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Abstract

This paper presents a noncooperative coalitional bargaining model with generalized selec-

tion of proposers, which includes Chatterjee et al.’s (1993) fixed-order-proposer model and

Okada’s (1996) random-proposer model as two extreme special cases. In the model, at each

round, proposers are selected according to recognition probabilities, which depend on who

rejects a proposal at the previous round. This paper provides conditions for the subgame

efficiency, which means that the grand coalition is formed and no delay occurs in every sub-

game, both with each discount factor δ < 1 and in the limit δ → 1. It is shown that for any

discount factor δ < 1, the subgame efficiency is more difficultly achieved as each player is

selected as a proposer with a higher probability after she rejects a proposal at the previous

round, and in the limit δ → 1, the probability does not matter for the subgame efficiency.
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1 Introduction

Many papers have analyzed noncooperative coalitional bargaining games. Among them,

Chatterjee et al. (1993) and Okada (1996) are significant. These papers formulate nonco-

operative dynamic coalitional bargaining with n players, transferable utilities and complete

information: In both models, the game is defined based on a characteristic function form

game (N, v). At each round, a player becomes a proposer and proposes a coalition and a

payoff distribution for the coalition. Then, each player in the proposed coalition announces

accepting or rejecting the proposal sequentially until a player rejects it or all players accept it.

If all players in the coalition accept the proposal, then the coalition becomes binding with the

distribution and the game goes to a new round with the other players. Otherwise, the game

goes to the next round with all players remaining. The game proceeds in such a manner.

Each player’s payoff is the pie distributed to her. Each player discounts future payoffs by the

common discount factor δ.

The difference between their models is the procedure in selecting proposers. Chatterjee et

al.’s (1993) model is called the fixed-order-proposer (FOP) model : An order is predetermined

on the set of players and players announces accepting or rejecting the proposal sequentially

according to the order. At each round, the rejector at the previous round becomes a pro-

poser. On the other hand, Okada’s (1996) model is called the random-proposer (RP) model :

Proposers are randomly selected at every round.

This paper presents a noncooperative bargaining game with generalized selection of pro-

posers. We call the model the generalized-selection-proposer (GSP) model : In the model,

each round is classified by state (S, s), where S denotes the active player set at the round

and s denotes the rejector at the previous round. At each round with state (S, s), a proposer

is recognized according to predetermined probability profile
(
PS

s,k

)
k∈S

, i.e., player i becomes

a proposer with probability PS
s,i.

The GSP model includes the FOP model and the RP model as two special cases:1 If

1 This paper’s model also includes Selten’s (1981) model and Okada’s (1993) model. In terms of the selection of
proposers, Selten’s (1981) model and Okada’s (1993) model are the same as Chatterjee et al.’s (1993) model and
Okada’s (1996) model, respectively. However, in Selten’s (1981) model and Okada’s (1993) model, the game ends
once one coalition is formed. In this paper’s model, after a coalition is formed, the game continues with probability
π and ends with probability 1− π.
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PS
s,s = 1 for any (S, s), the GSP model is equivalent to the FOP model. If PS

s,i = 1
|S| for any

(S, s) and any i ∈ S, it is equivalent to the RP model. Moreover, as shown in the following

section, the FOP model and the RP model are two extreme special cases.

Chatterjee et al. (1993) and Okada (1996) investigate the efficiency, i.e., the grand-

coalition formation and no delay, in the limit δ → 1. This paper also considers the efficiency,

more precisely the subgame efficiency, which is defined according to Okada. The subgame

efficiency means that the full coalition is formed and no delay occurs in any subgame.

As in Chatterjee et al. (1993) and Okada (1996), this paper considers the efficiency in the

limit δ → 1. It is shown that in the limit δ → 1, there exists a subgame efficient equilibrium

if and only if v(S)P
k∈S P S

k,k

≥ v(S′)P
k∈S′ P

S
k,k

for all positive-worth subsets S and S′ of N such that

S ⊃ S′ (Theorem 3). If PS
s,s = PS

s′,s′ for all s, s′ ∈ S, the condition is equivalent to Chatterjee

et al.’s (1993) condition and Okada’s (1996), respectively. Theorem 3 implies that in the

limit δ → 1, as long as P S
s,sP

k∈S P S
k,k

is constant, the difficulty of the subgame efficiency does not

depend on the greatness of PS
s,s (Theorem 4). Thus, as Okada points out, the FOP model

and the RP model have the same condition for the subgame efficiency in the limit δ → 1.

