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1 Introduction

Societies often require citizens to perform important �public service�activities (e.g., jury

service or military service). In particular, citizens typically are not permitted to pay a fee to

secure an exemption from performing these activities. This is the case even though such an

exemption policy could admit Pareto gains. Speci�cally, an individual for whom the public

service is particularly onerous might be willing to pay for an exemption from the service

more than another individual would require in order to willingly perform the service.

Many reasons have been o¤ered for why an individual�s ability to purchase an exemption

from public service might be limited in practice. For instance, such ability might unfairly

favor relatively wealthy individuals. Furthermore, a public service like jury service might

play a valuable role in informing citizens about the merits of the jury system.1 Mandatory

jury service might also help to ensure a �trial by peers�or increase the likelihood that the

most capable jurors actually perform jury service (e.g., Bowles, 1980).2

We add to this list of potential explanations for the prevalence of mandated public ser-

vice another, seemingly more subtle, explanation. We demonstrate that a majority voting

procedure can entail a systematic bias against policies that allow individuals to pay a fee

to avoid performing the service. This bias can arise even when none of the considerations

identi�ed above are present, so the only costs associated with a public service policy are the

administrative costs of implementing the policy and the direct personal costs that individuals

incur when they perform the service.3

For concreteness, suppose the public service in question is jury service and a society must

choose between an optional jury service policy (OJS) and a mandatory jury service policy

1The Department of Justice in Western Australia (2018) observes that �Undertaking jury duty can ... provide
a positive appreciation of the court system and is an opportunity to learn how the justice system works.�
2Bowles (1980, p. 371) also notes that �Juries [may] serve the useful function of reinforcing public con�dence
in the operation of the legal system.�Hans (2008) notes the potential value of jury service in �educating
citizens about legal concepts and legal procedures, promoting a sense of procedural justice, legitimizing the
justice system, and increasing civic engagement.�
3These personal costs include opportunity costs, and can be negative if individuals derive pleasure from
performing the public service.
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(MJS). We specify conditions under which majority voting entails a bias against OJS in the

sense that a majority of citizens will vote for MJS even though expected welfare would be

higher under OJS. We consider self-�nancing OJS policies which specify: (i) an exemption

fee that any individual can pay to avoid jury service; and (ii) a payment that is made to

any individual who voluntarily performs jury service. All jury service payments and policy

administrative and implementation costs are �nanced by the stipulated exemption fee under

a self-�nancing OJS policy.

The bias against OJS arises when it is more costly to implement and administer than

MJS. We show that if OJS and MJS entail the same administrative costs, an exemption fee

and jury service payment can be designed to ensure that all individuals prefer OJS to MJS.

Consequently, all individuals will vote for OJS rather than MJS, so majority voting always

implements the welfare-maximizing jury service policy (i.e., OJS).

OJS cannot secure Pareto gains when it is more costly to administer than MJS.4 Con-

sequently, as long as the additional administrative cost of OJS is not too pronounced, some

individuals will prefer an optimal (welfare-maximizing) OJS policy to MJS and others will

prefer MJS to OJS. The individuals who prefer OJS are those with the highest and the

lowest personal costs (c) of performing jury service. Individuals with the highest c�s gain

when they are permitted to avoid jury service by paying the exemption fee. Individuals

with the lowest c�s gain when they are paid to perform jury service. In contrast, individuals

with moderate c�s will prefer MJS to OJS because such c�s will both exceed the optimal jury

service payment and be exceeded by the optimal exemption fee.5

Even when OJS cannot secure Pareto gains, majority voting is not necessarily biased

4The extra costs of implementing OJS include the costs of collecting and processing exemption fees and
delivering jury service payments.
5Epple and Romano (1996) identify corresponding equilibrium preferences in a setting where majority rule
determines the quality of a public good (e.g., public education) that will be implemented and �nanced with
a proportional income tax. In their model, individuals with moderate income favor a relatively high level
of quality for the public good. In contrast, individuals with the lowest and the highest incomes prefer lower
levels of quality. The preference of low-income individuals re�ects their limited wealth. The preference of
high-income individuals re�ects in part their equilibrium consumption of a substitute good (e.g., private
education).
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against OJS. To illustrate, we show that majority rule always implements the welfare-

maximizing form of jury service when the distribution of c in the population is uniform.

In this case, the expected personal gains from OJS exactly o¤set the corresponding losses

both for individuals who elect to perform jury service and for those who choose not to per-

form jury service. Consequently, majority rule implements OJS if and only if OJS increases

aggregate expected welfare in this special case.

More generally, though, majority voting often entails a bias against OJS. This bias arises,

for instance, when the number of individuals eligible to perform jury service (N) is su¢ ciently

large relative to the number of trials (T ) and when individuals with the lowest c�s are

relatively common in the population (e.g., when the mean value of c (ce) exceeds the median

value of c (cd)). In this case, nearly all individuals choose not to perform jury service under

OJS, so the personal gain from OJS increases with c for nearly all c realizations. In this

case, when the individuals who prefer MJS (primarily those with the lowest c realizations)

are relatively common in the population, a majority will vote for MJS even when expected

welfare would be higher under OJS.

We show that the bias against OJS often persists when N=T assumes moderate, empiri-

cally relevant values,6 and when c has standard, symmetric bell-shaped densities. The bias

against OJS that arises in these settings stems in part from the aforementioned fact that

the individuals who bene�t the most from OJS are those with the highest and the lowest c

realizations. Under many relevant conditions, majority voting does not adequately capture

the intensity of these individuals�preferences for OJS, so a majority will vote for MJS even

when expected welfare would be higher under OJS.

We cannot claim that the bias against optional public service policies that we document

is the primary reason for the limited use of such policies in practice. Rather, the bias against

6Jester (2017) estimates that approximately 1.5 million individuals perform jury service annually in the U.S.,
so that on average, the likelihood that an individual performs jury service in a given year is approximately
0.09%. Collinson (2016) reports that 179,200 individuals (approximately 0.3% of the population) served on
juries in England and Wales in 2015. Journalonline (2016) estimates that the likelihood of being called for
jury service is approximately three times greater in Scotland than in England and Wales.
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optional policies that we identify may best be viewed as a heretofore under-appreciated

additional potential explanation for the limited popularity of these policies in practice.

The ensuing discussion focuses on jury service, for concreteness. However, the analysis is

relevant in other settings where a jurisdiction decides whether to make the performance of

an important public service mandatory or optional. As noted above, the service in question

might be military service, which presently is optional in the United States. However, the

service has been mandatory in the past, and individuals have at times been permitted to pay

a fee to avoid military service.7 Alternatively, the public service might entail the provision

of health care services in under-served regions of a country. In many countries, newly-

trained medical professionals are required to practice their specialty for a speci�ed period

of time in regions where relatively few established professionals choose to serve. In some of

these countries (e.g., Bolivia, Ethiopia, Ghana, India, Indonesia, Peru, South Africa, and

Thailand), a¤ected individuals can pay a fee to avoid this service. To illustrate, the fee in

the Meghalaya and Tamil Nadu States in India is 1 million rupees, which is approximately

21; 000 U.S. dollars (Frehywot et al., 2010).8

Our analysis of the choice between mandatory and optional public service proceeds as

follows. Section 2 explains our formulation of MJS and OJS. Section 3 describes the prop-

erties of a welfare-maximizing OJS policy. Section 4 examines when a majority rule voting

procedure introduces a bias for or against OJS. Section 5 considers a modi�ed form of OJS

in which requests for exemption from jury service are not always granted. Section 6 con-

cludes and suggests directions for future research. The proofs of the formal conclusions are

presented in the Appendix.9

7This was the case during the Civil War (Warner and Asch, 2001; Perri, 2013). Ross (1994) and Asal et al.
(2017), for example, analyze the choice between mandatory and optional military service in other countries.
8Wibulpolprasert and Pengpaibon (2003) discuss corresponding fees (whose magnitudes have varied over
time) in Thailand.
9The proofs of the formal conclusions in Sections 3 and 4 are presented in Appendix A. Appendix B provides
additional conclusions. The proofs of the formal conclusions in Section 5 are presented in Bose et al. (2018).
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2 Mandatory and Optional Jury Service Programs

We consider a setting in which N individuals are eligible to serve as jurors on T � 1

trials. For simplicity, each trial is assumed to require a single juror.10 The N > T individuals

di¤er in their personal cost (c 2 [ c ; c ]) of performing jury service. This cost might re�ect

a �nancial opportunity cost of performing jury service, for example.11 c can be negative,

re�ecting the possibility that some individuals may enjoy serving as a juror or derive personal

pleasure from performing what they regard to be their civic duty. We model each individual�s

personal cost of performing jury service (c) as an independent draw of a random variable

with distribution function G(c) and density function g(c).

Under mandatory jury service (MJS), each of the N individuals must serve on a jury

when called upon to do so. Jurors are summoned randomly, so the probability that an

individual performs jury service under MJS is T
N
. The compensation paid to an individual

who performs jury service under MJS is normalized to 0. Consequently, the expected welfare

of an individual with personal cost c is WM(c) =
T
N
[�c ] under MJS. The corresponding

level of expected social welfare is:

W e
M = � T

N
ce, where ce �

cZ
c

c dG(c) . (1)

Under optional jury service (OJS), each of the N potential jurors can either �opt in�

or �opt out�of jury service. An individual who opts in agrees to be called to perform jury

service. If Ni 2 [T;N ] individuals opt in under OJS, the probability that any particular

one of these individuals is called to perform jury service is T
Ni
. An individual who performs

jury service under OJS receives the �xed payment w > 0. An individual who opts in

but is not called to perform jury service receives no payment (and makes no payment).

Therefore, the expected welfare of an individual with personal cost c who opts in under OJS

10If each trial requires R jurors, then the ensuing analysis remains valid if T is replaced by eT = RT .
11Bowles (1980) suggests that self-employed individuals may face a relatively high opportunity cost of serving
on juries because they do not have an employer who continues to pay normal wages while jury service is
being performed.
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is Wi(c) =
T
Ni
[w � c ].

An individual who opts out under OJS makes payment F > 0 and is thereby exempted

from jury service. The expected welfare of such an individual is Wo(c) = �F . An individual

with cost c will prefer to opt in than to opt out under OJS if:

Wi(c ) > Wo(c ) , T

Ni
[w � c ] > �F . (2)

bc will denote the cost realization for which an individual is indi¤erent between opting in and
opting out under OJS. Expression (2) implies that if bc 2 ( c ; c ), then bc is de�ned by:

Wi(bc ) = Wo(bc ) , bc = w +
F Ni
T

. (3)

Expressions (2) and (3) imply that individuals with c 2 [ c ; bc ] opt in and individuals with
c 2 (bc ; c ] opt out under OJS.12 Thus, as might be expected, the individuals who �nd jury
service to be relatively onerous are the ones who opt out.

