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Abstract 

Labour productivity is defined as output per unit of labour input.  Economists 

acknowledge that technical progress as well as growth in capital inputs increases 

labour productivity.  However, little attention has been paid to the fact that changes in 

labour input alone could also impact labour productivity.  Since this effect disappears 

for the constant returns to scale short-run production frontier, we call it the returns to 

scale effect.  We decompose the growth in labour productivity into two components: 

1) the joint effect of technical progress and capital input growth, and 2) the returns to 

scale effect.  We propose theoretical measures for these two components and show 

that they coincide with the index number formulae consisting of prices and quantities 

of inputs and outputs.  We then apply the results of our decomposition to U.S. 

industry data for 1970–2007.  It is acknowledged that labour productivity in the 

service sector grows much more slowly than in the goods-producing sector. We 

conclude that the returns to scale effect can explain a large part of the gap in labour 

productivity growth between the two sectors. 
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1. Introduction 

Economists broadly think of productivity as measuring the current state of the 

technology used in producing the firm‘s goods and services.  The production frontier, 

consisting of inputs and the maximum output attainable from them, characterizes the 

prevailing state of technology.  Productivity growth is often identified by the shift in 

the production frontier, reflecting changes in production technology.
1,2

  However, 

productivity growth can also be driven by movement along the production frontier. 

Even in the absence of changes in the production frontier, changes in the inputs used 

for production can lead to productivity growth, moving along the production frontier 

and making use of its curvature.  Productivity growth that is induced by the movement 

along the production frontier is called the returns to scale effect.  This effect does not 

reflect changes in the production frontier.  Thus, in order to properly evaluate 

improvements in the underlying production technology reflecting the shift in the 

production frontier, we must disentangle the returns to scale effect from labour 

productivity. 

Productivity measures can be classified into two types: total factor productivity (TFP) 

and partial factor productivity.  The former index relates a bundle of total inputs to 

outputs, whereas the latter index relates a portion of total inputs to outputs.  The 

present paper deals with labour productivity (LP) among several measures of partial 

factor productivity.  LP is defined as output per labour input in the simple one-output 

one-labour-input case.  Economy-wide LP is the critical determinant of a country‘s 

standard of living in the long-run.  For example, U.S. history reveals that increases in 

LP have translated to nearly one-for-one increases in per capita income as well as real 

wages over a long period of time.  The importance of LP as a source for the progress 

of economic well-being prompts many researchers to investigate what determines LP 

growth.
3
  Technical progress and capital input growth have been identified as the 

main determinants of a country‘s enormous LP growth over long periods (Jorgenson 

and Stiroh 2000, Jones 2002) as well as the wide differences in LP across countries 

(Hall and Jones 1999).  The present paper adds one more explanatory factor to LP 

growth. 

LP relates labour inputs to outputs, holding technology and capital services fixed.  

The short-run production frontier, which consists of labour inputs and the maximum 

output attainable from them, represents the capacity of current technology to translate 

labour inputs to outputs.  Both technical progress and capital input growth, which 

have been identified as the sources of LP growth, induce LP growth throughout the 

shift in the short-run production frontier. However, the returns to scale effect, which is 

the extent of LP growth induced by movement along the short-run production frontier, 

has never been exposed.   

                                                 
1
 See Griliches (1987). The same interpretation is also found in Chambers (1988). 

2
 In principle, productivity improvement can occur through technological progress and gains in 

technical efficiency.  Technical efficiency is the distance between the production plan and the 

production frontier.  The present paper assumes a firm‘s profit maximizing behaviour, and in our model 

the current production plan is always on the current production frontier.  The assumption of profit 

maximization is common in economic approaches to index numbers.  See Caves, Christensen and 

Diewert (1982) and Diewert and Morrison (1986). 
3
 The LP growth and the capital input growth are the abbreviations for the growth rates of LP and 

capital input.  In this paper, the growth rate of LP between the current and previous periods is the ratio 

of LP in the current period to LP in the previous period. 
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We decompose LP growth into two components: 1) the joint effect of technical 

progress and capital input growth, 2) the returns to scale effect.  First, we propose 

theoretical measures representing the two effects by using distance functions.  Second, 

we derive the index number formulae consisting of prices and quantities and show 

that they coincide with theoretical measures, assuming a translog functional form for 

the underlying technology and the firm‘s profit maximizing behaviour. 

Our approach to implementing theoretical measures is drawn from Caves, Christensen 

and Diewert (1982) (CCD).  Using the distance function, CCD formulate the 

(theoretical) Malmquist productivity index, which measures the shift in the production 

frontier, and show that the Malmquist productivity index and the Törnqvist 

productivity index coincide, assuming the translog functional form for the underlying 

technology and the firm‘s profit maximizing behaviour. 

The Törnqvist productivity index is a measure for the TFP growth calculated by the 

Törnqvist quantity indexes.  It is an index number formula consisting of price and 

quantity observations.  Equivalence between the two indexes breaks down if the 

underlying technology does not exhibit constant returns to scale.  Its difference 

represents the returns to scale effect, which is the growth in TFP induced by 

movement along the production frontier.  Thus, like Diewert and Nakamura (2007) 

and Diewert and Fox (2010), we can interpret that CCD decompose the TFP growth 

that is calculated by the Törnqvist quantity indexes into Malmquist productivity index 

and the returns to scale effect.  The former component captures TFP growth induced 

by the shift in the short-run production frontier.  

Many researchers have been concerned with the growth in TFP induced by movement 

along the underlying production frontier.  CCD (1982) call it the returns to scale 

factor, Diewert and Nakamura (2007) call it the returns to scale component, and 

Lovell (2003) calls it the scale effect.  In the literature of Data Envelopment Analysis 

(Balk, 2001 and Coelli et al. 2003), the product of scale efficiency change, input mix 

effect and output mix effect summarizes the TFP growth induced by movement along 

the production frontier, and it is interpreted as the returns to scale effect. 

Although scholars have recognized the significance of the returns to scale effect for 

TFP growth, its effect on LP growth has never been addressed even though it is more 

important in explaining LP growth than in explaining TFP growth.  When the 

underlying technology exhibits constant returns to scale, the scale economies effect 

disappears from TFP growth.  However, it still plays a role for LP growth.  This is 

because even if the underlying technology exhibits constant returns to scale, the short-

run production frontier is likely not to exhibit constant returns to scale.  