On the other hand, this paper investigates the subgame efficiency also for each δ < 1. It

is shown that for any discount factor δ, there exists a subgame efficient equilibrium if and

only if v(S)

δ
P

k∈S P S
k,k+(1−δ)

≥ v(S′)
δ
P

k∈S′ P
S
k,k+(1−δ)

for all positive-worth subsets S and S′ of N such

that S ⊃ S′ (Theorem 1). In contrast with the limit δ → 1, Theorem 3 implies that for any

discount factor δ < 1, as long as P S
s,sP

k∈S P S
k,k

is constant, the greater PS
s,s is, the more difficultly

the subgame efficiency is achieved (Theorem 2). From this, the subgame efficiency is more

easily achieved in the RP model than the FOP model for any δ < 1.

The paper is organized as follows: Section 2 defines a noncooperative coalitional bargain-

ing model, Section 3 investigates the efficiency, and Section 4 concludes the paper.

2 Model

In this section, we describe the GSP model.

Take a characteristic function form game (N, v).2 Suppose that v (S) ≥ 0 for all S ∈ 2N .

2 N is an arbitrary nonempty finite set and v is an arbitrary mapping from 2N to R such that v (∅) = 0.
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Suppose that (N, v) is superadditive, i.e., for all S, T ∈ 2N , if S ∩ T = ∅, v (S ∪ T ) ≥
v (S) + v (T ).3 Suppose that N 63 0.

We define noncooperative bargaining games based on the above cooperative game. Let

S ≡ {
S ∈ 2N | v (S) > 0

}
. For S ∈ S, let S∗ ≡ {0} ∪ S. For S ∈ S, let4

∆S ≡
{

P ∈ R+
S∗×S | ∀s ∈ S∗,

∑

k∈S

P (s, k) = 1 ∧ ∀s ∈ S, P (s, s) > 0

}
.

For any S ∈ S, any P ∈ ∆S and any (s, k) ∈ S∗ × S, let Ps,k ≡ P (s, k). For any P ∈
⋃

Ŝ∈S ∆Ŝ , for any S′ ⊂ S, let trS′ P ≡ ∑
k∈S′ Pk,k, where S is the unique set that satisfies

P ∈ ∆S . For any P ∈ ⋃
Ŝ∈S ∆Ŝ , let trP ≡ trS P , where S is the unique set that satisfies

P ∈ ∆S . Let ∆ ≡ ∏
S∈S ∆S . Each member in ∆ is referred to as a protocol. Let - be

an arbitrary total order on N . For P ≡ (
PS

)
S∈S

∈ ∆, δ ∈ (0, 1) and π ∈ [0, 1], define an

extensive form game G (P, δ, π), which includes Chatterjee et al.’s (1993) model and Okada’s

(1996) as special cases.

The structure of the game is inductively defined. In the game, there are countably infinite

superrounds, which are classified by superstates, and in a superround, there are countably

infinite rounds, which are classified by states. We call S ∈ S a superstate, and (S, s) such

that S ∈ S and s ∈ S∗ a state. In the game, bargaining proceeds as follows:

(I) The game begins with the superround with superstate N .

(II) At a superround with superstate S, bargaining proceeds as follows:

(i) The superround with S begins with the round with state (S, 0).

(ii) At a round with state (S, s), bargaining proceeds as follows:

(1) A player i ∈ S is selected as a proposer with probability PS
s,i.

(2) Player i proposes a pair of a coalition including i and a payoff distribution for

the coalition, i.e., (C, x) such that C ∈ 2S \ {∅}, C 3 i, (xk)k∈C ∈ RC
+ and

∑
k∈C xk ≤ v (C).

(3) Each player in the proposed coalition C announces accepting or rejecting the

3 Whereas Okada (1996) assumes the superadditivity, Chatterjee et al. (1993) do not.
4 In this paper, for any nonempty sets A and B, let BA denote the set of mappings from A to B.
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proposal sequentially according to - until a player in C rejects the proposal or

all players in C accept it.5

If a player rejects the proposal, the game goes to the next round with state (S, s′),

where s′ ∈ S is the rejector.

