Endogenous timing game of mixed duopoly with partial foreign ownership: increasing marginal costs

Akio Kawasaki Faculty of Economics, Oita Univ. Takao Ohkawa Faculty of Economics, Ritsumeikan Univ. Makoto Okamura Economics Department, Gakushuin Univ.

Introduction

	Domestic private firm	Foreign private firm
Constant MC	 Pal (1989) → multiple equilibria Matsumura and Ogawa (2010) → Private leadership (riskdominant equilibrium) 	 Matsumura and Ogawa (2017) → Public leadership (risk- dominant equilibrium)
Increasing MC	Tomaru and Kiyono (2010) → multiple equilibria Our Study (KOO, 2018) → What's a risk-dominant equilibrium?	 Our Study (KOO, 2018) → What's a risk-dominant equilibrium?

Related literature

- Matsumura and Ogawa (2010) Private leadership (risk-dominant equilibrium) when a private firm is a domestic firm
- Matsumura (2003) → Private leadership (by using a different endogenous timing game)
- Matsumura and Ogawa (2017) Public leadership (risk-dominant equilibrium) when a private firm is a foreign firm.
- Tomaru and Kiyono (2010)
- → Assuming increasing marginal cost.
- Tomaru and Saito(2010) → When introducing subsidy, private leadership cannot be an equilibrium.
- $^{\bullet}$ Lu (2006) $\xrightarrow{}$ The public firm never chooses quantities simultaneously with domestic private firms.

Introduction

- There exist many studies to address mixed duopoly market. → Some studies aggressively discuss the timing game between private firms and a public firm.
- In origin, simultaneous game was tacitly assumed and various problems were analyzed by many studies.
- At the same time, some studies assume sequential game and analyze various problems.
- Given these situations, various studies start to address the endogenous timing game.

Introduction

- When assuming the increasing marginal cost with the difference of the production technology, do the same results obtained in Matsumura and Ogawa (2010, 2017) hold?
- Which, private leadership or public leadership, is socially preferable?
- When does the risk-dominant equilibrium change from private leadership to public leadership?
- Is the risk-dominant equilibrium socially preferable?

Main results

- When the difference of production technology between the public and the private firms is large,
 - → Public leadership is always the risk-dominant equilibrium.
- Otherwise
- → We obtain the same results obtained in Matsumura and Ogawa (2010, 2017).
- From the viewpoint of social welfare, similar results obtained in Matsumura and Ogawa (2017) hold.
- For the medium partial foreign ownership rate, although private leadership is socially preferable, public leadership becomes the risk-dominant equilibrium.

Model

• There exist two firms. (public firm=firm 0, private firm=firm 1)

• Both firms produce homogeneous goods

 \rightarrow The number of goods supplied by firm $i = q_i$

• Demand function
$$\Rightarrow p = a - (q_0 + q_1)$$
 $\Rightarrow CS = \frac{(q_0 + q_1)^2}{2}$

• Cost function of each firm
$$\Rightarrow C(q_i) = \frac{c_i}{2} q_i^2 \ (c_1 = 1, c_0 = c (\ge 1))$$

• Each firm's profit function $\rightarrow \pi_i = pq_i - \frac{c_i}{2}q_i^2$

$$\rightarrow \pi_i = pq_i - \frac{c_i}{2}q_i^2$$

Model

• We analyze following three cases.

(i) Simultaneous game

→ Both firms simultaneously decide the quantity of production.

(ii) Public leadership game

→ The public firm decides the quantity of production, and then the private firm decides the quantity of production. (iii) Private leadership game

→ The private firm decides the quantity of production, and then the public firm decides the quantity of production.

• We adopt the observable delay game formulated by Hamilton and Slutsky (1990).

Model

• This study considers the partial foreign ownership of the private firm.

 \rightarrow The share of foreign ownership of the private firm =s

→ We call s as "a foreign-ownership rate"

• That is, only $(1-s) \times 100\%$ of the private firm's profit is included into the domestic social welfare.

 \Rightarrow $SW=CS+\pi_0+(1-s)\pi_1$ (If s=0(1) , the private firm is a domestic (foreign) firm.)

ullet Firm 0 decides q_0 to maximize social welfare.

ullet Firm 1 decides q_1 to maximize the profit.

Simultaneous game

• Equilibrium outcomes

$$q_0^{sim} = \frac{a(2+s)}{2+3c+s}, \qquad q_1^{sim} = \frac{ac}{2+3c+s}$$

• Firm 1's equilibrium profit

$$\pi_1^{sim} = \frac{3a^2c^2}{2(2+3c+s)^2}$$

• Equilibrium social welfare
$$SW^{sim} = \frac{a^2(c^2(4-3s)+c(4-s)(2+s)+(2+s)^2)}{2(2+3c+s)^2}$$

Comparison of quantity between firms 0 and 1 (Lemma 1)

Public leadership game

$$q_0^{pul} = \frac{a(5+3s)}{5+9c+3s}, \qquad q_1^{pul} =$$

• Firm 1's equilibrium profit

$$\pi_1^{pul} = \frac{27a^2c^2}{2(5+9c+3s)^2}$$

• Equilibrium social welfare
$$SW^{pul} = \frac{a^2(5+3s+c(4-3s))}{2(5+9c+3s)}$$

Comparison of quantity between firms 0 and 1 (Lemma 2)

Comparison of quantity between firms 0 and 1 (Lemma 3)

Mechanism

• For firm 0...