A � 0 will denote the additional social cost of implementing OJS rather than MJS.

This cost includes the additional administrative cost associated with contacting citizens to

determine which ones wish to opt out, collecting and processing payments from those who

do opt out, and delivering payments to individuals who perform jury service.13 We consider

OJS policies that are self-�nancing in the sense that the sum of the incremental cost A

and payments to jurors (T w) cannot exceed the expected fees paid by individuals who are

exempted from jury service. These expected fees are the product of the fee (F ), the number

of eligible individuals (N), and the fraction of these individuals who opt out (1 � G(bc ) ).
Consequently, the �nancing constraint under OJS is:

T w + A � [ 1�G(bc ) ]N F . (4)

We also consider OJS policies that induce an adequate number of individuals to volunteer

to perform jury service. In particular, we require an OJS policy to satisfy the following

12For expositional ease, we assume that an individual opts in when he is indi¤erent between opting in and
opting out under OJS.

13This additional cost might also include expenses associated with establishing the legality of and securing
citizen participation in a new policy.
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adequate jury pool constraint, which states that at least T individuals are expected to opt

in:14
N G(bc ) � T . (5)

An optimal OJS policy is one that maximizes expected welfare while satisfying the �-

nancing and adequate jury pool constraints. Expected welfare under OJS is:

W e
O =

bcZ
c

T

Ni
[w � c ] dG(c)� [ 1�G(bc ) ]F � A . (6)

3 Properties of an Optimal OJS

We now identify the properties of an optimal OJS policy. Welfare is maximized by

allowing as many high-cost individuals as possible to opt out of jury service. Therefore, as

Lemma 1 reports, bc is set to ensure there are just enough jurors to cover the number of
trials, in expectation. Consequently, as the number of potential jurors increases (holding

constant the number of trials), a larger fraction of potential jurors opt out of performing

jury service.

Lemma 1. The �nancing and adequate jury pool constraints bind under an optimal OJS.

Because G(bc ) = T
N
, @ bc
@N

< 0 and bc ! c as N=T ! 1.

If OJS is relatively costly (A > 0), some individuals experience a reduction in welfare

when OJS replaces MJS. However, ifA is not too large, two groups of individuals bene�t when

an optimal OJS replaces MJS. First, individuals with the highest personal costs of performing

jury service bene�t when OJS allows them to pay F to avoid jury service. Second, individuals

with the lowest personal costs bene�t when they are paid w to perform jury service, which is

not particularly onerous for them. The individuals whose welfare declines when OJS replaces

MJS are those with intermediate c�s, as Lemma 2 reports.

14The key qualitative conclusions drawn below would persist if OJS were designed to ensure that the prob-
ability that at least T individuals opt in exceeds a speci�ed minimum level.
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Lemma 2. When an optimal OJS replaces MJS: (i) welfare increases for individuals with

the lowest c�s (c 2 [ c ; c1 ] where c1 � bc � A
N �T ) and the highest c�s (c 2 [ c2; c ] where

c2 � bc + A
T
); whereas (ii) welfare declines for individuals with intermediate c�s (c 2 (c1; c2)).

Figure 1 illustrates how an individual�s net gain from OJS varies with his personal

cost of performing jury service (c). This net gain is WO(c) � WM(c), where WO(c) �

max fWi(c);Wo(c) g.
[Figure 1 here ]

For individuals who opt in under OJS (i.e., those with c 2 [ c ;bc )), the net gain from OJS
declines with c (W 0

�i(c) < 0) because jury service becomes more onerous as c increases and

the probability of performing jury service after opting in under OJS is higher than under

MJS (i.e., 1 > T
N
). For individuals who opt out under OJS (i.e., for c 2 (bc ; c ]), the net gain

from OJS increases with c (W 0
�o(c) > 0) because the personal cost that is avoided by opting

out of jury service increases with c.

Lemma 3 identi�es the slopes of the two linear segments in Figure 1.

Lemma 3. Under an optimal OJS, the rate at which an individual�s expected increase in

welfare from OJS (relative to MJS) varies with c is:

W 0
�i(c) = W 0

i (c)�W 0
M(c) = � N � T

N
< 0 for c 2 [ c ;bc ) ; (7)

W 0
�o(c) = W 0

o(c)�W 0
M(c) =

T

N
> 0 for c 2 (bc ; c ] . (8)

Corollary 1. jW 0
�i(c) j R jW 0

�o(c) j , N � T
N

R T

N
, N R 2T . (9)

Corollary 1 indicates that the declining line segment in Figure 1 is more steeply sloped

than the increasing segment when N > 2T . In this case, the probability of performing

jury service under MJS is less than 1
2
. Consequently, due to the relatively large increase in

the probability of performing jury service for an individual who opts in under OJS, his net
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bene�t from OJS declines relatively rapidly with c.15

Before analyzing the jury service policy that will be adopted under a majority rule voting

procedure, we consider as a benchmark the special case in which OJS is no more costly to

implement than MJS.

Lemma 4. If A = 0, then OJS can be designed to ensure that every individual secures at

least the level of expected welfare he secures under MJS, and that nearly all individuals secure

strictly higher levels of expected welfare.

OJS can secure the welfare gains identi�ed in Lemma 4 by setting F = T
N
bc and w =�

N �T
N

� bc, where G(bc ) = T
N
. This policy e¤ectively charges T

N
bc for an exemption from jury

service and sets the payment for performing jury service to satisfy the �nancing constraint

(in expression (4)) as an equality.16 The identi�ed values of w and F leave the individual

with c = bc indi¤erent between OJS and MJS and indi¤erent between opting in and opting
out under OJS.17 Individuals with c > bc secure strict gains from OJS because these gains

increase with c. (Recall expression (8).) Individuals with c < bc also secure strict gains
from OJS because these gains increase as c declines (recall expression (7)) due to the higher

probability of performing jury service after opting in under OJS.

When A > 0, OJS can still enhance welfare by reducing the cost at which the requisite

jury service is performed. However, the limited set of policy instruments under OJS (i.e., w

and F ) does not allow compensation for performing jury service or payments for avoiding jury

service to �nely match the associated individual costs and bene�ts. Consequently, whenever

OJS is more costly to implement than MJS, the cost savings from the more e¢ cient delivery

15When N = 2T , the probability of performing jury service under MJS is 1
2 . Therefore, for an individual

who opts in under OJS, the probability of performing jury service increases by 1
2 . For an individual who

opts out under OJS, the probability of performing jury service declines by 1
2 .

16If A = 0, F = T
N bc, w = � N �T

N

� bc, and G(bc ) = T
N , then T w+A = T

�
N �T
N

� bc = � 1� T
N

�
N
�
T
N

� bc =
[ 1�G(bc ) ]N F .

17When the individual with c = bc opts in under this policy, his welfare is w� bc = � N �T
N

� bc� bc = � T
N bc.

This is precisely the welfare he secures if he opts out under OJS (�F = � T
N bc ) and his expected welfare

under MJS.
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of jury services under OJS cannot be allocated to generate Pareto gains. This conclusion is

recorded formally in Lemma 5.

Lemma 5. Suppose A > 0. Then an OJS policy that secures a strict increase in expected

welfare for some individuals (relative to MJS) necessarily reduces the expected welfare of

some other individuals.

4 Majority Voting for Jury Policy

We now examine any biases that may arise when the choice between MJS and OJS is

determined by a majority rule voting procedure (�majority rule�). Proposition 1 identi�es a

setting in which majority rule always implements the welfare-maximizing jury service policy.

This is the setting in which OJS and MJS are equally costly to implement. Recall from

Lemma 4 that an optimal OJS policy increases the welfare of (nearly) all individuals in

this case, so (nearly) all individuals will vote for the policy that ensures the highest level of

expected welfare.

Proposition 1. Suppose A = 0. Then all individuals (weakly) prefer an optimal OJS policy

to MJS, and majority rule always implements the (welfare-maximizing) OJS policy.

When OJS is more costly to implement than MJS (so A > 0), OJS cannot be designed

to ensure that all individuals prefer OJS to MJS. (Recall Lemma 5.) When A is large, a

relatively large number of individuals prefer MJS to OJS because OJS entails a relatively

small w and a relatively large F to cover the high cost of implementing OJS.18 However,

when A is small, a relatively large number of individuals may prefer OJS to MJS because

OJS secures the requisite jury service at lower personal cost for jurors.

To assess whether majority rule ensures the adoption of the jury service policy that

maximizes expected welfare, let Am denote the largest value of A for which a majority of

18When A is su¢ ciently large, all individuals will prefer MJS to OJS. The ensuing analysis considers settings
where A > 0 is su¢ ciently small that some individuals prefer an optimal OJS policy to MJS.
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individuals prefer (an optimally designed) OJS to MJS. Also let Aw denote the value of

A for which expected welfare is the same under OJS and MJS. If Am < Aw, then for all

A 2 (Am; Aw), a majority will vote for MJS even though welfare is maximized under OJS. In

this sense, a majority rule voting procedure is biased against OJS. If Aw < Am, then for all

A 2 (Aw; Am), a majority will vote for OJS even though welfare is maximized under MJS.

In this sense, majority rule is biased in favor of OJS.

Proposition 2 considers the bias that majority rule introduces when the number of po-

tential jurors is large relative to the number of trials.19

Proposition 2. When N=T is su¢ ciently large, majority rule is biased against OJS when

ce > cd, biased in favor of OJS when ce < cd, and entails no bias for or against OJS when

ce = cd (i.e., Am T Aw , ce S cd).

Proposition 2 re�ects the fact that as N=T ! 1, nearly all individuals choose not

to perform jury service under an optimal OJS (i.e., bc ! c , from Lemma 1). The primary

di¤erence between OJS and MJS in this case is that those who opt out make a small payment

in return for the slightly reduced probability of being called to perform jury service. Because

the bene�t of a reduced likelihood of performing jury service increases with c, individuals

with the highest c�s prefer OJS to MJS whereas nearly all individuals with the lower c�s prefer

MJS to OJS. Consequently, when individuals with the lowest c�s are relatively common in

the population (so cd < ce), majority rule may implement MJS when aggregate expected

welfare would be higher under OJS. Conversely, when individuals with the highest c�s are

relatively common in the population (so cd > ce), majority rule may implement OJS when

aggregate expected welfare would be higher under MJS.20

A di¤erent conclusion emerges when the number of potential jurors is very close to the

number of trials.
19Proposition 2 refers to the mean value of c (ce) and the median value of c (cd).
20The mean income in a country typically exceeds the median income. Therefore, if the distribution of c is
similar to the distribution of income, a majority rule voting procedure will often be biased against OJS in
the limiting settings where N=T !1.
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Proposition 3. When N=T is su¢ ciently close to 1, majority rule is biased in favor of OJS

when ce > cd, biased against OJS when ce < cd, and entails no bias for or against OJS when

ce = cd (i.e., Am Q Aw , ce S cd ).