If all players in C accept the proposal, the superround with S ends.

If the superround with S ends with agreement with C such that S \ C ∈ S, the game

goes to the next superround with superstate S \ C with probability π and the game

ends with probability 1− π.

If the superround with S ends with agreement with C such that S \ C 6∈ S, the game

ends.

We say that a proposal is accepted if every responder accepts it and rejected otherwise. Player

i obtains a payoff of δt−1xi if a proposal
(
C, (xk)k∈C

)
such that C 3 i is accepted at the t-th

round and nothing otherwise. δ is the common discount factor.

The GSP model is a generalization of the FOP model and the RP model. Let F ≡
(
FS

)
S∈S

∈ ∆ denote a protocol such that for all S ∈ S, FS
s,s = 1 for all s ∈ S and

FS
0,i = 1, where i - j for all j ∈ S. Then, G (F, δ, 1) is equivalent to the FOP model.6 Let

R ≡ (
RS

)
S∈S

∈ ∆ denote a protocol such that for all S ∈ S, RS
s,i = 1

|S| for all i ∈ S for all

s ∈ S∗. Then, G (R, δ, 1) is equivalent to the RP model.7

Moreover, the FOP model and the RP model are two extreme special cases in the following

sense: Take any S ∈ S. Let ∆̄S ≡ {
P ∈ ∆S | ∀i ∈ S, ∀s ∈ S, Pi,i ≥ Ps,i

}
. Under P ∈ ∆̄S ,

each player is recognized as a proposer with a higher probability at rounds following her

rejection than at any other round. Note that

{
(Ps,s)s∈S | P ∈ ∆̄S

}
=

{
(Ps,s)s∈S | P ∈ ∆S ∧ trP ≥ 1

}
=

{
(xs)s∈S ∈ (0, 1]S |

∑

s∈S

xs ≥ 1

}
.

FS ∈ arg maxP∈∆̄S trP for all S ∈ S. RS ∈ arg minP∈∆̄S trP for all S ∈ S.

In this paper, we consider pure strategies. The equilibrium concept employed in the

5 Even if the order is contingent on states, the results of this paper do not alter.
6 G (F, δ, 0) is equivalent to Selten’s (1981) model.
7 G (R, δ, 0) is equivalent to Okada’s (1993) model.

5



paper is the stationary subgame perfect equilibrium (SSPE), which is the subgame perfect

equilibrium such that each player takes the same actions at all rounds with states containing

the same superstate.

3 Efficiency

In this section, we consider the efficiency defined as follows:

Definition 1. Take any P ∈ ∆, any δ ∈ (0, 1) and any π ∈ [0, 1]. SSPE σ of G (P, δ, π)

is a subgame efficient if in σ, at any round with state (S, s), every equilibrium proposal is

immediately accepted at the round (no delay) and every player proposes full coalition S

(full-coalition formation).

This definition is based on Okada (1996). Needless to say, discounting and the superad-

ditivity necessitate the no-delay property and the full-coalition-formation property for the

subgame efficiency, respectively.

The following theorem provides an equivalent condition for the subgame efficiency in

G (P, δ, π):

Theorem 1. Take any P ≡ (
PS

)
S∈S

∈ ∆, any δ ∈ (0, 1) and any π ∈ [0, 1]. Then, there

exists a subgame efficient SSPE of G (P, δ, π) if and only if for all S, S′ ∈ S such that S ⊃ S′,

v (S)
δ trPS + (1− δ)

≥ v (S′)
δ trS′ PS + (1− δ)

. (1)

Proof. See Appendix A. Q.E.D.

Remark. (1) is v(S)
δ|S|+(1−δ) ≥ v(S′)

δ|S′|+(1−δ) if P = F and v (S) ≥ v(S′)
δ|S′|/|S|+(1−δ) if P = R.

Remark. The equivalent condition for the subgame efficiency does not depend on recognition

probability profiles
((

PS
0,k

)
k∈S

)
S∈S

at initial rounds and total order -.