Triplett and Bosworth (2004, 2006) and Bosworth and Triplett (2007) observed that 

LP growth in the service sector was much less than in the service sector in U.S. 

economy since the early 1970s.  As we discussed above, there are two underlying 

factors to LP growth; therefore, two explanations are possible for the low LP growth 

in the services sector: 1) the joint effect of technical progress and increases in capital 

inputs is modest, or 2) an increase in labour inputs induces negative returns to scale 

effects.  We apply our decomposition result to U.S. industry data to compare the 

relative contributions of the two effects. 

Section 2 illustrates the two effects underlying LP growth graphically.  Section 3 

discusses the measure of the joint effect of technical progress and capital input growth 

in the multiple-inputs multiple-outputs case.  Section 4 discusses the returns to scale 
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effect in the multiple-inputs multiple-outputs case.  We show that the product of the 

joint effect of technical progress and capital input growth coincides with LP growth.  

Section 6 includes the application to the U.S. industry data.  Section 5 presents the 

conclusions. 

 

2. Two Sources of Labour Productivity Growth 

We display graphically what derives LP growth using a simple model of one output y 

and two inputs: labour input xL and capital input xK.  Suppose that a firm produces 

outputs y
0
 and y

1
 using inputs (xK

0
, xL

0
) and (xK

1
, xL

1
).  Period t production technology 

is described by the period t production function y = f 
t
(xK, xL) for t = 0 and 1.  Let us 

begin by considering how this joint effect of technical progress and capital input 

growth raises LP.  Figure 1 illustrates the case when the joint effects of technical 

progress and increases in capital inputs positively affect the employment of labour in 

production.  The lower curve represents the period 0 short-run production frontier.  It 

indicates how much output can be produced in period 0 by using a specified quantity 

of labour given the capital and technology available in period 0.  Similarly, the higher 

curve represents the period 1 short-run production frontier.  It indicates how much 

output can be produced from a given labour input in period 1 given the capital and 

technology available in period 1. 

Since the short-run production frontier shifts upward, the output attainable from a 

given labour input xL increases between the two periods such that f 
1
(xK

1
, xL) > f 

0
(xK

0
, 

xL).  The corresponding LP also grows such that f 
1
(xK

1
, xL)/xL > f 

0
(xK

0
, xL)/xL.  Thus, 

the ratio f 
1
(xK

1
, xL)/f 

0
(xK

0
, xL) = (f 

1
(xK

1
, xL)/xL)/(f 

0
(xK

0
, xL)/xL) captures the joint effect 

on LP growth of technical progress and capital input growth.  Note that the ratio is 

also a measure of the distance between the short-run production frontiers of periods 0 

and 1 in the direction of the y axis, evaluated at xL.  The ratio increases as the distance 

between the period 0 and the period 1 short-run production frontiers increases.  

Therefore, the joint effect of technical progress and increase in capital inputs can be 

captured throughout by measuring the shift in the short-run production frontier.  

[Place Figure 1 appropriately here.] 

Any quantity of labour input can produce more output in period 1 than in period 0, 

reflecting the positive joint effect of technical progress and increase in capital inputs.  

The firm increases its demand for labour input from xL
0
 to xL

1
, exploiting the 

increased productive capacity of labour input.  Production takes place at A for period 

0 and at B for period 1.  The slope of the ray from the origin to A and B indicates the 

LP of each period.  Since y
1
/xL

1
 is smaller than y

0
/xL

0
, LP declines between the two 

periods.  The fact that LP can decline despite the outward shift in the short-run 

production frontier suggests that another factor contributes to LP growth. 

The path from A to B can be divided into two parts: the vertical jump from A to A’ and 

the movement along the period 1 short-run production frontier from A’ to B.  Along 

the vertical jump from A to A’, the LP changes from y
0
/xL

0
 to f 

1
(xK

1
, xL

0
)/xL.

1
  Its ratio 

(y
1
/xL

1
)/(f 

1
(xK

1
, xL

0
)/xL

0
) is considered to be the growth in LP induced by the shift in 

the short-run production frontier, which is the joint effect of technical progress and an 

increase in capital inputs.  LP growth is offset by the change in labour input from xL
0
 

to xL
1
.  The movement along the period 1 short-run production frontier from A’ to B 

reduces LP from f 

1
(xK

1
, xL

0
)/xL

0
 to (y

1
/xL

1
).  We call the LP growth induced by 
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movement along the short-run production frontier (y
1
/xL

1
)/(f 

1
(xK

1
, xL

0
)/xL

0
) the returns 

to scale effect. 

In this section, we illustrate two sources of LP growth using the simple one-output 

two-inputs model.  However, the division of the path from A to B into two steps from 

A to A’ and from A’ to B is merely an example.  It is also possible to decompose the 

change from A to B into the movement along the period 0 short-run production 

function from A to B’ and the vertical jump from B’ to B.  In this case, the former 

movement reflects the returns to scale effect, and the latter movement reflects the 

joint effect of technical progress and capital input growth. 

For measuring the joint effect of technical progress and capital input growth, the 

important consideration is the quantity of labour input at which the distance between 

two short-run production frontiers is evaluated.  For measuring the returns to scale 

effect, whether we consider the movement along the period 0 or 1 short-run 

production frontier matters.  Hereafter, we generalize our discussion to the more 

general multiple-inputs multiple-outputs case and propose measures for the two 

effects that are immune from choosing the arbitrary benchmark. 

 

3. Joint Effect of Technical Progress and Capital Input Growth 

A firm is considered as a productive entity transforming inputs into outputs.  We 

assume that there are M (net) outputs, y = [y1,…, yM]
T
 and P + Q inputs consisting of P 

types of capital inputs xK = [xK,1,…, xK,P]
T
 and Q types of labour inputs xL = [xL,1,…, 

xL,Q]
T
.

4
  The period t production possibility set S

t
 consists of all the feasible 

combinations of inputs and outputs and it is defined as follows: 

(1) }producecan),(:),,{( yxxxxy LKLK

tS 
 

We assume S
t
 is a closed set that exhibits a free disposability property and includes 

the origin.
5
  The period t production frontier, which is the boundary of S

t
, is 

represented by the period t input requirement function G
t
.  It is defined as follows: 

(2) }),,,(:{min),,( 1,1,1,1, 1,

t

LKKKxLK

t SxxF
K

  xxyxxy  

It represents the minimum amount of the first capital input that a firm can use at 

period t, producing output quantities y, holding other capital inputs xK–1 = [xK,2,…, 

xK,P]
T
 and labour inputs xL fixed.  This function, which is originally formulated for the 

period t production frontier, can be used for characterizing the period t short-run 

production frontier.  Given period t capital input xK
t
, the set of outputs and labour 

inputs satisfying xK,1
t
 = F 

t
(y, xK,–1 

t
, xL) forms the period t short-run production frontier. 