Proposition 3 re�ects the fact that as N=T ! 1, nearly all individuals must opt in under

OJS to ensure that a juror is available for every trial. The primary di¤erence between OJS

and MJS in this case is that those who opt in receive a small payment in return for the

slight increase in their probability of performing jury service. Because jury service becomes

more onerous as c increases, individuals with the smallest c�s prefer OJS to MJS whereas

nearly all individuals with the larger c�s prefer MJS to OJS. Consequently, when individuals

with the lowest c�s are relatively common in the population (so cd < ce), majority rule may

implement OJS when aggregate expected welfare would be higher under MJS. Conversely,

when individuals with the highest c�s are relatively common in the population (so cd > ce),

majority rule may implement MJS when aggregate expected welfare would be higher under

OJS.

In practice, N=T typically exceeds 1 and is �nite. Therefore, it is important to deter-

mine whether majority rule introduces a bias for or against OJS when N=T > 1 is �nite.

Propositions 2 and 3 suggest that majority rule may not entail any bias for or against OJS

when the distribution of c is symmetric, so ce = cd. Proposition 4 con�rms the absence of

bias for the special symmetric distribution in which all c�s are equally likely.

Proposition 4. Majority rule introduces no bias for or against OJS (so Am = Aw ) when

g(c) is the uniform density.

In essence, a uniform density for c eliminates any bias for or against OJS by ensuring

that when A = Am, the expected personal gains from OJS exactly o¤set the corresponding

losses, both for individuals who opt in and for those who opt out. Consequently, majority

rule implements OJS if and only if it increases aggregate expected welfare.

Two initial observations help to explain this conclusion. First, recall from Lemma 2

12



that under an optimal OJS, the individuals who prefer OJS to MJS are those with c�s in

[ c ; c1 ] [ [ c2; c ], whereas the individuals who prefer MJS to OJS are those with c�s in

(c1; c2). Therefore, when A = Am, the two regions [ c ; c1 ][ [ c2; c ] and (c1; c2) must contain

the same (expected) number of individuals. Second, for any bc 2 ( c ; c ),21 the two regions�
c ; 1

2
( c+ bc ) � [ � 1

2
(bc + c ) ; c � and � 1

2
( c+ bc ) ; 1

2
(bc + c ) � contain the same (expected)

number of individuals when g(c) is the uniform density.22 These two observations imply

that, as depicted in Figure 1, c1 = 1
2
[ c+ bc ] and c2 = 1

2
[bc+ c ] when A = Am and g(c) is

the uniform density.

The personal gains from OJS decline with c at the constant rate W 0
�i(c) = � N �T

N
for

all individuals with c 2 [ c ; bc ] because all of these individuals opt in under OJS. (Recall
expression (7).) Consequently, gains and losses from OJS are symmetric around c1, a c

realization at which the individual is indi¤erent between OJS and MJS. This symmetry, the

fact that c1 is the midpoint of [ c ; bc ], and the fact that g(c) is the uniform density imply

that the increase in expected welfare associated with OJS on [ c ; c1 ] is equal to the reduction

in expected welfare associated with OJS on [ c1; bc ].
Similarly, the personal gains from OJS increase with c at the constant rate W 0

�o(c) =
T
N

for all individuals with c 2 [bc; c ] because all of these individuals opt out under OJS. (Recall
expression (8).) Consequently, gains and losses from OJS are symmetric around c2, a c

realization at which the individual is indi¤erent between OJS and MJS. This symmetry, the

fact that c2 is the midpoint of [bc; c ], and the fact that g(c) is the uniform density imply

that the reduction in expected welfare associated with OJS on [bc; c2 ] is equal to the increase
in expected welfare associated with OJS on [ c2; c ]. Therefore, expected welfare gains from

OJS (relative to MJS) are equal to expected welfare losses from OJS when A = Am, which

ensures Am = Aw (and the absence of any bias for or against OJS under majority rule).

21Recall that the individual with c realization bc 2 (c1; c2) is indi¤erent between opting in and opting out
under OJS.

22This is the case because when g(c) is the uniform density, the intervals
�
c ; 12 (c+ bc ) � and � 12 (c+ bc ) ; bc �

contain the same (expected) number of individuals, as do the intervals
� bc ; 12 (bc + c ) � and � 12 (bc + c ) ; c �.
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We now consider whether the absence of bias for or against OJS persists more generally

when N=T > 1 is �nite. We focus on settings where the most extreme realizations of c are

relatively unlikely, so the density of c has the common bell (or inverted-U) shape.23 We

begin by considering symmetric densities with ce = cd. For analytic tractability, we initially

consider piecewise linear densities. Formally, we normalize [ c ; c ] to be [ 0; 2 ] without loss of

generality,24 and assume that for a 2 [ 0; 1
2
):

g (c) =

8><>: a+ [ 1� 2 a ] c if 0 � c � 1

a+ [ 1� 2 a ] [ 2� c ] if 1 � c � 2 .
(10)

This density increases at the constant rate 1� 2 a > 0 on [ c ; ce ] and declines at the corre-

sponding rate on [ce; c ]. Proposition 5 reports that majority rule entails a systematic bias

against OJS when g(c) has this inverted-V shape.25

Proposition 5. For any �nite N=T > 1 and a 2 [ 0; 1
2
), majority rule is biased against

OJS (so Am < Aw) when g(c) is as speci�ed in expression (10).

Numerical solutions reveal a corresponding systematic bias against OJS when g(c) has

an inverted-U shape or a bell shape rather than an inverted-V shape.26 We employ the Beta

density to derive numerical solutions because it can assume a wide variety of shapes as its

parameters (�; �) change. The Beta density, which has positive support on [ 0; 1 ], is:

g(c) =
c��1 [ 1� c ]��1

B(�; �)
for c 2 [ 0; 1 ] , where B(�; �) �

Z 1

0

x��1 [ 1� x ]��1 dx.

This density has an inverted-U shape when � = � 2 (1; 2 ] and a bell shape when � > 2 and
23Additional �ndings for U -shaped densities are presented in Appendix B.
24The proof of Proposition 5 demonstrates that this normalization is without loss of generality.
25Observe that as � ! 1

2 , the density in expression (10) converges to the uniform density. Recall from
Proposition 4 that Am = Aw if g(c) is the uniform density. Proposition 5A in the Appendix demonstrates
that Am ! Aw as �! 1

2 when g(c) is as speci�ed in expression (10).
26General analytic conclusions are di¢ cult to derive for nonlinear g(c) densities in part because when N=T >
1 is �nite, a non-trivial set of individuals with the smallest c realizations prefer OJS to MJS, as do
individuals with the highest c realizations. Consequently, the properties of the entire distribution of c,
rather than just the mean and median of the distribution, can determine whether a majority rule voting
procedure will be biased for or against OJS.
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� > 2. As Figure 2 illustrates, this density is symmetric about its mean ( �
�+�

) when � = �,

skewed to the left (with ce > cd) when � > � > 1, and skewed to the right (with ce < cd)

when � > � > 1.

[Figure 2 here ]

Initially consider the symmetric Beta density with � = � = 2, so ce = cd = 1
2
.27 Table

1 identi�es for the setting where A = Am: (i) the cost realization, bc, at which the individual
is indi¤erent between opting in and opting out under OJS; and (ii) the boundaries of the

regions of c realizations in which individuals prefer OJS to MJS ( [ c ; c1 ] [ [ c2; c ] ) and

the region in which individuals prefer MJS to OJS ((c1; c2) ). The Table also identi�es the

values of Am and Aw for a range of values of N=T > 1.28 Table 1 reports a systematic bias

of majority rule against OJS (i.e., Am < Aw for all N=T > 1).29

N T bc (Am) c1 (Am) c2 (Am) Am Aw
Am
Aw

1; 001 1; 000 0:981639 0:499368 0:982121 0:482 0:488 0:98871
1; 010 1; 000 0:941395 0:494350 0:945866 4:470 4:611 0:96946
1; 100 1; 000 0:814010 0:459152 0:849496 35:486 37:820 0:93828
2; 000 1; 000 0:500000 0:326352 0:673648 173:648 187:500 0:92610
2; 500 1; 000 0:432931 0:293355 0:642295 209:364 226:017 0:92632
5; 000 1; 000 0:287141 0:214110 0:579263 292:122 314:238 0:92962
10; 000 1; 000 0:195800 0:157078 0:544296 348:495 371:916 0:93702
50; 000 1; 000 0:084038 0:075329 0:510781 426:743 444:391 0:96029
100; 000 1; 000 0:058903 0:054399 0:505702 446:799 460:932 0:96934

1; 000; 000 1; 000 0:018370 0:017888 0:500632 482:262 487:772 0:98870

Table 1. Outcomes for the Beta Density with � = � = 2.

27This density is illustrated in Figure 2.
28Table 1 takes the number of trials to be 1; 000, for expositional ease. Mize et al. (2007) report there were
148; 558 state jury trials and 5; 463 federal jury trials in the U.S. in 2006. If the values of N and T in Table
1 were to be multiplied by k > 0, the values of Am and Aw would also be multiplied by k. The entries in
the other columns in the table would not change.

29Table 1 also reports that the value of Am=Aw varies non-monotonically with N=T . This �nding re�ects
Propositions 2 and 3, which conclude that when ce = cd, Am=Aw ! 1 as N=T ! 1 and as N=T ! 1.
The value of Am=Aw in the last column of Table 1 (and in the last column of Table 2 below) re�ects the
actual values of Am and Aw, not the rounded values that appear in the two preceding columns.
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This bias persists in other symmetric Beta densities. Numerical solutions reveal that

Am < Aw for all N=T > 1, regardless of the value of � = �.30

Majority voting also often introduces a bias against OJS when g(c) is an asymmetric

density with ce > cd. Although this bias does not prevail as N=T ! 1 (recall Proposition

3), Table 2 indicates that the bias often arises whenever N=T is even slightly larger than 1.

The table records outcomes for the setting in which g(c) is the Beta density with parameters

� = 2 and � = 3. This density has a bell shape and is skewed to the left (with ce > cd), as

illustrated in Figure 2.31

N T bc (Am) c1 (Am) c2 (Am) Am Aw
Am
Aw

1; 000:01 1; 000 0:986381 0:385722 0:986387 0:00601 0:00600 1:01842
1; 000:7565 1; 000 0:941753 0:385304 0:942174 0:42095 0:42095 1:00000

1; 010 1; 000 0:859618 0:380607 0:864408 4:790 85:962 0:96664
1; 100 1; 000 0:690691 0:348258 0:724935 34:243 37:269 0:91881
2; 000 1; 000 0:385728 0:236127 0:535329 149:601 165:533 0:90375
2; 500 1; 000 0:329167 0:210774 0:506756 177:589 196:258 0:90488
5; 000 1; 000 0:212317 0:152349 0:452189 239:872 264:366 0:90735
10; 000 1; 000 0:142559 0:111415 0:422854 280:295 307:478 0:91159
50; 000 1; 000 0:060140 0:053309 0:394839 334:699 360:327 0:92888
100; 000 1; 000 0:041999 0:038478 0:390564 348:566 372:203 0:93650

1; 000; 000 1; 000 0:013023 0:012649 0:386268 373:245 391:337 0:95377

Table 2. Outcomes for the Beta Density with � = 2 and � = 3.