This theorem is intuitively proved (on the necessity) as follows: Take any subgame efficient

SSPE. Consider any S ∈ S. For i ∈ S, let vi be player i’s equilibrium expected payoff at the
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round with state (S, i). Notice that δvk is player k’s threshold to accept or reject a proposal.

Then, by the subgame efficiency,

vi = PS
i,i


v (S)−

∑

k∈S\{i}
δvk


 +

∑

k∈S\{i}
PS

i,kδvi = PS
i,i

(
v (S)−

∑

k∈S

δvk

)
+

∑

k∈S

PS
i,kδvi.

By
∑

k∈S PS
i,k = 1,

vi = PS
i,i

(
v (S)− δ

∑

k∈S

vk

)
+ δvi. (2)

Sum the above equation over S. Then,
∑

k∈S vk = tr P S

δ tr P S+(1−δ)
v (S). Substitute this equation

into (2). Then,

vi =
PS

i,i

δ trPS + (1− δ)
v (S) . (3)

This equation is interpreted as follows: Consider the round with state (S, i). Interpret

δ as the probability that the game continues to the next rounds. Then, with probability δ,

every player j obtains a proposing opportunity of PS
j,j by rejecting a proposal, and thus player

j’s bargaining power is proportional to PS
j,j , which implies that player i’s share of v (S) is

P S
i,iP

k∈S P S
k,k

=
P S

i,i

tr P S . On the other hand, with probability 1−δ, the game ends at this round, and

thus player j’s bargaining power is proportional to PS
i,j , which implies that player i’s share of

v (S) is
P S

i,iP
k∈S P S

i,k

= PS
i,i. Thus, player i’s ex ante share of v (S) is the harmonic mean of

P S
i,i

tr P S

and PS
i,i weighted by δ and 1 − δ, i.e.,

(
δ

(
P S

i,i

tr P S

)−1

+ (1− δ)
(
PS

i,i

)−1
)−1

=
P S

i,i

δ tr P S+(1−δ)
.

Hence, (3) holds.

Take any S′ ∈ S such that S′ ⊂ S. Take any i ∈ S′. Consider the round with state (S, i).

By the subgame efficiency, player i proposes the full coalition S. Then, v (S)−∑
k∈S\{i} δvk ≥

v (S′)−∑
k∈S′\{i} δvk. Thus, v (S)−∑

k∈S δvk ≥ v (S′)−∑
k∈S′ δvk. Substitute (3) into this

inequality. Then, we have (1).

Here, we introduce two binary relations on ∆ as follows:

Definition 2. Take any P ≡ (
PS

)
S∈S

, P̂ ≡
(
P̂S

)
S∈S

∈ ∆. (i) P is more diagonal than P̂
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if for all S ∈ S, trPS ≥ tr P̂S . (ii) P is proportional to P̂ if for all S ∈ S, for all s ∈ S,
P S

s,s

tr P S = P S
s,s

tr P̂ S
.

Remark. For all S ∈ S, for all s ∈ S, FS
s,s = 1 and RS

s,s = 1
|S| . Thus, F is more diagonal than

and proportional to R.

Remark. (i) “Be more diagonal than” is reflexive and transitive, i.e., a preorder, but not

antisymmetric and thus not a partial order. (ii) “Be proportional to” is reflexive, symmetric

and transitive, i.e., an equivalence relation.

We say that P is less diagonal than P̂ if P̂ is more diagonal than P .

Next, we compare protocols in terms of the subgame efficiency. According to the following

theorem, as long as P is in the same equivalence class in ∆ by “be proportional to”, the more

diagonal P is, the more difficult it is for the subgame efficiency in G (P, δ, π) to be achieved.

Theorem 2. Take any P, P̂ ∈ ∆, any δ ∈ (0, 1) and π ∈ [0, 1]. Suppose that P is more

diagonal than and proportional to P̂ . Then, if there exists a subgame efficient SSPE of

G (P, δ, π), there exists a subgame efficient SSPE of G
(
P̂ , δ, π

)
.

Proof. See Appendix B. Q.E.D.

Remark. As shown above, F is more diagonal than and proportional to R. Thus, from

Theorem 2, for any δ ∈ (0, 1), if there exists a subgame efficient SSPE of G (F, δ, π), there

also exists that of G (R, δ, π).