CCD (1982) measures the shift in the production frontier by using the output distance 

function.  Adjusting their approach, we also use the output distance function to 

measure the shift in the short-run production frontier.  Using the input requirement 

function, the period t output distance function for t = 0 and 1 is defined as follows: 

                                                 
4
 Outputs include intermediate inputs.  If output m is an intermediate input, then ym< 0.  Hence, the 

nominal value of total (net) outputs p·y is the value-added that a firm generates. 
5
 Free disposability property means that given (y, xK , xL)∈S

t
, if (y*, xK*, xL*) ≥ (y, xK , xL), (y*, xK*, 

xL*)∈S
t
. 



 

 6 

(3)
















  1,1, ,,:min),,( KLK

t

LK

t

O xFD xx
y

xxy


 . 

Given capital inputs xK and labour inputs xL, DO
t
(y, xK, xL) is the minimum contraction 

of outputs y so that the contracted outputs y/DO
t
(y, xK, xL), capital inputs xK, and labour 

inputs xL are on the period t production frontier.  If (y, xK, xL) is on the period t 

production frontier, DO
t
(y, xK, xL) equals one.  Note that DL

t
(y, xK, xL) is linearly 

homogeneous in y.   

We can also relate it to the short-run production frontier.  Given labour inputs xL, 

DO
t
(y, xK

t
, xL) is the minimum contraction of outputs so that the contracted outputs 

y/DO
t
(y, xK, xL) and labour input xL are on the period t short-run production frontier.  

Thus, DO
t
(y, xK

t
, xL) provides a radial measure of the distance of y to the period t short-

run production frontier.  We measure the shift in the short-run production frontier by 

comparing the distance of y to the short-run production frontiers of the period 0 and 1.  

It is defined as follows:
6
 

(4)
),,(

),,(
),(

11

00

LKO

LKO
L

D

D
SHIFT

xxy

xxy
xy  . 

If technical progress and capital input growth have a positive effect on the productive 

capacity of labour between period 0 and 1, the short-run production frontier shifts 

outward.  Given labour inputs xL, more outputs can be produced.  Thus, the minimum 

contraction factor for given outputs y declines such that DO
1
(y, xK

1
, xL) ≤ DO

0
(y, xK

0
, 

xL), leading to SHIFT(y, xL) ≥ 1.  Similarly, the negative joint effect of technical 

progress and capital input growth leads to SHIFT(y, xL) ≤ 1. 

Each choice of reference vectors (y, xL) might generate a different measure of the shift 

in the short-run production frontier going from period 0 to period 1.  We calculate two 

measures by using different reference vectors (y
0
, xL

0
) and (y

1
, xL

1
).  Since these 

reference outputs and labour inputs are actually chosen in each period, they are 

equally reasonable.  Following Fisher (1922) and CCD (1982), we use the geometric 

mean of these measures as a theoretical measure of the joint effect of technical 

progress and capital input growth, SHIFT, as follows:
7
 

(5) ),(),( 1100

LL SHIFTSHIFTSHIFT xyxy  .  

The case of one output and one labour input offers us a graphical interpretation of 

SHIFT.  In Figure 1, it reduces to the following formula. 

(6) )),(/)(/),(( 10010011

LLLL ffSHIFT xxyyxx . 

Given a quantity of labour input, the ratio of the output attainable from such a labour 

input at period 1 to the output attainable at period 0 represents the extent to which the 

                                                 
6
 CCD (1982) and Färe et al (1994) introduce a measure of the shift in the production frontier by using 

the ratio of the output distance function.  Given (y, xK, xL ), Färe et al (1994) measure the shift in the 

production frontier by DO
0
(y, xK, xL )/DO

1
(y, xK, xL ).  

7
 Since the firm‘s profit maximization is assumed, it is possible to adopt a different formulation for the 

measure of the shift in the short-run production frontier: SHIFT = (DO
0
(y

1
, xK

0
, xL

1
)/DO

0
(y

0
, xK

0
, 

xL
0
))

1/2
(DO

1
(y

1
, xK

1
, xL

1
)/DO

1
(y

0
, xK

1
, xL

0
))

1/2
.  This formulation is closer to the original Malmquist 

productivity (TFP growth) index, which was introduced by CCD (1982). 
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short-run production function expands.  SHIFT is the geometric mean of those ratios 

conditional on xL
0
 and xL

1
. 

SHIFT is a theoretical measure defined by the unknown distance functions and there 

are alternative ways of implementing it.  We show that the theoretical measure 

coincides with a formula of price and quantity observations under the assumption of a 

firm‘s profit maximizing behaviour and a translog functional form for the output 

distance function.
8
  Our approach is drawn from CCD (1982) that implement the 

Malmquist productivity index, which is the theoretical measure of the shift in the 

production frontier.  They show that the Malmquist productivity index coincides with 

a different index number formula of price and quantity observations, which is called 

Törnqvist productivity index, under some assumption.
9
 

CCD (1982) also show that the first-order derivatives of the distance function D
t
 with 

respect to quantities at the period t actual production plan (y
t
, xK

t
, xL

t
) are computable 

from price and quantity observations.  Their equivalence result between the 

Malmquist and Törnqvist productivity indexes relies on these relationships.  Utilizing 

the same relationships, we also show that SHIFT coincides with an index number 

formula of price and quantity observations.  Although all the following equations (7)-

(16) have been already derived by CCD (1982), we outline how to compute the first-

order derivatives of the distance functions from price and quantity observations below 

for completeness of discussion.  The implicit function theorem is applied to the input 

requirement function F 

t
(y/δ, xK,–1, xL) = xK,1 to solve for δ = DO

t
(y, xK, xL) around (y

t
, 

xK
t
, xL

t
).

10
  Its derivatives are represented by the derivatives of F 

t
(y, xK, xL).  We have 

the following equations for t = 0 and 1: 

(7) , 1

, 1

1
( , , ) ( , , )

( , , )

t t t t t t t t

O K L K Lt t t t t

K L

D F
F





  


y y

y

y x x y x x
y y x x

. 