Table 3 reports corresponding conclusions for other Beta densities with ce > cd. The �rst

two columns of the table specify the relevant values of the parameters of the Beta density,

� and �. The third and fourth columns present the mean and median of the density. The

last column reports the smallest value of N=T ( eN
T
) for which Am

Aw
> 1 for N=T 2 (1; eN

T
) and

Am
Aw

< 1 for N=T > eN
T
(so majority rule introduces a bias against OJS when N=T > eN

T
).

30This conclusion re�ects numerical solutions that consider all values of � = � 2 ( 1; 25 ] in increments of
1, all values of N=T 2 (1; 2 ] in increments of 0:001, all values of N=T 2 [ 2; 10 ] in increments of 0:01, all
values of N=T 2 [ 10; 1000 ] in increments of 1, and all values of N=T 2 [ 1; 000; 10; 000 ] in increments of
10.

31The mean of this density is 0:4. The median of this density is 0:385728.
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Table 3, like Table 2, reports that majority rule often introduces a bias against OJS whenever

N=T is even slightly larger than 1.

� � ce cd
eN
T

1 2 0:33333 0:29289 1:03030
1 3 0:25000 0:20630 1:00660
1 4 0:20000 0:15910 1:00180
2 3 0:40000 0:38573 1:00070
2 4 0:33333 0:31381 1:00040
2 5 0:28571 0:26445 1:00015
3 4 0:42857 0:42141 1:00002
3 5 0:37500 0:36412 1:00002
3 6 0:33333 0:32052 1:00001

Table 3. Bias Against OJS for N=T >
eN
T
.

To understand the bias against OJS that often arises under majority rule when ce � cd

and N=T is �nite, recall from Proposition 2 that this bias prevails when N=T ! 1.32 In

this case, nearly all individuals opt out of OJS, so bc ! c and the private gain from OJS

increases with c at a constant rate for nearly all individuals. Now consider the changes that

arise as N=T becomes �nite. A non-negligible fraction of individuals now opt in under OJS,

so bc increases above c and a nontrivial region [ c ; c1 ] arises in which individuals prefer OJS
to MJS under an optimal OJS policy.

To assess the impact of these changes, suppose A = Am, so one-half of the population

prefers OJS to MJS. When [ c ; c1 ] expands as N=T declines, [ c2; c ] contracts su¢ ciently to

ensure that exactly half of the population continues to prefer OJS to MJS. Let SO denote the

set of individuals who prefer OJS to MJS. The expansion of [ c ; c1 ] adds to SO individuals

whose net gain from OJS is relatively sensitive to c. The contraction of [ c2; c ] removes from

SO individuals whose net gain from OJS is relatively insensitive to c. (Recall from Corollary

1 that jW 0
�i(c) j > jW 0

�o(c) j for all N=T > 2.) When g(c) has an inverted-U shape or

a bell shape, the lowest c realizations are relatively unlikely. Consequently, to ensure SO
32The bias against OJS is strict in the sense that Am < Aw when ce > cd. There is no bias (so Am = Aw)
when N=T !1 and ce = cd.
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includes exactly half of the population as N=T declines, [ c ; c1 ] expands by more than [ c2; c ]

contracts. The net e¤ect is to introduce greater variation in the net gain from OJS (i.e.,

greater variation in the intensity of preference for OJS) within SO.

The outcome of majority rule depends only on the number of individuals who prefer OJS

to MJS, not the intensity of the preference for OJS. Therefore, majority rule fails to account

fully for the increased intensity of preference for OJS as N=T declines toward 2, promoting

a bias against OJS (i.e., Am < Aw).

Before proceeding to consider modi�ed OJS policies, we brie�y consider settings in which

ce < cd. Proposition 2 suggests that majority rule may introduce a bias in favor of OJS in

these settings when N=T is relatively large. As Table 4 indicates, the requisite magnitude of

N=T varies with the extent to which cd exceeds ce. Table 4 reports the same variables that

are reported in Table 3, this time for settings where the Beta density has ce < cd.

� � ce cd
eN
T

2 1 0:66667 0:70711 34

3 2 0:60000 0:61427 1; 323

3 1 0:75000 0:79370 151

4 3 0:57134 0:57859 44; 320

4 2 0:66667 0:68619 2; 424

4 1 0:80000 0:84090 531

5 4 0:55556 0:55985 1; 766; 300

5 3 0:62500 0:63588 48; 320

5 2 0:71429 0:73555 5; 883

5 1 0:83333 0:87055 1; 754

Table 4. Bias in Favor of OJS for N=T >
eN
T
.

Table 4 indicates that when cd=ce is close to 1 (e.g., when � = 4 and � = 3 or when � = 5

and � = 4), a bias in favor of OJS emerges only when N=T is pronounced (e.g., greater than
18



40; 000). In contrast, when cd=ce is considerably larger than 1 (e.g., when � = 2 and � = 1),

a bias in favor of OJS can arise for substantially smaller values of N=T (e.g., 34).

5 More Limited Exemption from Jury Service

We have shown that the individuals with the highest c�s will all choose not to perform

jury service under a welfare-maximizing OJS policy. Some might view this outcome to be

�unfair.�This outcome might also reduce the performance of the jury system if individuals

with the highest c�s are the best jurors. In addition, if individuals with similar c�s are deemed

to be the closest peers, then the identi�ed outcome might be viewed as limiting the likelihood

of a �trial by peers�for individuals with high c�s.33

Consider, then, a modi�ed OJS policy in which an individual�s request for exemption

from jury service is approved with probability p 2 (0; p ], where p < 1. The individual pays

the fee F > 0 if (and only if) his request is approved. If the request is denied, the individual

joins those who agree to perform jury service in the pool of eligible jurors. The expected

number of individuals in this pool is Ni = N [ 1� p ( 1�G(bc ) ) ].34 An individual in this
pool is paid w > 0 if and only if he is called upon to perform jury service. Each individual

in the pool is summoned to perform jury service with probability T
Ni
2 (0; 1 ].

Throughout the ensuing analysis, we assume p is su¢ ciently small relative to N=T

that the adequate jury pool requirement, Ni � T , is not constraining when identifying

the welfare-maximizing (optimal) OJS policy.35 It is readily shown that p = p under a

welfare-maximizing OJS policy in this case. Thus, requests for exemption from jury ser-

vice are granted with the highest permissible probability. This outcome allows jury service

to be performed by those for whom it is least costly to the greatest extent possible. It is

33As more individuals with high c�s opt out of jury service, defendants with low c�s will be more likely to
receive a �trial by peers�to the extent that individuals with similar c realizations are �peers.�

34bc 2 [ c ; c ] continues to represent the c realization for which the individual is indi¤erent between opting in
(i.e., agreeing to perform jury service when called upon to do so) and opting out (i.e., requesting to be
exempted from performing jury service).

35This assumption helps to ensure that the �ndings reported below in Propositions 6 and 7 do not simply
re�ect the forces that underlie the conclusions in Propositions 4 and 5. The adequate jury pool requirement
will not be constraining when p � 1� T

N .
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also readily shown that under a welfare-maximizing OJS policy, the individuals who prefer

OJS to MJS are those for whom c 2 [ c ; c1 ] [ [ c2; c ], where c1 = bc � A
T

Ni
p [ 1�G(bc ) ]N and

c2 = bc + A
T

Ni
pG(bc )N . Individuals with c 2 (c1; c2) prefer MJS to OJS. Furthermore, @ bc@ p < 0

under an optimal OJS policy, so as a request for exemption from jury service becomes less

likely to be granted, fewer individuals request an exemption.

Propositions 6 and 7 report that the qualitative conclusions drawn in Propositions 4 and

5 persist under this modi�ed OJS policy. Speci�cally, Proposition 6 reports that majority

rule introduces no bias for or against this modi�ed OJS policy when g(c) is the uniform

density. Proposition 7 reports that majority rule introduces a systematic bias against the

modi�ed OJS policy when g(c) has an inverted-V shape.

Proposition 6. Majority rule entails no bias for or against the modi�ed OJS policy (so

Am = Aw ) for all p 2 (0; 1) if g(c) is the uniform density.

Proposition 7. Majority rule is biased against the modi�ed OJS policy (so Am < Aw ) for

all p 2 (0; 1) if g(c) is as speci�ed in expression (10).

Numerical solutions reveal that majority rule also introduces a systematic bias against

the modi�ed OJS policy when g(c) is a bell-shaped Beta density with ce � cd.36 Therefore,

the key qualitative conclusions drawn above persist under alternative forms of OJS.37

6 Conclusions

We have characterized the optional public service policy that maximizes the expected

welfare of individuals who are eligible to perform the service, where an individual�s welfare

is the di¤erence between the payment he receives and the personal cost (c ) he incurs in

36This conclusion re�ects numerical solutions that consider all values of � 2 [ 1; 15 ] in increments of 1, all
values of � 2 [�; 25 ] in increments of 1 (except � = � = 1), and all values of p 2 [ 0:1; 0:9 ] in increments
of 0:01.

37The analysis in Appendix B reveals that the bias against OJS that arises when g(c) is U -shaped can
be mitigated to some extent when p is su¢ ciently small. This is the case because as p declines, the
welfare gains and losses from OJS become less sensitive to c (because the individuals with the highest c�s
who request exemption from jury service are not ensured of exemption). Consequently, any de�ciency of
majority voting in fully re�ecting the intensity of preferences for OJS is ameliorated.
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performing the service. We have also identi�ed conditions under which a majority rule

voting procedure will implement the optional service policy more or less often than would a

social planner who maximizes expected welfare. We found that majority rule often introduces

a bias against optional service in the sense that optional service often is not implemented

under majority rule even when it would secure greater expected welfare than mandatory

service. This is the case, for instance, when the most extreme realizations of c are relatively

unlikely, so the density for c has the common bell shape.

The failure of a majority rule voting procedure to systematically implement the least

costly public service policy re�ects in part the limited set of policy instruments under con-

sideration. Individuals in our model were only permitted to opt in or opt out of the public

service in return for a single associated �xed payment. In principle, optional service policies

could admit varying probabilities of being exempted from service, p, in return for payments

that increase with p.38 Although such policies likely would be more costly to design, imple-

ment, and administer, they have the potential to more closely align private and social bene�ts

under an optional service policy, and therefore might enhance the ability of majority rule to

systematically implement the welfare-maximizing public service policy.