Theorem 2 is intuitively explained as follows: Let σ (resp. σ̂) be a subgame efficient SSPE

of G (P, δ, π) (resp. G
(
P̂ , δ, π

)
). Take any S ∈ S. For any i ∈ S, let vi (resp. v̂i) be player

i’s expected payoff at the round with state (S, i) by σ (resp. σ̂). Interpret δ as the probability

that the game continues to the next rounds as above. Then, with probability δ, player i’s

share of v (S) in σ (resp. σ̂) is
P S

i,i

tr P S (resp.
P̂ S

i,i

tr P̂ S
). Since P is proportional to P̂ ,

P S
i,i

tr P S =
P̂ S

i,i

tr P̂ S
.

On the other hand, with probability 1− δ, player i’s share of v (S) in σ (resp. σ̂) is PS
i,i (resp.

P̂S
i,i). Since P is more diagonal than P̂ , PS

i,i ≥ P̂S
i,i. Therefore, vi ≥ v̂i. Notice that δvi (resp.

δv̂i) is player i’s threshold to accept or reject a proposal in σ (resp. σ̂). Then, vi ≥ v̂i implies

that the subcoalition formation or the delay is more likely to occur in σ than in σ̂.
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Next, using Theorem 1, we present a condition for the subgame efficiency when players

are sufficiently patient. We say that there exists a subgame efficient SSPE of G (P, 1, π) if for

some δ∗ ∈ (0, 1), for any δ ∈ (δ∗, 1), there exists a subgame efficient SSPE of G (P, δ, π).

Theorem 3. Take any P ≡ (
PS

)
S∈S

∈ ∆ and any π ∈ [0, 1]. Then, there exists a subgame

efficient SSPE of G (P, 1, π) if and only if for all S, S′ ∈ S such that S ⊃ S′,

v (S)
trPS

≥ v (S′)
trS′ PS

. (4)

Proof. See Appendix C. Q.E.D.

Remark. If PS
s,s = PS

s′,s′ for all s, s′ ∈ S, (4) is equivalent to v(S)
|S| ≥ v(S′)

|S′| . As shown above,

for all S ∈ S, for all s ∈ S, FS
s,s = 1 and RS

s,s = 1
|S| . Thus, an equivalent condition for the

subgame efficiency in G (F, 1, π) or G (R, 1, π) is that for all S, S′ ∈ S such that S ⊃ S′,

v(S)
|S| ≥

v(S′)
|S′| .

Remark. Needless to say, the equivalent condition for the subgame efficiency does not depend

on recognition probability profiles
((

PS
0,k

)
k∈S

)
S∈S

at initial rounds and total order -.

Remark. Take any π ∈ [0, 1]. There exists P ∈ ∆ such that there exists a subgame efficient

SSPE of G (P, 1, π) if and only if
(
S, vS

)
has a nonempty core for any S ∈ S, where vS :

2S → R is defined as vS (T ) = v (T ) for all T ∈ 2S .8

By letting δ go to 1 in Theorem 1, we obtain Theorem 3.

Theorem 3 implies the following theorem:

Theorem 4. Take any P, P̂ ∈ ∆ and any π ∈ [0, 1]. Suppose that P is proportional to P̂ .

Then, there exists a subgame efficient SSPE of G (P, 1, π) if and only if there exists a subgame

efficient SSPE of G
(
P̂ , 1, π

)
.

Proof. By Theorem 3. Q.E.D.

8 Yan (2002) shows that in Okada’s (1993) model with different recognition probabilities, any core allocation of
the underlying characteristic function form game is implemented as an equilibrium payoff profile of a game with
some recognition probability profile in the limit δ → 1.
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Remark. Then, F is proportional to R. Thus, in the limit δ → 1, the subgame efficiency in

G (F, δ, π) is equivalent to that in G (R, δ, π).

In contrast to Theorem 2, in the limit δ → 1, as long as P is in the same equivalence

class in ∆ by “be proportional to”, the diagonality of P does not matter for the subgame

efficiency.