(8)
, 1 , 1, 1

11
( , , )

( , , )( , , )K

K

t t t t
t t t tO K L t t t t t

K LK L

D
FF

 

 
   

  
x

xy

y x x
y x xy y x x

. 

(9) ),,(
),,(

1
),,( t

L

t

K

tt

t

L

t

K

ttt

t

L

t

K

tt

O F
F

D
LL

xxy
xxyy

xxy x

y

x 


 . 

We assume the firm‘s profit maximizing behaviour.  Thus, (y
t
, xK

t
, xL

t
) >> 0N+P+Q is a 

solution to the following period t profit maximization problem for t = 0 and 1: 

(10) }),,(max{ 1,11,1 L

t

K

t

LK

ttt Fr xwxrxxyyp    

                                                 
8
 Alternative approaches are to estimate the underlying distance function by econometric and linear 

programming approaches.  Either of them requires sufficient empirical observations.  Our approach 

originated by CCD (1982) is applicable as long as price and quantity observations are available at the 

current and the reference periods.  See Nishimizu and Page (1982) for the application of the 

econometric technique and see Färe et al. (1994) for the application of the linear programming 

technique. 
9
 CCD (1982) justify the formula that is Törqvist output quantity index divided by Törqvist quantity 

index.  In addition to the translog functional form for the output distance function, they assume the 

firm‘s cost minimizing and revenue maximizing.  Their approach is called the index number approach, 

finding a formula of price and quantity observations that approximate a theoretical measure. 
10

 We assume the following three conditions are satisfied for t = 0 and 1: 1) F
t
 is differentiable at the 

point (y
t
, xK

t
, xL

t
),: 2) y

t
 >> 0M and 3) y

t
∙ y F(y

t
, xK

t
, xL

t
) > 0. 
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Outputs are sold at the positive producer prices p = [p1,…, pM]
T
 >> 0, capital inputs 

are purchased at the positive rental prices r = [r1,…, rP]
T
 >> 0, and labour inputs are 

purchased at the positive wages w = [w1,…, wQ]
T
 >> 0.  Note that r–1 = [r–1,…, rP]

T
.  

The period t profit maximization problem yields the following first order conditions 

for t = 0 and 1: 

(11) ),,( 1,1

t

L

t

K

tttt Fr xxyp y  . 

(12) ),,( 1,11 1,

t

L

t

K

tstt
Fr

K
xxyr x  

 . 

(13) ),,( 1,1

t

L

t

K

tstt Fr
L

xxyw x  . 

By substituting (11)-(13) into (7)-(9), we obtain the following equations for t = 0 and 

1: 

(14) ( , , ) /t t t t t t t

O K LD  y y x x p p y . 

(15) 


























 1

1

1,
1 ]/1[

),,(

1
]/[),,(

1,
r

yp
xxy

ypxxy
x

x

r

F
rD tt

t

L

t

K

tt
tttt

L

t

K

tt

O

K

K
. 

(16) ( , , ) /
L

t t t t t t

O K LD   x y x x w p y . 

The above equations (14)-(16) allow us to compute the derivatives of the distance 

function, without knowing the output distance function itself.  The information of the 

derivatives is useful for calculating the values of the output distance functions.  

However, one disadvantage is that the derivatives of the period t output distance 

function need to be evaluated at the period t actual production plan (y
t
, xK

t
, xL

t
) in 

equations (14)-(16) for t = 0 and 1.  The distance functions evaluated at the 

hypothetical production plan such as (y
1
, xK

0
, xL

1
) and (y

0
, xK

1
, xL

0
) also constitute 

SHIFT.  Hence, the above equations are not enough for implementing SHIFT.  In 

addition to a firm‘s profit maximization, we further assume a following translog 

functional form for the period t output distance function for t = 0 and 1.  It is defined 

as follows; 

(17)

 

  

 

 

 

 

  

 

 

 











P

p

Q

q qLpKqp

M

m

Q

q qLmqm

M

m

P

p pKmpm

Q

i

Q

j jLiLji

Q

q qL

t

q

P

i

P

j jKiKji

P

p pK

t

p

M

i

M

j jiji

M

m m

t

m

t

LK

t

O

xx

xyxy

xxx

xxx

yyyD

1 1 ,,,

1 1 ,,1 1 ,,

1 1 ,,,1 ,

1 1 ,,,1 ,

1 1 ,10

lnln

lnlnlnln

lnln)2/1(ln

lnln)2/1(ln

lnln)2/1(ln),,(ln









xxy

 

where the parameters satisfy the following restrictions: 

(18) ijji ,,   for all i and j such as 1 ≤ i < j ≤ M; 

(19) ijji ,,   for all i and j such as 1 ≤ i < j ≤ P; 

(20) ijji ,,   for i and j such as 1 ≤ i < j ≤ Q; 

(21) 1
1

 

N

n

t

n ; 
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(22)

 

0
1 ,  

M

i mi for m = 1,...,M ; 

(23)

 

0
1 ,  

M

m pm for p = 1,...,P ; 

(24)

 

0
1 ,  

M

i qm for q = 1,...,Q. 

Restrictions (21)-(24) guarantee the linear homogeneity in y.  The translog functional 

form characterized (17)-(24) is a flexible functional form so that it can approximate an 

arbitrary output distance function to the second order at an arbitrary point.  Thus, 

assuming this functional form does not harm any generality of the output distance 

function.  Note that the coefficients for the linear terms and the constant term are 

allowed to vary across periods.  Thus, technical progress under the translog distance 

function is by no means limited to Hicks neutral and is able to represent a vast variety 

of technical progress is possible.  Under the assumption of the profit maximizing 

behaviour and the translog functional form, a theoretical measure SHIFT is computed 

from price and quantity observations. 

Proposition 1: Assume that the output distance functions DO
0
 and DO

1
 have the 

translog functional form defined by (17)-(24) and a firm follows competitive profit 

maximizing behaviour in period t = 0 and 1.  Then, the joint effect of technical 

progress and capital input growth, SHIFT, can be computed from observed prices and 

quantities as follows:  

(25)   

























Q

q
qL

qL

qL

M

m
m

m
m

x

x
s

y

y
sSHIFT

1 0

,

1

,

,1 0

1

lnlnln  

where sm and sL,q are the average value-added shares of output m and labour input q 

between periods 0 and 1 such that; 
















11

11

00

00

2

1

ypyp

mmmm
m

ypyp
s  and 





















11

1

,

1

00

0

,

0

,
2

1

ypyp

qLqqLq

qL

xwxw
s  

The index number formula in (25) can be interpreted as the ratio of a quantity index of 

outputs to a quantity index of labour input.  Note that no data of price and quantity of 

capital inputs appear in this formula.  Even though the shift in the short-run 

production frontier reflects technical progress as well as the change in capital input, 

we can measure its shift without resort to capital input data explicitly. 

