fairness using the parameters from part (b)
of Table 4. ∗Theoretical prediction is not unique; can be any number in the interval [2.5, 37.5] with four unit bids
averaging 20.



Table 4: Structural Model of Seller Fairness

α̂ β̂ λ̂ N

(a) All Rounds

All Treatments 0.054 0.135∗∗∗ 0.098∗∗∗ 1, 080
(0.066) (0.068) (0.008)

IMC Treatment 0.022 0.098 0.132∗∗∗ 360
(0.080) (0.068) (0.019)

CMC Treatment 0.035 0.549∗∗∗ 0.098∗∗∗ 360
(0.087) (0.169) (0.010)

DMC Treatment 0.223∗∗∗ 0.399∗ 0.076∗∗∗ 360
(0.073) (0.211) (0.007)

(b) Last 30 Rounds

All Treatments 0.068 0.133∗∗ 0.130∗∗∗ 540
(0.079) (0.060) (0.015)

IMC Treatment 0.013 0.161∗∗∗ 0.197∗∗∗ 180
(0.074) (0.054) (0.041)

CMC Treatment 0.086 1.028∗∗∗ 0.100∗∗∗ 180
(0.095) (0.271) (0.010)

DMC Treatment 0.220∗∗ −0.411 0.106∗∗∗ 180
(0.110) (0.292) (0.014)

Notes: Maximum likelihood estimates of the parameters in equation (4). N is the number of seller-round observations.
Standard errors reported in parentheses below coefficient estimates are heteroskedasticity-robust (following White
1980) and are clustered by seller. Coefficient significantly different from zero in a two-tailed test at the ∗∗∗one-percent
level, ∗∗five-percent level, ∗ten-percent level.



Table 5: Buyer-Bid Dynamics

Interactions with Dummy Interactions with Dummy
for First 30 Rounds for Last 30 Rounds

(a) (b) (b) – (a)

Constant 0.290∗∗∗ 0.120∗∗∗ −0.170∗

(0.101) (0.039) (0.094)

Bid Last 0.082∗∗∗ 0.063∗∗∗ −0.019
Round (0.032) (0.018) (0.022)

Bid Last Round Played 0.367∗∗∗ 0.191∗∗∗ −0.177∗∗∗

Same Treatment (0.055) (0.048) (0.064)

Bid Last Round Played Same 0.458∗∗∗ 0.710∗∗∗ 0.251∗∗∗

Treatment and Size Role (0.060) (0.045) (0.065)

Rejection 0.063∗∗∗ 0.028∗∗∗ −0.035∗

Last Round (0.018) (0.011) (0.019)

Rejection Last Round 0.026 −0.001 −0.027
Played Same Treatment (0.023) (0.018) (0.026)

Rejection Last Round Played 0.134∗∗∗ 0.087∗∗∗ −0.047∗∗∗

Same Treatment and Size Role (0.022) (0.012) (0.026)

Notes: Results from a single random-effects regression with 2,916 observations (324 observations lost in formation
of lagged variables) in which dependent variable is the natural logarithm of the buyer’s bid. Overall R2 is 0.78. The
three regressors involving lagged bids entered as natural logarithms; the three involving lagged seller rejections are
dummy variables. Standard errors reported in parentheses below coefficient estimates are heteroskedasticity-robust
(following White 1980) and are clustered by buyer. Coefficient significantly different from zero in a two-tailed test
at the ∗∗∗one-percent level, ∗∗five-percent level, ∗ten-percent level.



Figure 1: Total Surplus Functions with Different Curvatures
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Figure 2: Total Surplus Functions in Different Treatments
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Figure 3: Equilibria for Experimental Parameters
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Figure 4: Seller Acceptance Decision 
from Probit Estimates (Last 30 Rounds)
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Figure 5: Optimal Buyer Bid Given Others’
Experimental Behavior (Last 30 Rounds)
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