A complete assessment of the likelihood that common voting procedures will implement

the welfare-maximizing public service policy must account for potential divergence between

the private and social bene�ts of performing public service.39 As noted in the Introduction,

the private and social costs of performing a public service can diverge if an individual�s

personal cost of performing the service is correlated with his e¢ cacy in performing the

service.40 These private and social costs may also diverge to the extent that the income an

38See Panzar and Sibley (1978) and Wilson (1993), for example, for corresponding analyses in settings where
individuals can pay higher fees to reduce the probability that their electricity supply will be interrupted.

39Such a complete assessment must also account for bene�ts and costs of mandatory and optional public
service programs that were not included in our streamlined model. Several additional potential bene�ts of
mandatory programs are noted in the Introduction. Optional programs may provide additional bene�ts if
they are able to: (i) reduce wasteful, costly lobbying to avoid public service; or (ii) induce governments to
manage productive resources more e¢ ciently (Martin, 1972).

40Diamond and Rose (2005, p. 256) report that �The impact of demographic characteristics ... on jury
decision making is often dramatically overestimated, especially given the far stronger e¤ect that the weight
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individual foregoes when he substitutes public service for his normal employment activities

di¤ers from the corresponding reduction in the social value of the activity.41 These extensions

of our analysis await further research.

of the evidence has in determining verdict outcomes.�
41Bowles (1980, p. 371) notes that the costs of jury service �lie mainly in the value of production lost to the
economy as a result of the absence of jurors from work.�Koch and Birchenall (2016) identify conditions
under which social welfare increases when a voluntary military enlistment policy replaces a draft, thereby
allowing the most productive individuals to continue to earn high wages and pay high taxes.
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Appendix A. Proofs of Formal Conclusions

Proof of Lemma 1. bc is de�ned by:
T

N G(bc ) [w � bc ] = �F , T [w � bc ] + F N G(bc ) = 0

) dbc
dF

=
N G(bc )

T � F N g(bc ) and
dbc
dw

=
T

T � F N g(bc ) . (11)

De�ne J �
bcZ
c

T

N G(bc ) [w � c ] dG(c)� [ 1�G(bc ) ]F � A
=

T

N
w � T

N G(bc )
bcZ
c

c dG(c)� [ 1�G(bc ) ]F � A (12)

) @J

@bc = � T

N

26664
G(bc ) bc g(bc )� g(bc ) bcR

c

c dG(c)

[G(bc ) ]2
37775+ g(bc )F

= g(bc )
24F � T

N [G(bc ) ]2
bcZ
c

[ bc� c ] dG(c)
35 . (13)

An optimal OJS is the solution to the following problem, [P]:

Maximize
w;F

J subject to (4) and (5).

Let �1 and �2 denote the Lagrange multipliers associated with (5) and (4), respectively.
Then the necessary conditions for a solution to [P] include:

w :
T

N
[ 1� �2N ] +

�
@J

@bc + �1N g(bc )� �2 F N g(bc )
�
dbc
dw

= 0 ; and (14)

F : � [ 1�G(bc ) ] [ 1� �2N ] + � @J
@bc + �1N g(bc )� �2 F N g(bc )

�
dbc
dF

= 0 . (15)

(11) implies that dbc
dF

s
= dbc

dw
. Therefore, (14) and (15) imply:

T

N
[ 1� �2N ]

s
= � [ 1�G(bc ) ] [ 1� �2N ] ) �2 =

1

N
> 0 ,

so the �nancing constraint binds.
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Because �2 = 1
N
, (13) and (14) imply:

@J

@bc + �1N g(bc )� �2 F N g(bc ) = 0

) �1N g(bc ) = F g(bc )� g(bc )F + T g(bc )
N [G(bc ) ]2

bcZ
c

[ bc� c ] dG(c)
=

T g(bc )
N [G(bc ) ]2

bcZ
c

[ bc� c ] dG(c) > 0 ) �1 > 0 .

Therefore, the adequate jury pool constraint binds. �

Proof of Lemma 2. Because G(bc ) = T
N
from Lemma 1, the de�nition of bc implies:

w � bc = �F , F = bc� w . (16)

By the de�nition of c1:

w � c1 = � T

N
c1 ) c1

�
N � T
N

�
= w1 ) c1 =

�
N

N � T

�
w . (17)

Because the �nancing constraint binds and G(bc ) = T
N
(from Lemma 1):

T w + A = [N � T ]F ) T w + A = [N � T ] [bc� w ]
) T w + A = [N � T ]bc�N w + T w ) w =

1

N
[ (N � T )bc� A ] . (18)

The second equality in the �rst line of (18) re�ects (16). (17) and (18) imply:

c1 =

�
N

N � T

�
1

N
[ (N � T )bc� A ] = bc � A

N � T .

By the de�nition of c2:

�F = � T

N
c2 ) c2 =

N F

T
. (19)

(16) and (18) imply:

F = bc� 1

N
[ (N � T )bc � A ] = T

N
bc+ A

N
. (20)

(19) and (20) imply:

c2 =
N

T

�
T

N
bc+ A

N

�
= bc+ A

T
. �
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Proof of Lemma 3. Because G(bc ) = T
N
from Lemma 1:

W�i(c) = Wi(c)�WM(c) = w � c�
�
� T

N
c

�
= w �

�
N � T
N

�
c

) W 0
�i(c) = � N � T

N
< 0 for c 2 [ c ;bc ) ; and

W�o(c) = Wo(c)�WM(c) = �F �
�
� T

N
c

�
= �F + T

N
c

) W 0
�o(c) =

T

N
> 0 for c 2 (bc ; c ] . �

Proof of Lemma 4. As demonstrated in the text, the �nancing and adequate jury pool
constraints are satis�ed as equalities when F = T

N
bc and w = � N �T

N

� bc. Furthermore, (3)
implies Wi(bc ) =Wo(bc ) because:

w + F
Ni
T

=

�
N � T
N

�bc + T

N
bc � T
T

�
= bc :

It remains to demonstrate that WO(bc ) =WM(bc ) and WO(c) > WM(c) for all c 6= bc.
WO(bc ) = WM(bc ) , w � bc = � T

N
bc

,
�
N � T
N

�bc� bc = � T

N
bc , � T

N
bc = � T

N
bc .

For c < bc :
WO(c) = Wi(c) > WM(c) , w � c > � T

N
c ,

�
N � T
N

�bc � c > � T

N
c

,
�
N � T
N

�bc > �
N � T
N

�
c , c < bc .

For c > bc :
WO(c) = Wo(c) > WM(c) , � F > � T

N
c , � T

N
bc > � T

N
c , c > bc . �

Proof of Lemma 5. Under an optimal OJS that ensures WO(c) > WM(c) for some c 2
[ c ; c ], there exists a bc 2 ( c ; c ) de�ned by:

Wi(bc ) = Wo(bc ) , w � bc = �F , w = bc � F . (21)

Suppose the OJS policy can be designed to ensure WO(c) � WM(c) for all c 2 [ c ; c ].
Then it must be the case that:

WO(bc ) � WM(bc ) , w � bc � � T

N
bc , w �

�
N � T
N

�bc (22)
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, bc � F �
�
N � T
N

�bc , T

N
bc � F , N F � T bc . (23)

The �rst equivalence in (23) re�ects (21). Because G(bc ) = T
N
from Lemma 1, the last

inequality in (22) implies:

[ 1�G(bc ) ]N F � w T � [ 1�G(bc ) ]N F � � N � T
N

�bc T
=

�
N � T
N

�
N F �

�
N � T
N

�bc T =

�
N � T
N

�
[N F � T bc ] � 0 . (24)

The inequality in (24) re�ects (23). (24) implies that (4) cannot hold for any A > 0.
Therefore, it cannot be the case that the OJS policy ensures WO(c) � WM(c) for all c 2
[ c ; c ]. �

Proof of Proposition 1. The proof follows immediately from the associated discussion in
the text. �

Proof of Proposition 2. The average expected cost that individuals incur under OJS is
T
N

R bc
c c dG(c)

G(bc) +A
N
. The corresponding average expected cost under MJS is T

N
ce. Therefore, the

average expected net gain from OJS is:

T

N
ce � T

N

R bc
c
c dG (c)

G(bc) � A

N
. (25)

(25) and the de�nition of Aw imply:

T

N
ce � T

N

R bc
c
c dG (c)

G(bc) � Aw
N

= 0 ) Aw
T

= ce �
R bc
c
c dG (c)

G(bc) . (26)

De�ne: c1 (A) = bc� A

N � T and c2 (A) = bc+ A
T
. (27)

Lemma 2 and the de�nitions of Am and Aw imply:

Am T Aw , G (c2 (Aw))�G (c1 (Aw)) S 1

2
, and (28)

Am Q Aw ,
Z c2(Aw)

c1(Aw)

dG (c) R 1

2
. (29)

From (26): bc+ Aw
T

= bc+ ce � R bcc c dG (c)
G(bc) . (30)
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L�Hopital�s rule implies:

limbc! c

" R bc
c
c dG (c)

G(bc)
#
= limbc! c

� bcg(bc)
g(bc)

�
= limbc! c

[bc ] = c . (31)

(30), (31), and Lemma 1 imply that as N=T !1:

bc+ Aw
T

! limbc! c

�bc+ Aw
T

�
= limbc! c

"bc+ ce � R bcc c dG (c)
G(bc)

#

= c+ ce � c = ce . (32)

From (26):

bc� Aw
N � T = bc� � T

N � T

�
Aw
T

= bc� T

N � T

"
ce �

R bc
c
c dG (c)

G(bc)
#
. (33)

(31), (33), and Lemma 1 imply that as N=T !1:

bc� Aw
N � T ! limbc! c

N=T !1

�bc� Aw
N � T

�

= limbc! c
N=T !1

"bc� � T

N � T

� 
ce �

R bc
c
c dG (c)

G(bc)
!#

= c� [ 0 ] [ ce � c ] = c . (34)

(28), (32), and (34) imply that when N=T is su¢ ciently large:

Am T Aw , G (ce)�G (c ) S 1

2
, G (ce) S G

�
cd
�
, ce S cd . �

Proof of Proposition 3. As N=T ! 1, nearly all individuals must opt in under OJS to
ensure that every trial has a juror. Consequently:bc ! c as N=T ! 1 . (35)

Therefore, (26) implies that as N=T ! 1:

Aw
T

= ce �
R bc
c
c g (c) dc

G (bc) ! ce �
R c
c
c g (c) dc

G (c)
= ce � c

e

1
= 0

) Aw ! 0 as N=T ! 1 . (36)

(27) and the de�nition of Am imply:

G

�bc+ Am
T

�
�G

�bc� Am
N � T

�
=
1

2
. (37)
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(35) and (36) imply:

G

�bc+ Am
T

�
! 1 as N=T ! 1 . (38)

(27), (35), (36), and (38) imply:

c2 (Aw) ! c as N=T ! 1 . (39)