 

4. Returns to Scale Effect 

As is shown in Figure 1, the shift in the short-run production frontier is not the only 

factor contributing to the growth in LP.  Even when there is no change in the short-run 

production frontier, the movement along the frontier could raise LP, exploiting the 

concavity of the short-run production frontier.  We call the LP growth induced by the 

movement along the short-run production frontier the returns to scale effect.  In the 

simple model consisting of one output and one labour input, LP is defined as output 

per one unit of labour input.  Therefore, LP growth, which is the growth rate of LP 

between the current period and the previous period, coincides with the growth rate of 

output divided by the growth rate of labour input.  Since the returns to scale effect is 

the LP growth induced by the movement along the short-run production frontier, it is 
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computed by the growth rates of output and labour input between the two end points 

of the movement.  Figure 2 shows how the movement along the period t short-run 

production frontier from point C to D affects LP.  Comparing two points C and D, the 

growth rate of output is f 
t
(xK

t
, xL

1
)/f 

t
(xK

t
, xL

0
) and the growth ratio of labour input 

xL
1
/xL

0
.  The growth rate of LP between two points coincides with the growth rate of 

output divided by that of labour input so that (f 
t
(xK

t
, xL

1
)/f 

t
(xK

t
, xL

0
))/(xL

1
/xL

0
) = (f 

t
(xK

t
, 

xL
1
)/xL

1
)/( f

 t
(xK

t
, xL

0
)/xL

0
). 

[Place Figure 2 appropriately here.] 

We generalize the growth rates of labour input and output between two points on the 

period t short-run production frontier in order to measure the returns to scale effect in 

the multiple-inputs multiple-outputs case.  First, we investigate how to measure the 

counterpart of the growth rate of labour inputs in the multiple-inputs multiple-outputs 

case.  CCD (1982) define the input quantity index, which is the counterpart of the 

growth rate of total inputs, by comparing the radial distance between two input 

vectors and the period t production frontier.  The input distance function is used for 

the radial scaling of total inputs.  Adapting the input distance function used by CCD 

(1982), we introduce the labour input distance function that measure the radial 

distance of labour inputs xL to the period t production frontier.  The period t labour 

input distance function for t = 0 and 1 is defined as follows: 

(26)
















  1,1, ,,:max),,( K

L
K

t

LK

t

L xFD




x
xyxxy . 

Given outputs y and capital inputs xK, DL
t
(y, xK, xL) is the maximum contraction of 

labour inputs xL so that the contracted labour inputs xL/DL
t
(y, xK, xL) and capital inputs 

xK with outputs y are on the period t production frontier.  If (y, xK, xL) is on the period t 

production frontier, DL
t
(y, xK, xL) equals one.  Note that DL

t
(y, xK, xL) is linearly 

homogeneous in xK. 

We can also relate it to the short-run production frontier.  Given outputs y, DL
t
(y, xK

t
, 

xL) is the maximum contraction of labour inputs so that the contracted labour inputs 

xL/DL
t
(y, xK

t
, xL) and outputs y are on the period t short-run production frontier.  Thus, 

DL
t
(y, xK

t
, xL) provides a radial measure of the distance of xL to the period t short-run 

production frontier.  We construct the counterpart of the growth rate of labour input 

by comparing two labour inputs xL
0
 and xL

1
 to the period t short-run production 

frontier.  It is defined as follows; 

(27)
1 0( , ) ( , , ) / ( , , )t t t t

L K L L K LLABOUR t D Dy y x x y x x  

If labour inputs grow between two periods, xL
1
 moves further away from the origin 

than xL
0
, meaning that the labour input vector xL

1
 is larger than the labour input vector 

xL
0
.  The maximum contraction factor for producing outputs y with the period t capital 

inputs xK
t
 using the period t technology increases such that DL

t
(y, xK

t
, xL

0
) ≤ DL

t
(y, xK

t
, 

xL
1
), leading to LABOUR(t, y) ≥ 1.  Similarly, if labour inputs shrinks between two 

periods, xL
1
 moves closer to the origin than xL

0
, leadings to LABOUR(t, y) ≤ 1. 

Second, we investigate how to measure the growth rate of outputs on the period t 

short-run production frontier.  In the multiple-inputs multiple-outputs case, there is the 

set of outputs attainable from given labour inputs xL with period t technology and 

capital inputs.  It is a part of the period t short-run production frontier.  Since DO
t
(y, 

xK
t
, xL) provides a radial measure of the distance of y to the period t short-run 
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production frontier, DO
t
(y, xK

t
, xL) provides a radial measure of the distance of y to the 

set of outputs attainable from labour inputs xL
t
 with period t technology and capital 

input.  We construct the counterpart of the growth rate of outputs on the period t 

short-run production frontier by comparing outputs y to the sets of outputs attainable 

from xL
0
 and xL

1
 with period t capital input xK

t
.  It is defined as follows: 

(28) 0 1( , ) ( , , ) / ( , , )t t t t

O K L O K LOUTPUT t D Dy y x x y x x

 
If the labour input growth makes it possible to produce more outputs with given 

capital input using technology, the set of outputs attainable from xL
1
 shifts outward to 

that of outputs attainable from xL
0
.  Thus, the minimum contraction factor for given 

outputs y declines such that DO
t
(y, xK

t
, xL

1
) ≤ DO

t
(y, xK

t
, xL

0
), leading to OUTPUT(t, y) 

≥ 1.  Similarly, if the change in labour inputs reduces outputs attainable from given 

capital and labour inputs leads to OUTPUT(t, y) ≤ 1. 

Using the counterparts of the growth rate of outputs and labour inputs between two 

points, we can propose the measure of LP growth between the two points on the 

period t short-run production frontier.  When we use the period t short-run production 

and outputs as reference technology and outputs, the returns to scale effect is defined 

as follows: 

(29) 0 1

1 0

( , ) ( , ) / ( , )

( , , ) ( , , )

( , , ) ( , , )

t t t

t t t t t t

O K L L K L

t t t t t t

O K L L K L

SCALE t OUTPUT t LABOUR t

D D

D D



   
    

  

y y y

y x x y x x

y x x y x x

. 