- Under simultaneous game, because firm 1 produces less, firm 0 must produce more. $\rightarrow q_0^{sim}$ is the largest among three cases.
- If firm 0 which has the inferior production technology produces more, firm 1 produces less, which increases the total production costs.
- → Under public leadership, considering the strategic substitutes, firm 0 can decrease the production. \rightarrow Therefore, q_0^{pul} is the smallest among three cases.

Private leadership game

• Equilibrium outcomes
$$q_0^{prl} = \frac{a(1+2s+c(2+s))}{(1+c)(1+3c+2s)}, \qquad q_1^{prl} = \frac{ac}{1+3c+2s}$$

• Firm 1's equilibrium profit

$$\pi_1^{prl} = \frac{a^2c^2}{2(1+c)(1+3c+2s)}$$

• Equilibrium social welfare
$$SW^{prl} = \frac{a^2(c^3(4-3s)+6c(1+2s)+(1+2s)^2+c^2(10+3s-3s^2))}{2(1+c)(1+3c+2s)^2}$$

Comparison of equilibrium quantity

• Lemma 4

$$q_0^{sim} > q_0^{prl} > q_0^{pul}$$
 holds.

$$^{\bullet}$$
 Lemma 5
$$\text{If } s \geq \frac{2}{3}, q_1^{pul} > q_1^{prl} > q_1^{sim} \text{ holds}.$$
 Otherwise, $q_1^{prl} > q_1^{pul} > q_1^{sim} \text{ holds}$

Mechanism

• For firm 1...

- Under simultaneous game, because firm 1 worries to decrease the price, it produces less.
- $\rightarrow q_1^{sim}$ is the smallest among three cases.
- Under private leadership...,

firm 0 will produce less (more) if s is small (large) when firm 1 produces more.

- → Because of the strategic substitutes, firm 1 produces more (somewhat less) in equilibrium.
- Under public leadership...,

firm 1 can act as a monopoly due to a follower.

- → produces somewhat less.
- As a result...
- \rightarrow if s is small (large), $q_1^{prl} > (<)q_1^{pul}$ holds.

Comparison of SW (firm 1's profit)

Risk-dominant equilibrium

Defining that

$$\begin{array}{l} \Delta_{pul} = \left(SW^{pul} - SW^{sim}\right) \left(\pi_1^{pul} - \pi_1^{sim}\right) \\ \Delta_{pri} = \left(SW^{pri} - SW^{sim}\right) \left(\pi_1^{pri} - \pi_1^{sim}\right) \end{array}$$

- If $\Delta_{pul}>(<)\Delta_{pri}$, public leadership (private leadership) is a risk dominant equilibrium.
- \bullet Because of complex calculation results, we show this result by using a figure.

Nash-equilibrium

• From the previous comparison results by using a figure...

	Leader	Follower
		rollowel
Leader	SW^{sim} , π_1^{sim}	SW^{pul} , π_1^{pul}
Followe	SW^{prl} , π_1^{prl}	SW^{sim} , π_1^{sim}

Proposition 1

Multiple equilibria
("Private leadership" and "Public leadership")

We select the equilibrium of the above game by using a risk-dominant equilibrium (Harsanyi and Selten, 1988)

Risk-dominant equilibrium

Proposition 2

- When the difference of the production technology between the public and the private firms is large, public leadership is always the risk-dominant equilibrium.
- When its difference is small, for the small foreign ownership rate, private leadership is the risk-dominant strategy; for not the small foreign ownership rate, public leadership is the risk-dominant equilibrium.

Mechanism

- ullet When c is large...
 - Due to the inferior production technology, firm 0 does not want to produce more.
 - → Under public leadership, firm 0 produces less.
 - → Firm 0 prefers public leadership to private leadership.
 - \bullet From the viewpoint of firm 1...
 - → Under private leadership, firm 0 produces somewhat more. Under public leadership, firm 0 produces less.
 - → Firm 1 also prefers public leadership to private leadership

 \downarrow

• As a result, public leadership is the risk-dominant equilibrium.

Mechanism

- ullet When c is not large...
 - For small s, it is socially preferable that the public firm produces less and the private firm produces more.
 → Private leadership becomes the risk-dominant equilibrium.
 - For not small s, the public firm wants to decrease the firm 1's profit (because the firm 1's profit is not almost included into domestic social welfare).
 - → Under private leadership, the firm 1's revenue largely decreases due to firm 0's aggressive production.
 - → Public leadership becomes the risk-dominant equilibrium.

Mechanism

- For not large s...
- → It is socially preferable that firm 0 produces less and firm 1 produces more in order to decrease the total production costs.
- costs.
 → Private leadership is socially preferable.
- For large s...
 - → Firm 0 must decrease the firm 1's revenues.
- → At the same time, firm 0 wants to decrease the production costs.
- → As a result, public leadership is socially preferable.

Concluding remarks

- If the difference of production technology between the public and the private firms is large, public leadership is always the risk-dominant equilibrium (which result is different from Matsumura and Ogawa, 2010).
- For the medium partial foreign ownership rate, although private leadership is socially preferable, public leadership becomes the risk-dominant equilibrium.

Social welfare

 Which, private leadership or public leadership, is socially preferable?

Comparison

Although private leadership is socially preferable, public leadership is the risk-dominant equilibrium.