(27), (37), and (38) imply:

G

�bc� Am
N � T

�
= G (c1 (Am)) ! 1

2
) c1 (Am) ! cd as N=T ! 1 . (40)

From the de�nition of Aw:Z c1(Aw)

c

c g(c) dc+

Z c

c2(Aw)

c g(c) dc =

Z c2(Aw)

c1(Aw)

c g(c) dc . (41)

(39) and (41) imply that as N=T ! 1:Z c1(Aw)

c

c g(c) dc+

Z c

c

c g(c) dc !
Z c

c1(Aw)

c g(c) dc

)
Z c1(Aw)

c

c g(c) dc !
Z c

c1(Aw)

c g(c) dc ) c1 (Aw) ! ce . (42)

From (28):

Aw R Am , G (c2 (Aw))�G (c1 (Aw)) R
1

2
. (43)

(39) and (42) imply that as N=T ! 1:

G (c2 (Aw))�G (c1 (Aw)) ! 1�G (ce) . (44)

(43) and (44) imply that as N=T ! 1:

Aw R Am , 1�G (ce) R 1

2
, G (ce) Q 1

2
= G

�
cd
�
, ce Q cd . �

Proof of Proposition 4. For expositional ease and without loss of generality,42 suppose
c = 0, so g(c) = 1

c
. Because G (bc ) = T

N
from Lemma 1:bc

c
=

T

N
) bc = T

N
c : (45)

42See the proof of Proposition 5 below.
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From (26):

Aw
T

= ce �
R bc
0
c dG (c)

G (bc) =
c

2
�

(bc)2
2bc =

1

2
[ c� bc ] . (46)

(27) and (46) imply:

c2 (Aw) = bc+ Aw
T

= bc+ 1
2
[ c� bc ] = 1

2
[ c+ bc ] . (47)

(27) and (46) also imply:

c1 (Aw) = bc� Aw
N � T = bc� Aw

T

�
T

N � T

�
= bc� 1

2
[ c� bc ] T

N � T

= bc � 1 + 1
2

�
T

N � T

��
� c T

2 [N � T ] =
bc [ 2N � T ]� c T

2 [N � T ] . (48)

(47) and (48) imply:Z c2(Aw)

c1(Aw)

dG (c) =
1

c
[ c2 (Aw)� c1 (Aw) ] =

1

c

�
[N � T ] [ c+ bc ]� bc [ 2N � T ] + c T

2 [N � T ]

�

=
bc [N � T � 2N + T ] + c N

2 c [N � T ] =
N [ c� bc ]
2 c [N � T ] . (49)

(28) and (49) imply:

Am Q Aw , N [ c� bc ]
2 c [N � T ] R

1

2
, N [ c� bc ] R c [N � T ]

, N bc Q T c , bc Q T

N
c . (50)

(45) and (50) imply Am = Aw. �

Proof of Proposition 5. As noted in the text, [ c ; c ] can be normalized to [ 0; 2 ] without
loss of generality. To prove this assertion, consider a random variable X that is distributed
on [ c ; c ] with cumulative distribution function GX . De�ne a random variable Y = 2 [X�c ]

c�c .
(Observe that Y is distributed on [ 0; 2 ].) Let GY be the cumulative distribution function
for Y . Then, by de�nition:

GY

�
2 [ x� c ]
c� c

�
= P

�
Y � 2 [ x� c ]

c� c

�
= P

�
2 [X � c ]
c� c � 2 [ x� c ]

c� c

�
= P [X � x ] = GX (x) . (51)

De�ne bc�X and bc�Y by:
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GX(bc�X) = T

N
and GY (bc�Y ) = T

N
) GX(bc�X) = GY (bc�Y ) . (52)

(51) and (52) imply: bc�Y =
2 [bc�X � c ]
c� c . (53)

Let gX and gY be the density functions for the random variables X and Y , respectively.
(51) implies:

gY

�
2 [ x� c ]
c� c

��
2

c� c

�
= gX(x) ) gY

�
2 [ x� c ]
c� c

�
=

�
c� c
2

�
gX(x) . (54)

De�ne:

Aw(X)

T
= E [X]�

R bc�X
c
t gX(t) dt

GX(bc�X) and
Aw (Y )

T
= E [Y ]�

R bc�Y
0
t gY (t) dt

GY (bc�Y )
) bc�Y + Aw(Y )T

= bc�Y + E [Y ]� R bc�Y0 t gY (t) dt

GY (bc�Y )
=
2 [bc�X � c ]
c� c +

2 [E [X]� c ]
c� c �

R bc�Y
0
t gY (t) dt

GX (bc�X) . (55)

De�ne t =
2 [ x� c ]
c� c ) dt =

�
2

c� c

�
dx

)
Z bc�Y
0

t gY (t) dt =

Z bc�X
c

�
2 [ x� c ]
c� c

�
gY

�
2 [ x� c ]
c� c

��
2

c� c

�
dx

=

Z bc�X
c

�
2 [ x� c ]
c� c

��
c� c
2

�
gX(x)

�
2

c� c

�
dx =

Z bc�X
c

2 [ x� c ]
c� c gX(x) dx

=

Z bc�X
c

�
2x

c� c

�
gX(x)dx�

�
2 c

c� c

�
GX (bc�X) . (56)

The second equality in (56) re�ects (54). (55) and (56) imply:

bc�Y + Aw (Y )T
=
2 [bc�X � c ]
c� c +

2 [E [X]� c ]
c� c

� 1

GX(bc�X)
� Z bc�X

c

�
2x

c� c

�
gX(x) dx�

�
2 c

c� c

�
GX(bc�X) �

=
2 [bc�X � c ]
c� c +

2 [E [X]� c ]
c� c �

�
2

c� c

� R bc�X
c
x gX(x) dx

GX(bc�X) +
2 c

c� c
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=
2

c� c

"bc�X � c+ E [X]�
R bc�X
c
x gX(x) dx

GX(bc�X)
#

) GY

�bc�Y + Aw (Y )T

�
= P

�
Y � bc�Y + Aw(Y )T

�

= P

"
2 [X � c ]
c� c � 2

c� c

"bc�X � c+ E [X]�
R bc�X
c
x gX(x) dx

GX(bc�X)
##

= P

"
X � bc�X + E [X]�

R bc�X
c
x gX(x) dx

GX(bc�X)
#
= GX

�bc�X + Aw(X)T

�
. (57)

Analogous arguments reveal:

GY

�bc�Y � Aw(Y )N � T

�
= GX

�bc�X � Aw(X)N � T

�
. (58)

(57) and (58) imply:

GY

�bc�Y + Aw(Y )T

�
�GY

�bc�Y � Aw(Y )N � T

�

= GX

�bc�X + Aw(X)T

�
�GX

�bc�X � Aw(X)N � T

�

) GY

�bc�Y + Aw(Y )T

�
�GY

�bc�Y � Aw(Y )N � T

�
T 1

2

, GX

�bc�X + Aw(X)T

�
�GX

�bc�X � Aw(X)N � T

�
T 1

2
. (59)

(59) implies that the support of c can be taken to be [ 0; 2 ] without loss of generality when
assessing the presence of bias for or against OJS.

To specify the distribution function corresponding to g(c), observe from (10) that when
c 2 [ 0; 1 ]:

G (c) =

Z c

0

( a+ [ 1� 2 a ]ec ) dec = �
aec+ ( 1� 2 a )� ec2

2

��c
0

= a c+ [ 1� 2 a ] c
2

2
.

For c 2 [ 1; 2 ]:

G (c) =

Z 1

0

( a+ [ 1� 2 a ] c ) dc+
Z c

1

( a+ [ 1� 2 a ] [ 2� ec ] ) dec
=
1

2
+ a [ c� 1 ] + [ 1� 2 a ]

�
2 ec� ec 2

2

�c
1
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=
1

2
+ a [ c� 1 ] + [ 1� 2 a ]

�
2 (c� 1)� c

2 � 1
2

�

=
1

2
+ a [ c� 1 ] +

�
1� 2 a
2

� �
1�

�
c2 � 4 c+ 4

� �
=
1

2
+ a [ c� 1 ] +

�
1� 2 a
2

� �
1� (2� c )2

�
.

In summary, the distribution function for the density function in (10) is:

G (c) =

8<: a c+ [ 1� 2 a ] c2
2

if 0 � c � 1

1
2
+ a [ c� 1 ] +

�
1� 2 a
2

� �
1� (2� c)2

�
if 1 � c � 2 .

(60)

Case A. N � 2T .

De�ne y � T
N
. bc � 1 because: (i) G (bc) = y from Lemma 1; (ii) y � 1

2
by assumption;

and (iii) G(1) = 1
2
due to the symmetry in (10). Therefore, from (60):

abc+ [ 1� 2 a ] (bc)2
2

= y , [ 1� 2 a ] (bc)2 + 2 abc� 2 y = 0 . (61)

It is apparent from (61) that bc = 2 y when a = 1
2
. If a 6= 1

2
, then (61) implies:

bc = � 2 a+
q
(2 a)2 + 8 y [ 1� 2 a ]
2 [ 1� 2 a] =

� a+
q
(a)2 + 2 y [ 1� 2 a ]
1� 2 a .

In summary:

bc =
8<:

� a+
p
a2+2 y[ 1�2 a ]
1� 2 a if a 6= 1

2

2 y if a = 1
2
.

(62)

(10), (26), and (61) imply that when a 6= 1
2
:

Aw
T

= ce �
R bc
0
c dG(c)

G (bc) = 1�
R bc
0
c ( a+ [ 1� 2 a ] c ) dc

y

= 1� 1
y

"
a

�
c2

2

�bc
0

+ (1� 2 a)
�
c3

3

�bc
0

#
= 1� 1

y

"
a

2
(bc)2 + [ 1� 2 a ] (bc)3

3

#

= 1� bc
y

"
a

2
(bc) + [ 1� 2 a ] (bc)2

3

#
= 1� bc

y

�
a

2
(bc) + 2

3
( y � abc ) �
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= 1� 2 bc
3
� a

2 y
(bc)2 + 2 a

3 y
(bc)2 = 1� 2 bc

3
+
a

6 y
(bc)2

= 1� 2 bc
3
+
a

6 y

�
2 (y � abc)
1� 2 a

�
= 1� 2 bc

3
+
a

3 y

�
y � abc
1� 2 a

�

= 1� 2 bc
3
+
1

3

�
a

1� 2 a

�
� a2 bc
3 y [ 1� 2 a ]

= 1 +
1

3

�
a

1� 2 a

�
� bc
3

�
2 +

a2

y ( 1� 2 a )

�

= 1 +
a

3 [ 1� 2 a ] �
bc

3 y [ 1� 2 a ]
�
a2 + 2 y (1� 2 a)

�
. (63)

Furthermore, (10), (26), and (62) imply that when a = 1
2
:

Aw
T

= ce �
R bc
0
c dG(c)

G (bc) = 1�
R bc
0
c
2
dc

y
= 1� 1

y

�
c2

4

�bc
0

= 1� 1

4 y
(bc)2

= 1� 1

4 y
[ 2 y ]2 = 1� y .