Each choice of the reference technology might generate a different measure of the 

returns to scale effect going from period 0 to period 1.  We calculate two measures by 

using two different reference technologies: the period 0 and 1 short-run production 

frontiers.  Since these reference technology are equally reasonable, we use the 

geometric mean of these measures as a theoretical index of the returns to scale effect, 

SCALE, as follows; 

(30)
0 1(0, ) (1, )SCALE SCALE SCALE y y . 

The case of one output and one labour input offers us a graphical interpretation of 

SHIFT.  In Figure 1, it reduces to the following formula. 

 (31)
0 0 1 1 11

0 0 1 1 0 0

( , )

( , )
K L L L

L K L L

f x x x xy
SCALE

y x f x x x

  
   

  
. 

Given the period t short-run production frontier, the ratio of the LP associated with xL
0
 

to the LP associated with xL
1
 represents the LP growth induced by the change in 

labour input.  SCALE is the geometric mean of those ratios conditional on the period 0 

and 1 short-run production frontiers. 

As CCD (1982) apply the implicit function theorem to the input requirement function 

with the output distance function such as F 

t
(y

t
/δ, xK,–1

t
, xL

t
) = xK,1

t
 where δ  = DO

t
(y

t
, 

xK
t
, xL

t
), we apply the implicit function theorem to the input requirement function with 

the labour input distance function such as F 

t
(y

t
, xK,–1

t
, xL

t
/δ) = xK,1

t
 where δ  = DL

t
(y

t
, 
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xK
t
, xL

t
).  In this case, DL

t
(y, xK, xL) is differentiable around the point (y

t
, xK

t
, xL

t
).

11
  Its 

derivatives are represented by the derivatives of F
t
(y, xK, xL).  We have the following 

equations for t = 0 and 1: 

(32) ),,(
),,(

1
),,( 1,

1,

t

L

t

K

tt

t

L

t

K

ttt

L

t

L

t

K

tt

L F
F

D

L

xxy
xxyx

xxy y

x

y 






 . 

(33)
, 1 , 1, 1

11
( , , )

( , , )( , , )K

KL

t t t t
t t t tL K L t t t t t

K LL K L

D
FF

 

 
   

  
x

xx

y x x
y x xx y x x

. 

(34) ),,(
),,(

1
),,( 1,

1,

t

L

t

K

tt

t

L

t

K

ttt

L

t

L

t

K

tt

L F
F

D
L

L

L
xxy

xxyx
xxy x

x

x 






 . 

We assume that (y
t
, xK

t
, xL

t
) >> 0N+P+Q is a solution to the period t profit maximization 

problem (10) for t = 0 and 1. By substituting (11)-(13) obtained from the profit 

maximization into (32)-(34), we obtain the following equations for t = 0 and 1: 

(35) ( , , ) /t t t t t t t

L K L LD   y y x x p w x .  

(36) 









1

1
]/1[),,(

r
xwxxyx

r
D t

L

tt

L

t

K

tt

LK
. 

(37) ( , , ) /
L

t t t t t t t

L K L LD  x y x x w w x . 

The above equations (35)-(37) allow us to compute the derivatives of the labour input 

distance function, without knowing the labour input distance function itself.  The 

information of the derivatives is useful for calculating the values of SCALE, which is 

defined by the distance functions.  However, one disadvantage is that the derivatives 

of the period t distance function need to be evaluated at the period t actual production 

plan (y
t
, xK

t
, xL

t
) in equations (35)-(37) for t = 0 and 1.  The distance functions 

evaluated at the hypothetical production plan such as (y
1
, xK

0
, xL

1
) and (y

0
, xK

1
, xL

0
) also 

constitute SCALE.  Hence, the above equations are not enough for obtaining SCALE.  

In addition to the firm‘s profit maximization, we further assume the translog 

functional form for the period t labour input distance function for t = 0 and 1.  It is 

defined as follows; 

(38)

 

  

 

 

 

 

  

 

 

 











P

p

Q

q qLpKqp

M

m

Q

q qLmqm

M

m

P

p pKmpm

Q

i

Q

j jLiLji

Q

q qL

t

q

P

i

P

j jKiKji

P

p pK

t

p

M

i

M

j jiji

M

m m

t

m

t

LK

t

L

xx

xyxy

xxx

xxx

yyyD

1 1 ,,,

1 1 ,,1 1 ,,

1 1 ,,,1 ,

1 1 ,,,1 ,

1 1 ,10

lnln

lnlnlnln

lnln)2/1(ln

lnln)2/1(ln

lnln)2/1(ln),,(ln









xxy

 

where the parameters satisfy the following restrictions: 

(39) ijji ,,   for all i and j such as 1 ≤ i < j ≤ M; 
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 We also assume the following three conditions are satisfied for t = 0 and 1: 1) F
t
 is differentiable at 

the point (y
t
, xK

t
, xL

t
),: 2) y

t
 >> 0M and 3) y

t
∙ y F(y

t
, xK

t
, xL

t
) > 0. 
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(40) ijji ,,   for all i and j such as 1 ≤ i < j ≤ P; 

(41) ijji ,,   for i and j such as 1 ≤ i < j ≤ Q; 

(42) 1
1

 

Q

q

t

q ; 

(43) 0
1 ,  

Q

i qi for q = 1,..., Q; 

(44) 0
1 ,  

Q

q qm for m = 1,..., M ; 

(45)

 

0
1 ,  

Q

q qp for p = 1,..., P. 

The equation (38) is the same functional form defined by (17) that we assume for the 

output distance function in the discussion of SHIFT.  However, the restrictions on 

parameters on the labour input distance function differ from those on the output 

distance function.  We replace the restrictions (21)-(24) by (42)-(45).  While the 

restrictions (21)-(24) guarantee the linear homogeneity in outputs y for the output 

distance function, the restrictions (42)-(45) guarantees the linear homogeneity in 

labour inputs xL for the labour input distance function.  The translog functional form 

characterized by (38)-(45) is a flexible functional form so that it can approximate an 

arbitrary labour input distance function to the second order at an arbitrary point.  Thus, 

assuming this functional form does not harm any generality of the labour input 

distance function.  Note that the coefficients for the linear terms and the constant term 

are allowed to vary across periods.  Thus, technical progress under the translog 

distance function is by no means limited to Hicks neutral and a vast variety of 

technical progress is possible.  Under the assumption of the profit maximizing 

behaviour and the translog functional form, a theoretical index of the returns to scale, 

SCALE is computable from price and quantity observations. 