Theorem 4 can be intuitively explained by the intuition of Theorem 2. We reuse the

notations for the intuition of Theorem 2. Under the interpretation of δ as the probability

that the game continues to the next rounds, in the limit δ → 1, the game continues with

certainty. Then, player i’s share of v (S) in σ (resp. σ̂) is
P S

i,i

tr P S (resp.
P̂ S

i,i

tr P̂ S
). Since P is

proportional to P̂ ,
P S

i,i

tr P S =
P̂ S

i,i

tr P̂ S
. Therefore, vi = v̂i, i.e., each player’s threshold to accept

or reject a proposal does not vary between σ and σ̂. Thus, in the limit δ → 1, the subgame

efficiency in the games with P is equivalent to that in the games with P̂ .

Finally, the following theorem compares protocols in different terms:

Theorem 5. Take any π ∈ [0, 1]. For all P ∈ ∆ such that there exists a subgame efficient

SSPE of G (P, 1, π), there exists P̂ ∈ ∆ with P̂ which is less diagonal than P and not P such

that there exists a subgame efficient SSPE of G
(
P̂ , 1, π

)
.

Proof. See Appendix D. Q.E.D.

Theorem 5 follows Theorem 4. An implication of Theorem 5 is that when we design

bargaining procedures, using less diagonal protocols is desirable for the subgame efficiency.

4 Conclusion

In this paper, the following results are shown: (i) For any δ ∈ (0, 1), there exists a subgame

efficient SSPE of G (P, δ, π) if and only if v(S)
δ tr P S+(1−δ)

≥ v(S′)
δ trS′ P S+(1−δ)

for all S, S′ ∈ S such

that S ⊃ S′ (Theorem 1). (ii) For any δ ∈ (0, 1), if P is more diagonal than and proportional

to P̂ , the subgame efficiency is more difficultly achieved in G (P, δ, π) than in G
(
P̂ , δ, π

)

(Theorem 2). (iii) In the limit δ → 1, there exists a subgame efficient SSPE of G (P, δ, π) if

and only if v(S)
tr P S ≥ v(S′)

trS′ P S for all S, S′ ∈ S such that S ⊃ S′ (Theorem 3). (iv) In the limit
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δ → 1, as long as P is proportional to P̂ , the subgame efficiency is achieved in G (P, δ, π) if

and only if it is achieved in G
(
P̂ , δ, π

)
(Theorem 4). (v) In the limit δ → 1, for all P ∈ ∆

such that there exists a subgame efficient SSPE of G (p, δ, π), there exists P̂ ∈ ∆ with P̂

which is less diagonal than P and not P such that there exists a subgame efficient SSPE of

G
(
P̂ , δ, π

)
(Theorem 5).
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Appendix

A Proof of Theorem 1

Proof. (Sufficiency) Suppose that (1) holds for all S, S′ ∈ S such that S ⊃ S′. Consider

strategy profile σ such that for any round with state (S, s), (i) any player i ∈ S proposes
(
S,

(
yi

k

)
k∈S

)
with yi

i = v (S) −∑
k∈S\{i} δxi and yi

k = δxk for any k ∈ S \ {i} and (ii) any

player i ∈ S accepts a proposal if and only if her share by the proposal is greater than or equal

to δxi, where xi =
P S

i,k

δ tr P S+(1−δ)
v (S) for i ∈ S. Note that for i ∈ S, yi

i =
δP S

i,i+(1−δ)

δ tr P S+(1−δ)
v (S) ≥ 0

and
∑

k∈S yi
k = v (S). Note also that yi

i ≥ δxi. Finally, note that in σ, actions at a round

with state (S, s) are the same as at a round with state (S, s′) for all s, s′ ∈ S. Consider

any superround with superstate S. For i ∈ S, let vi be player i’s expected payoff at the

round with state (S, i) by σ. Obviously, in σ, every player offers an acceptable proposal at

every round (∗). Thus, vi is computed as vi =
∑

k∈S PS
i,ky

k
i = PS

i,i

(
v (S)−∑

k∈S\{i} δxk

)
+

(
1− PS

i,i

)
δxi = xi. Consider any round with (S, s). First, we show the unimprovability

of responding actions in the round. By vi = xi, every player’s responding actions in σ are

unimprovable. Next, consider the unimprovability of proposing actions of any player i ∈ S at

the round. Consider any one deviation by player i such that she offers an acceptable proposal

with an arbitrary coalition S′ ∈ 2S with S′ 3 i. By the deviation, player i obtains a payoff of

v (S′)−∑
k∈S′\{i} δxk at most. Thus, player i’s gain from the deviation is at most


v

(
S′

)−
∑

k∈S′\{i}
δxk


− yi

i

= v
(
S′

)− δ
∑

k∈S′
xk − v (S) + δ

∑

k∈S

xk

= v
(
S′

)− δ trS′ P
S

δ trPS + (1− δ)
v (S)− v (S) +

δ trPS

δ trPS + (1− δ)
v (S)