(63) implies that when a 6= 1
2
:

bc+ Aw
T

= bc+ 1 + a

3 [ 1� 2 a ] �
bc

3 y [ 1� 2 a ]
�
a2 + 2 y (1� 2 a)

�
= 1 +

a

3 [ 1� 2 a ] + bc
�
1� a

2 + 2 y (1� 2a)
3 y (1� 2a)

�

= 1 +
a

3 [ 1� 2 a ] + bc
�
3 y (1� 2 a)� a2 � 2 y (1� 2 a)

3 y (1� 2 a)

�

= 1 +
a

3 [ 1� 2 a ] + bc
�
y (1� 2 a)� a2
3 y (1� 2 a)

�
= �2 + �2 bc ,

where �2 � 1 +
a

3 [ 1� 2 a ] and �2 �
y [ 1� 2 a ]� a2
3 y [ 1� 2 a ] . (64)

(63) also implies that when a 6= 1
2
:

bc� Aw
N � T = bc� Aw

T

�
T

N � T

�
= bc� Aw

T

�
y

1� y

�

= bc� y

1� y

�
1 +

a

3 (1� 2 a) �
bc

3 y (1� 2 a)
�
a2 + 2y (1� 2 a)

� �
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= � y

1� y

�
1 +

a

3 (1� 2 a)

�
+ bc � 1 + a2 + 2 y (1� 2 a)

3 (1� y) (1� 2 a)

�

= �
�

y

1� y

�
�2 + bc � 3 (1� y) (1� 2 a) + a2 + 2 y (1� 2a)3 (1� y) (1� 2 a)

�

= �
�

y

1� y

�
�2 + bc � (1� 2 a) (3� 3 y + 2 y) + a23 (1� y) (1� 2 a)

�

= �
�

y

1� y

�
�2 + bc � (1� 2 a) (3� y) + a23 (1� y) (1� 2 a)

�
= �

�
y

1� y

�
�2 + �1 bc ,

where �1 �
[ 1� 2 a ] (3� y) + a2
3 [ 1� y ] [ 1� 2 a ] . (65)

bc � 1 because y � 1
2
, by assumption. Therefore:

bc� Aw
N � T � 1 . (66)

(64) implies that for a 6= 1
2
:

bc+ Aw
T

� 1 , 1 +
1

3

�
a

1� 2 a

�
+ bc �y (1� 2 a)� a2

3 y (1� 2a)

�
� 1

, bc �y (1� 2 a)� a2
3 y (1� 2a)

�
� � 1

3

�
a

1� 2 a

�
, bc � y (1� 2 a)� a2

y

�
� � a

, bc � y (1� 2 a)� a2 � � � a y , bc y [ 1� 2 a ]� bc a2 + a y � 0

, bc y [ 1� 2 a ] + a y � a2 bc � 0 . (67)

Because a � 1
2
, the inequality in (67) holds if:

a y � a2 bc � 0 .

(61) implies:

y � abc = [ 1� 2 a ] (bc)2
2

) a y � a2 bc = a [ 1� 2 a ] (bc)2
2

� 0 .

Therefore, the inequality in (67) holds, so:

bc+ Aw
T

� 1 . (68)
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Because bc+ Aw
T
� 1 from (68), (60) and (64) imply:

G

�bc+ Aw
T

�
= G (�2 + �2 bc)
=
1

2
+ a [ �2 + �2 bc� 1 ] + � 1� 2 a2

� �
1� (2� �2 � �2 bc)2 � . (69)

Because bc� Aw
N �T � 1 from (66), (60) and (65) imply:

G

�bc� Aw
N � T

�
= G

�
�
�

y

1� y

�
�2 + �1 bc�

= a

�
� y �2
1� y + �1 bc

�
+

�
1� 2 a
2

� �
� y �2
1� y + �1 bc

�2
. (70)

(69) and (70) imply:

G

�bc+ Aw
T

�
�G

�bc� Aw
N � T

�

=
1

2
+ a [ �2 + �2 bc� 1 ] + 12 � a�

�
1� 2 a
2

�
[ 2� �2 � �2 bc ]2

� a

�
� y �2
1� y + �1 bc

�
�
�
1� 2 a
2

� �
� y �2
1� y + �1 bc

�2

= 1 + a

�
�2 + �2 bc� 2� �1 bc+ y �2

1� y

�

�
�
1� 2 a
2

�"
(2� �2 � �2 bc)2 + �� y �2

1� y + �1 bc
�2#

= 1� 2 a+ a [�2 � �1 ]bc+ a �2 � 1 + y

1� y

�

�
�
1� 2 a
2

�"
(2� �2 � �2 bc)2 + �� y �2

1� y + �1 bc
�2 #

= 1� 2 a+ a [�2 � �1 ]bc+ a �2
1� y

�
�
1� 2 a
2

�"
(2� �2 � �2 bc)2 + �� y �2

1� y + �1 bc
�2#

� Z1. (71)

(28) implies that Aw > Am if Z1 > 1
2
. Mathematica reveals that this is the case for all
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y 2
�
0; 1

2

�
and a 2

�
0; 1

2

�
. Therefore, Aw > Am for any �nite N � 2T and a 2

�
0; 1

2

�
.

Case B. N < 2T .bc � 1 because: (i) G (bc) = y from Lemma 1; (ii) y � T
N
> 1

2
by assumption; and (iii)

G(1) = 1
2
due to the symmetry in (10). Therefore, (82) implies:

1

2
+ a [bc� 1 ] + 1� 2 a

2

�
1� (2� bc)2 �� y = 0

) [ 1� 2 a ]
�
1� (2� bc)2 �+ 2 a [bc� 1 ] + 1� 2 y = 0

) � [ 1� 2 a ] [ 2� bc ]2 + 2 a [bc� 1 ] + 2� 2 a� 2 y = 0

) � [ 1� 2 a ] (bc)2 + 2 a [bc� 1 ] + 4bc [ 1� 2 a ]� 4 [ 1� 2 a ] + 2� 2 a� 2 y = 0

) � [ 1� 2 a ] (bc)2 + bc [ 4� 6 a ] + 4 a� 2� 2 y = 0

) 1

2
[ 2 a� 1 ] (bc)2 + [ 2� 3 a ]bc+ 2 a� 1� y = 0 . (72)

Observe that:

[ 2� 3 a ]2 � 4
�
1

2

�
[ 2 a� 1 ] [ 2 a� 1� y ] = 4� 12 a+ 9 a2 + [ 2� 4 a ] [ 2 a� 1� y ]

= 4� 12 a+ 9 a2 + 4 a� 2� 2 y � 8 a2 + 4 a+ 4 a y = a2 + 4 a y � 4 a� 2 y + 2 .

Therefore, because a 6= 1
2
, (72) implies:

bc = � 2 + 3 a+
p
a2 + 4 a y � 4 a� 2 y + 2
2 a� 1 . (73)

(10) and (26) imply:

Aw
T

= ce �
R bc
0
c dG(c)

G (bc) = 1�
R 1
0
c [ a+ (1� 2 a) c ] dc+

R bc
1
c [ a+ (1� 2 a) (2� c) ] dc

y

= 1� 1
y

"
1

2
a c2

����1
0

+
1

3
[ 1� 2 a ] c3

����1
0

+
1

2
( a+ 2 [ 1� 2 a ] ) c2

����bc
1

� 1

3
[ 1� 2 a ] c3

����bc
1

#

= 1� 1
y

�
1

2
a+

1

3
(1� 2 a) + 1

2
( a+ 2 [ 1� 2 a ] ) (bc)2 � 1

2
( a+ 2 [ 1� 2 a ] )

� 1
3
( 1� 2 a ) (bc)3 + 1

3
( 1� 2 a )

�

= 1� 1
y

�
� 1
3
( 1� 2 a ) + (bc)2 (1� 3 a

2
)� 1

3
( 1� 2 a ) (bc)3 � . (74)
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(27) and (74) imply:

c2 = bc+ Aw
T
= bc+ 1 + 1

y

�
1

3
( 1� 2 a )� (bc)2�1� 3 a

2

�
+
1

3
( 1� 2 a ) (bc)3 �

= bc+ 1 + 1

6 y

�
2 ( 1� 2 a )� 6 (bc)2�1� 3 a

2

�
+ 2 ( 1� 2 a ) (bc)3 �

=
1

6 y

�
2� 4 a + 6 y (1 + bc)� 6 (bc)2 + 9 a (bc)2 + 2 ( 1� 2 a ) (bc)3 �

=
1

6 y

�
2 ( 1� 2 a ) (bc)3 + 3 (3 a� 2) (bc)2 + 6 y bc+ 2 (1� 2 a+ 3 y) � (75)

and

c1 = bc� Aw
N � T = bc� Aw

T

�
T

N � T

�
= bc� � y

1� y

�
Aw
T

= bc� y

1� y +
1

1� y

�
� 1
3
( 1� 2 a ) + (bc)2 (1� 3 a

2
)� 1

3
( 1� 2 a ) (bc)3 �

=
1

1� y

�
� 1
3
( 1� 2 a ) + (bc)2 (1� 3 a

2
)� 1

3
( 1� 2 a ) (bc)3 + (1� y)bc� y �

=
1

6 [ y � 1 ]

�
2 ( 1� 2 a )� 6 (bc)2 (1� 3 a

2
) + 2 ( 1� 2 a ) (bc)3 � 6 (1� y)bc+ 6 y �

=
1

6 [ y � 1 ]
�
2� 4 a� 6 (bc)2 + 9 a (bc)2 + 2 ( 1� 2 a ) (bc)3 � 6 (1� y)bc+ 6 y �

=
1

6 [ y � 1 ]
�
2 ( 1� 2 a ) (bc)3 � 3 (2� 3 a) (bc)2 � 6 (1� y)bc+ 2 (1� 2 a+ 3 y) � . (76)

From (60):

G

�bc+ Aw
T

�
�G

�bc� Aw
N � T

�
� 1
2
= Z2 ,

where
Z2 � a [ c2 � 1 ] +

1� 2 a
2

�
1� (2� c2)2

�
� a c1 �

�
1� 2 a
2

�
(c1)

2 . (77)

and where c1 and c2 are de�ned in (75) and (76).

Mathematica reveals that Z2 > 1
2
(so Am < Aw from (28)) for all y 2 (1

2
; 1). �

Proposition 5A. Am ! Aw as �! 1
2
when g(c) is as speci�ed in (10).