Proposition 2: Assume that the output distance functions DO
0
 and DO

1
 have the 

translog functional form defined by (17)-(24), the labour input distance functions DL
0
 

and DL
1
 have the translog functional form defined by (38)-(45), and a firm follows 

competitive profit maximizing behaviour in period t = 0 and 1.  Then, the returns to 

scale effect, SCALE, can be computed from observable prices and quantities as 

follows:  

(46)   





























Q

q
qL

qL
qL

Q

q
qL

qL

qL
x

x
s

x

x
sSCALE

1 0

,

1

.
,

1 0

,

1

.

, lnlnln  

where sL,q is the average value-added shares of labour input q and qLs , is the average 

labour-compensation share of labour input q between periods 0 and 1 such that; 





















11

1

,

1

00

0

,

0

,
2

1

ypyp

qLqqLq

qL

xwxw
s  and 





















11

1

,

1

00

0

,

0

,

2

1

L

qLq

L

qLq
qL

xwxw
s

xwxw
. 

The index number formula in the right-hand side of (46) can be interpreted as the ratio 

of the quantity indexes of labour inputs.  Both terms in (46) are the weighted 

geometric average of the growth rates for labour inputs.  The first term uses the value 

added share and the second term uses the labour compensation share.  Thus, if capital 

share, which is the nominal share of capital inputs to the value added, is large, the 
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difference between two terms (46) also becomes large, making the value of SCALE 

larger.  Conversely, in the case when no capital inputs are utilized for production, the 

returns to scale effect disappears.  

Starting from understanding that the two contribution factors exists for the LP growth, 

we reached the index number formula for these factors, independently.  Our result, 

however, does not deny the possibility of the existence of other explanatory factors to 

the LP growth.  Fortunately, two factors of SHIFT and SCALE can fully explain the 

LP growth.  The product of SHIFT and SCALE coincides with the index of the LP 

growth, as follows: 

Corollary 1: Assume that the output distance functions DO
0
 and DO

1
 have the translog 

functional form defined by (17)-(24), the labour input distance functions DL
0
 and DL

1
 

have the translog functional form defined by (38)-(45), and a firm follows competitive 

profit maximizing behaviour in period t = 0 and 1.  Then, the product of SHIFT and 

SCALE can be computed from observed prices and quantities as follows:  

(47)   

























Q

q
qL

qL
qL

M

m
m

m
m

x

x
s

y

y
sSCALESHIFT

1 0

,

1

,
,

1 0

1

lnlnlnln , 

where sm is the average value-added shares of output m and qLs , is the average labour-

compensation share of labour input q between periods 0 and 1 such that; 
















11

11

00

00

2

1

ypyp

mmmm
m

ypyp
s  and 





















11

1

,

1

00

0

,

0

,

2

1

L

qLq

L

qLq
qL

xwxw
s

xwxw
. 

The right side of the equation (47) represents the logarithm of LP growth.  The first 

term of the right hand side coincides with the Törnqvist quantity index of outputs and 

the second term is the Törnqvist quantity index of labour inputs.  The equation (47) 

allows us to fully decompose LP growth into two components such as SHIFT and 

SCALE in the case of multiple inputs and outputs.  It is a generalization of the simple 

explanation in the case of one input and one output that the LP grows is induced by 

the shift in the production frontier and the movement along the production frontier. 

 

5. An Application to U.S. Industry Data 

We apply the decomposition result to U.S. industry data.  Dataset covering the period 

1970-2005 is taken from the comprehensive industry dataset called the EU KLEMS 

Growth and Productivity Accounts.
12

  Industry data drawn from the database consist 

of gross outputs and intermediate inputs at current and constant prices, and hours 

worked of employment by 31 industries.  These industry data are organized according 

to the System of Industry Classification (SIC) adopted by the U.S. official statistics.
 13

  

                                                 
12

 Data are downloaded from the EU KLEMS website (http://www.euklems.net/).  The detailed 

explanation about this comprehensive international database is found in O‘Mahony and Timmer (2009).  

The U.S. industry data of EU KLEMS is constructed by Dale Jorgenson and his research group.  See 

Jorgenson, Ho and Stiroh (2008).   
13

 For each industry, there exist one type of gross output and one type of intermediate input.  Their 

deflator varies across industries.  Labour input is hours worked by total employment.  Total 

employment in each industry includes employees and the self-employed engaged in the production of 

the industry. 

http://www.euklems.net/
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They are categorized either as the goods producing sector (goods sector, thereafter) or 

the services providing sector (services sector, thereafter). 

[Place Table 1 appropriately here.] 

Table 1 compares LP growth and its components across the whole economy, the 

goods sector and the services sector.  For the entire sample period 1970-2005, the 

returns to scale effect has a negative impact on LP growth, reflecting the average 

growth rate of hours worked of 1.43 percent.  While the average rate of the joint effect 

of technical progress and capital input growth is 2.04 percent, it is largely offset by 

the returns to scale effect of -0.52 percent.  There is a hypothesis so called ―Baumol‘s 

disease‖ stating that LP in the services sector is likely to be stagnated and lower than 

that of the goods sector, which has been widely advocated by Triplett and Bosworth 

(2004, 2006) and Bosworth and Triplett (2007).  Such difference in LP growth 

between two sectors is also documented in our dataset.  The average growth rate of 

the goods sector LP of 2.33 percent is almost twice as large as that of the goods sector 

LP of 1.27 percent.  While the returns to scale effect is subtle and negligible in the 

goods sector, the significant negative returns to scale effect is found in the services 

sector.  Removing the returns to scale effect largely raises the services sector LP 

growth.  The more than half of the difference in LP growth between two sectors can 

be explained by the difference in the returns to scale effect.  The joint effects of 

technical progress and capital input growth in both sectors are very close on average 

over the period 1970-2005: 2.33 percent for the goods sector and 2.01 percent for the 

services sector.  It reflects that the increase in hours worked is taking place mostly in 

the services sector.  While hours worked for the goods sector grows at the average 

growth rate of 0.05 percent only, hours worked for the services sector grows at the 

average growth rate of 1.97 percent. 