= v
(
S′

)− δ trS′ P
S + (1− δ)

δ trPS + (1− δ)
v (S) ,

which is less than or equal to 0, by (1) in the case that v (S′) > 0 and obviously in the case

that v (S′) = 0. Consider any one deviation by player i such that she offers an unacceptable
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proposal. Let j be the rejector. Then, player i obtains an expected payoff of
∑

k∈S PS
j,ky

k
i by

the deviation. Thus, player i’s gain from the deviation is
∑

k∈S PS
j,ky

k
i −yi

i =
∑

k∈S\{i} PS
j,ky

k
i −(

1− PS
j,i

)
yi

i = −
(
1− PS

j,i

) (
yi

i − δxi

) ≤ 0. Therefore, player i’s proposing actions in σ is

unimprovable. To sum up, σ is an SPE by the one deviation principle. Obviously, σ is

stationary. By (∗), σ involves no delay. Obviously, σ satisfies the full-coalition formation.

Thus, σ is subgame efficient.

(Necessity) Suppose that there exists a subgame efficient SSPE σ of G (p, δ, π). Take any

S, S′ ∈ S such that S ⊃ S′. For i ∈ S, let vi be player i’s expected payoff at the round with

state (S, i) by σ. Then,

vi = PS
i,i


v (S)−

∑

k∈S\{i}
δvk


 +

(
1− PS

i,i

)
δvi = PS

i,i

(
v (S)− δ

∑

k∈S

vk

)
+ δvi. (5)

Sum the above equation over S. Then,
∑

k∈S vk =
(
trPS

) (
v (S)− δ

∑
k∈S vk

)
+ δ

∑
k∈S vk.

Thus,
∑

k∈S vk = tr P Sv(S)
δ tr P S+(1−δ)

. Substitute this into (5). Then,

vi =
PS

i,iv (S)
δ trPS + (1− δ)

. (6)

Consider proposing actions of any player i ∈ S′ at the round with state (S, i). Since σ is

subgame efficient, player i’s payoff at her proposing node at the round is v (S)−∑
k∈S\{i} δvk.

This must be greater than or equal to v (S′)−∑
k∈S′\{i} δvk since σ is an SPE. Thus, v (S)−

∑
k∈S δvk ≥ v (S′)−∑

k∈S′ δvk. By (6), we have v (S)− δ tr P Sv(S)
δ tr P S+(1−δ)

≥ v (S′)− δ trS′ P
Sv(S)

δ tr P S+(1−δ)
.

Hence, we obtain (1). Q.E.D.

B Proof of Theorem 2

Proof. Suppose that there exists a subgame efficient SSPE of G (P, δ, π). Take any S, S′ ∈ S

such that S ⊃ S′. Let D ≡ v(S)

δ tr P̂ S+(1−δ)
− v(S′)

δ trS′ P̂ S+(1−δ)
. By the supposition that there exists

a subgame efficient SSPE of G (p, δ, π), Theorem 1 yields v(S)
δ tr P S+(1−δ)

≥ v(S′)
δ trS′ P S+(1−δ)

. This

13



inequality implies that

D ≥ δ trPS + (1− δ)
δ tr P̂S + (1− δ)

v (S′)
δ trS′ PS + (1− δ)

− v (S′)
δ trS′ P̂S + (1− δ)

=: D′. (7)

Thus,

D′ ∝ {
δ trPS + (1− δ)

}{
δ trS′ P̂

S + (1− δ)
}
−

{
δ tr P̂S + (1− δ)

}{
δ trS′ P

S + (1− δ)
}

= δ (1− δ)
(
trPS − tr P̂S + trS′ P̂

S − trS′ P
S
)

+ δ2
(
trPS trS′ P̂

S − tr P̂S trS′ P
S
)

holds.9 Therefore, by
P S

i,i

tr P S =
P̂ S

i,i

tr P̂ S
for all i ∈ S and the transitivity of ∝, we obtain

D′ ∝ trPS − tr P̂S +
tr P̂S

trPS
trS′ P

S − trS′ P
S =

(
trPS − tr P̂S

)(
1− trS′ P

S

trPS

)
.

Notice that trPS ≥ tr P̂S since P is more diagonal than P̂ . Then, D′ ≥ 0. Thus, by (7),

D ≥ 0. Hence, by Theorem 1, there exists a subgame efficient SSPE of G
(
P̂ , δ, π

)
. Q.E.D.

C Proof of Theorem 3

Proof. (Sufficiency) Suppose that (4) holds for all S, S′ ∈ S such that S ⊃ S′. Take any

δ ∈ (0, 1). Take any S, S′ ∈ S such that S ⊃ S′. Let D ≡ v(S)
δ tr P S+(1−δ)

− v(S′)
δ trS′ P S+(1−δ)

. Then,

D =
(1− δ) (v (S)− v (S′)) + δ

(
v (S) trS′ P

S − v (S′) tr PS
)

{δ trPS + (1− δ)} {δ trS′ PS + (1− δ)} ≥ 0

by the supposition that v(S)
tr P S ≥ v(S′)

trS′ P S . Therefore, Theorem 1 implies that there exists a

subgame efficient SSPE of G (P, δ, π). Since δ is arbitrary, (i) holds.

(Necessity) we show the contraposition of the statement. Suppose that v(S)
tr P S < v(S′)

trS′ P S for

some S, S′ ∈ S such that S ⊃ S′. By this supposition, δ̂ ≡ v(S)−v(S′)
v(S)−v(S′)+v(S′) tr P S−v(S) trS′ P S ∈

[0, 1). Take any δ∗ ∈ (0, 1). Consider δ̄ ≡ max
{

δ̂+1
2 , δ∗+1

2

}
∈ (δ∗, 1). Let D ≡ v(S′)

δ̄ trS′ P S+(1−δ̄)−

9 For any x, y ∈ R, we write x ∝ y if x = ay for some a ∈ R++. Note that ∝ is transitive and for any x, y ∈ R,
x ∝ y and y ≥ 0 imply x ≥ 0.
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v(S)

δ̄ tr P S+(1−δ̄) . Then,

D =
− (v (S)− v (S′)) + δ̄

(
v (S)− v (S′) + v (S′) trPS − v (S) trS′ P

S
)

{
δ̄ trS′ PS +

(
1− δ̄

)} {
δ̄ trPS +

(
1− δ̄

)} .

Notice that v (S) − v (S′) + v (S′) tr PS − v (S) trS′ P
S > 0 by the supposition that v(S)

tr P S <

v(S′)
trS′ P S . Then, by δ̄ ≥ δ̂+1

2 > δ̂,

D >
− (v (S)− v (S′)) + δ̂

(
v (S)− v (S′) + v (S′) trPS − v (S) trS′ P

S
)

{
δ̄ trS′ PS +

(
1− δ̄

)} {
δ̄ trPS +

(
1− δ̄

)} .

Thus, by the definition of δ̂, we obtain D > 0. Therefore, Theorem 1 implies that there exists

no subgame efficient SSPE of G
(
P, δ̄, π

)
. Q.E.D.

D Proof of Theorem 5

Proof. Take any P ≡ (
PS

)
S∈S

∈ ∆ such that there exists a subgame efficient SSPE of

G (P, 1, π). Take a P̂ ≡
(
P̂S

)
S∈S

∈ ∆ such that P̂S
s,s = 1

2PS
s,s for all S ∈ S and all s ∈ S.

Note that there exists such a p̂ in P since P̂S
s,s ∈ (0, 1] by PS

s,s ∈ (0, 1] for all S ∈ S and all

s ∈ S. Obviously, P̂ is less diagonal than P and not P . Obviously, P̂ is proportional to P .

Thus, by Theorem 4, the conclusion of Theorem 5 is obtained. Q.E.D.
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