It is convenient to divide the entire sample period 1970-2005 into two periods: the 

―productivity slowdown‖ period 1970-1995 and the ―productivity resurgence‖ period 

1995-2005.
14

  Productivity slowdown in U.S. economy started since the early 1970s 

with the average growth rate of 1.2 percent during the period 1970-1995.  Productivity 

growth surged after 1995, with the average growth rate of 2.31 percent during the 

period 1995-2005.  As Triplett and Bosworth (2004, 2006) and Bosworth and Triplett 

(2007) pointed out, the services sector LP grows slowly especially during the 

productivity slowdown period, with the average growth rate of 1 percent during the 

period 1970-1995.  At the same period, the goods sector grows with the average 

growth rate of 1.57 percent.  However, once we control the returns to scale effect and 

consider the joint effect of technical progress and capital input growth only, the 

services sector with the average rate of 1.82 percent forereaches the goods sector with 

the average rate of 1.62 percent.  Thus, even though LP growth is smaller in the 

services sector than in the goods sector, the productive capacity of labour, which is 

the output attainable from given labour inputs, increases more in the services sector 

than in the goods sector.  It reflects that the large increase in hours worked in the 

services sector restraints LP from growing largely.  While the hours worked in the 

goods sector grow slightly during the period 1970-1995, it even declines during the 

period 1995-2005 leading to the positive returns to scale effect.  On the other hand, 

hours worked in the services sector increases throughout the sample period, leading to 

                                                 
14

 It is known that the stagnation of the U.S. economy started since 1973.  Since the dataset is available 

since 1970 and the period 1970-1973 is too enough to identify the underlying trend, we deal with the 

period 1970-1995. 
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the negative returns to scale effect.  Thus, the part of the gap in LP growth explained 

by the gap in the returns to scale effect between two sectors become even larger in the 

period 1995-2005. 

 [Place Table 2 appropriately here.] 

The returns to scale effect, growth in hours worked and capital share by industry are 

shown in Table 2.
15

  The patter found in the aggregate study based on the sector data 

in Table 1 is also documented in the detailed industries.  Most of the industries in 

services sector show the negative returns to scale effect.  It is especially significant 

from 1970-1995.  On the other hand, many industries in the goods sector show modest 

returns to scale effect from 1970-1995 and the positive returns to scale effect from 

1995-2005.   Textiles, textile products, leather and footwear (SIC17-19) and coke, 

refined petroleum products and nuclear fuel (SIC 23) are exceptional industries in the 

goods sector.  Reflecting largely decreasing hours worked, the positive and large 

returns to scale effects are observed in both industries within the goods sector in the 

period 1970-1995. 

The returns to scale effect depends on capital share as well as increases in hours 

worked.  The detailed industry study reveals cases when the returns to scale effect 

gets larger for different reasons.  On average over the whole sample period, the most 

significant returns to scale effect is found in Real estate activities (SIC 70), averaging 

-2.35 percent.  Renting of equipment and other business activities (SIC 71-74) shows 

the second largest returns to scale effect in magnitude.  However, its average growth 

rate is -0.97 percent, which is much smaller than the value of the real estate activities.  

The reason why the returns to scale effect becomes large differs between two 

industries.  Renting of equipment and other business activities has the highest growth 

of hours worked, averaging 4.68 percent, leading to the second large returns to scale 

effect.  However, hours worked in real estate activities does not grow significantly 

with the average growth rate of 2.61 percent.  For example, although hours worked in 

health and social work (SIC N) grows larger with the average growth rate of 3.31 

percent, its rate of returns effect is -0.56 on average, which is smaller than even one 

quarter of real estate activities.  The reason of the largest returns to scale effect is 

because the real estate activities has the large capital share 90.52 percent.  The impact 

of the growth in hours worked on the returns to scale effect is largely amplified by the 

large capital share. 

 

6. Conclusion 

In this paper, we distinguished two effects on LP growth by examining the short-run 

production frontier.  The joint effect of technical progress and capital input growth 

appears as the growth in LP that is induced by the shift in the short-run production 

frontier.  The returns to scale effect appears as the LP growth induced by the 

movement along the short-run production frontier.  The LP growth calculated by 

Törnqvist quantity indexes is fully decomposed into the product of these two effects.  

We applied this decomposition result to U.S. industry data for the period 1970-2005.  

It is shown that a large part of the difference in LP growth between the goods sector 

and the services sector can be explained by the returns to scale effect. 

                                                 
15

 Since private households with employed persons is not endowed with capital inputs and all the 

production has been conducted by using labour inputs only, there is no returns to scale effect for this 

industry.  Thus, this industry is excluded from Table 2. 
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In this paper, we assumed the firm‘s profit maximizing behaviour and ruled out 

inefficient production processes.  If we relax the firm‘s profit maximizing behaviour, 

another factor—technical efficiency change—appears in the decomposition of LP 

growth.  Even with no change in the short-run production frontier and no change in 

labour input, a firm can approach closer to the short-run production frontier by 

improving technical efficiency.  For example, a firm improves technical efficiency by 

increasing output up to the maximum level attainable from given labour inputs under 

current technology.  For the implementation of the decomposition of the LP growth 

without assuming a firm‘s profit maximizing behaviour, we can estimate the distance 

function by using econometric techniques or Data Envelopment Analysis‘s linear 

programming technique.  However, we leave this exercise to the future research. 
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Proof of Proposition 1 
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Proof of Proposition 2 
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Table 1: Labour Productivity Growth and Its Components (% ), 1970-1995, 1995-2005

1970-2005 1970-1995 1995-2005

Whole Economy

  Labour Productivity Growth 1.51 1.20 2.31

     Technical Progress and Capital Input Growth 2.04 1.78 2.67

     Returns to Scale Effect -0.52 -0.59 -0.36

               Hours Worked 1.43 1.62 0.96

               Capital Share 36.43 36.01 37.48

Goods Sector

  Labour Productivity Growth 2.33 1.52 4.34

     Technical Progress and Capital Input Growth 2.33 1.62 4.13

     Returns to Scale Effect -0.01 -0.10 0.21

               Hours Worked 0.05 0.30 -0.57

               Capital Share 34.59 33.40 37.56

Services Sector

  Labour Productivity Growth 1.27 1.00 1.93

     Technical Progress and Capital Input Growth 2.01 1.82 2.48

     Returns to Scale Effect -0.74 -0.82 -0.54

               Hours Worked 1.97 2.19 1.44

               Capital Share 37.42 37.40 37.47
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Figure 1: Labour Productivity Growth and Shift in the Short-run Production Frontier 
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Figure 2: Returns to Scale Effect and Movement along the Short-run Production Frontier 