Proof. (61) implies that for a 6= 1
2
:
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2 y � 2 a bc = [ 1� 2 a ] (bc)2 ) bc ! 2 y as a ! 1

2
. (78)

(63) implies:

Aw
T

= 1 +
a

3 [ 1� 2 a ] �
a2 bc

3 [ 1� 2 a ] y �
2 bc
3

= 1� 2 bc
3
+

a

3 [ 1� 2 a ]

"
1� a (bc)2

y

#

= 1� 2 bc
3
+
a

6 y

�
2 y � 2 a bc
1� 2 a

�
= 1� 2 bc

3
+
a

6 y
(bc)2 . (79)

The equality in (79) re�ects (78). (78) and (79) imply that as a! 1
2
:

Aw
T

! 1� 2
3
[ 2 y ] +

1

12 y
[ 2 y ]2 = 1� 4 y

3
+
y

3
= 1� y . (80)

(78) and (80) imply that as a! 1
2
:

bc+ Aw
T

! 2 y + 1� y = 1 + y , and

bc� � y

1� y

�
Aw
T

! 2 y �
�

y

1� y

�
[ 1� y ] = y . (81)

(60) and (81) imply that as a! 1
2
:

G

�bc+ Aw
T

�
! G (1 + y) =

1

2
+
1

2
[ 1 + y � 1 ] = 1 + y

2
, and

G

�bc� Aw
N � T

�
! G (y) =

y

2

) G

�bc+ Aw
T

�
�G

�bc� Aw
N � T

�
! 1 + y

2
� y
2
=
1

2
. �
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Appendix B. Additional Findings

The analysis in the text considers settings where the most extreme jury service costs (c)
are relatively unlikely. Although these settings may be the most likely to arise in practice, a
setting could conceivably arise in which the most extreme c�s are relatively likely. To consider
this possibility, suppose that g(c) is a piecewise linear, symmetric, V -shaped density (with
ce = cd) on the normalized support [ 0; 2 ].43 Formally, suppose that for a 2 [ 0; 1

2
):

g (c) =

(
1� a+ [ 2 a� 1 ] c if 0 � c � 1

3 a� 1 + [ 1� 2 a ] c if 1 � c � 2 .
(82)

This density declines at the constant rate 1�2 a on [ 0; 1 ] and increases at the corresponding
rate on [ 1; 2 ]. The two segments of the symmetric density become more steeply sloped as a
declines to 0.

Proposition 8 indicates that majority rule often introduces a bias in favor of OJS when
g(c) is a symmetric V -shaped density with moderate slope (i.e., for a 2 [ 0:042; 0:5)). How-
ever, a bias against OJS can arise for symmetric V -shaped densities with more pronounced
slope if N=T > 1 is relatively small or if N=T is �nite and su¢ ciently large.

Proposition 8. If a 2 [ 0:042; 0:5) for the density speci�ed in (82), then Am > Aw for all
�nite N=T > 1. If a = 0 for this density, then: (i) Am > Aw if N=T 2 (1:7; 2:414); whereas
(ii) Am < Aw if N=T 2 (1; 1:7) or if �nite N=T � 2:44.44

Proof. For the density in (82):

G (c) =

Z c

0

( 1� a+ [ 2 a� 1 ] � ) d� = [ 1� a ] c+ c
2

2
[ 2 a� 1 ] for c 2 [ 0; 1 ] . (83)

G (c) =

Z 1

0

( 1� a+ [ 2 a� 1 ] c ) dc+
Z c

1

( 3 a� 1 + [ 1� 2 a ] � ) d�

=
1

2
+ [ 3 a� 1 ] [ c� 1 ] + 1

2
[ 1� 2 a ]

�
c2 � 1

�
for c 2 [ 1; 2 ] . (84)

Case A. N � 2T .

De�ne y � T
N
. bc � 1 because: (i) G (bc) = y from Lemma 1; (ii) y � 1

2
by assumption;

and (iii) G(1) = 1
2
due to the symmetry in (82). Therefore, from (83):

G (bc) = y ) [ 1� a ]bc+ 1
2
[ 2 a� 1 ] (bc)2 = y

) 2 [ 1� a ]
2 a� 1 bc+ (bc)2 =

2 y

2 a� 1 ) (bc)2 =
2 y

2 a� 1 �
2 [ 1� a ]
2 a� 1 bc . (85)

43This focus on the [ 0; 2 ] support is again without loss of generality.
44If a 2 ( 0; 0:042), Am�Aw can be either positive or negative, depending on the value of N=T . To illustrate,
when a = 0:02, Am < Aw when NT 2 (1:098; 1:6) [ (2:665; 11:161), and Am > Aw otherwise.

39



From (26):

Aw
T

= ce �
R bc
0
c g(c) dc

G (bc )
) bc+ Aw

T
= bc+ ce � R bc0 c g(c) dc

G (bc ) = ce + bc� R bc0 c g(c) dc
G (bc ) (86)

= ce +
1

G (bc )
�bcG (bc )� Z bc

0

c g(c) dc

�
� ce = 1 . (87)

Because bc � 1, (82) implies:Z bc
0

c g(c) dc =

Z bc
0

c [ 1� a+ ( 2 a� 1 ) c ] dc

=
1

2
[ 1� a ] (bc)2 + 1

3
[ 2 a� 1 ] (bc)3 . (88)

(85), (86), and (88) imply:

c2 � bc+ Aw
T

= 1 + bc� 1
y

�
1

2
( 1� a ) (bc)2 + 1

3
( 2 a� 1 ) (bc)3 �

= bc+ 1� (bc)2
y

�
1

2
( 1� a ) + 1

3
( 2 a� 1 ) bc �

= bc+ 1� 1
y

�
1� a
2

+

�
2 a� 1
3

� bc � � 2 y

2 a� 1 �
2 ( 1� a )
2 a� 1 bc �

= bc+ 1� 1
y

�
1� a
2

� �
2 y

2 a� 1

�
� 1

y

�
2 a� 1
3

�bc � 2 y

2 a� 1

�

+
1

y

�
1� a
2

� �
2 (1� a)
2 a� 1

�bc+ 1
y

�
2 a� 1
3

� �
2 (1� a)
2 a� 1

�
(bc)2

= bc+ 1� 1� a
2 a� 1 �

2

3
bc+ [ 1� a ]2

y [ 2 a� 1 ] bc+ 2 [ 1� a ]3 y
(bc)2

= 1� 1� a
2 a� 1 + bc

"
1

3
+

( 1� a )2

y ( 2 a� 1 )

#
+
2 [ 1� a ]
3 y

�
2 y

2 a� 1 �
2 ( 1� a )
2 a� 1 bc �

= 1� 1� a
2 a� 1 +

4

3

�
1� a
2 a� 1

�
+ bc" 1

3
+

( 1� a )2

y ( 2 a� 1 ) �
4 ( 1� a )2

3 y ( 2 a� 1 )

#

= 1 +
1

3

�
1� a
2 a� 1

�
+ bc" 1

3
� ( 1� a )2

3 y ( 2 a� 1 )

#
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= 1 +
1

3

�
1� a
2 a� 1

�
+
bc
3

"
1� ( 1� a )2

y ( 2 a� 1 )

#
= A2 +B2 bc (89)

where A2 � 1 +
1

3

�
1� a
2 a� 1

�
and B2 �

1

3

"
1� ( 1� a )2

y ( 2 a� 1 )

#
.

(89) implies:

c1 � bc� Aw
N � T = bc� Aw

T

�
T

N � T

�
= bc� Aw

T

"
T
N

1� T
N

#

= bc� Aw
T

�
y

1� y

�
= bc� � y

1� y

�
[A2 +B2 bc� bc ] (90)

=

�
1 + (1�B2)

�
y

1� y

��bc� � y

1� y

�
A2 = A1 +B1 bc (91)

where A1 � �
�

y

1� y

�
A2 and B1 � 1 + [ 1�B2 ]

�
y

1� y

�
.

(84) and (89) imply:

G (c2) =
1

2
+ [ 3 a� 1 ] [A2 +B2 bc� 1 ] + 1

2
[ 1� 2 a ]

�
(A2 +B2 bc)2 � 1 � . (92)

(83) and (91) imply:

G (c1) = [ 1� a ] [A1 +B1 bc ] + 1
2
[ 2 a� 1 ] [A1 +B1 bc ]2 . (93)

(92) and (93) imply:

G (c2)�G (c1) =
1

2
+ [ 3 a� 1 ] [A2 +B2 bc� 1 ] + � 1� 2 a

2

� �
(A2 +B2 bc)2 � 1 �

� [ 1� a ] [A1 +B1 bc ]� � 2 a� 1
2

�
[A1 +B1 bc ]2

=
1

2
� (3 a� 1)�

�
1� 2 a
2

�
+ [ 3 a� 1 ] [A2 +B2 bc ] + � 1� 2 a

2

�
[A2 +B2 bc ]2

� [ 1� a ] [A1 +B1 bc ] + � 1� 2 a
2

�
[A1 +B1 bc ]2 � 	1(a) ,

where bc is the solution to (85), so:
bc = 1

2

"
� 2 [ 1� a ]
2 a� 1 +

s
4 [ 1� a ]2

[ 2 a� 1 ]2
+

8 y

2 a� 1

#
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=
1

2

�
� 2 [ 1� a ]
2 a� 1 +

1

2 a� 1

q
4 [ 1� a ]2 + 8 y [ 2 a� 1 ]

�

=
� (1� a) +

q
[ 1� a ]2 + 2 y [ 2 a� 1 ]
2 a� 1 . (94)

Mathematica reveals that for all a 2 [ 0:042; 0:5), 	1(a) < 1
2
(so Am > Aw from (28))

for all y 2 (0; 1
2
). Mathematica also reveals that if a = 0, then: (i) 	1(a) > 1

2
for all

y 2 (0; 0:41), i.e., for all �nite N
T
� 2:44; and (ii) 	1(a) < 1

2
for all y 2 [ 0:41; 0:5), i.e., for

N
T
2 (1; 2:44).

Case B. N < 2T .bc � 1 because: (i) G (bc) = y from Lemma 1; (ii) y � T
N
> 1

2
by assumption; and (iii)

G(1) = 1
2
due to the symmetry in (82). Therefore, (82) implies:Z bc

0

c g(c) dc =

Z 1

0

c [ 1� a+ ( 2 a� 1 ) c ] dc+
Z bc
1

c [ 3 a� 1 + ( 1� 2 a ) c ] dc

= [ 1� a ]
�
c2

2

�1
0

+ [ 2 a� 1 ]
�
c3

3

�1
0

+ [ 3 a� 1 ]
�
c2

2

�bc
1

+ [ 1� 2 a ]
�
c3

3

�bc
1

=
1� a
2

+
2 a� 1
3

� 3 a� 1
2

� 1� 2 a
3

+
3 a� 1
2

(bc)2 + 1� 2 a
3

(bc)3
=
3� 3 a+ 4 a� 2� 9 a+ 3� 2 + 4 a

6
+
3a� 1
2

(bc)2 + 1� 2 a
3

(bc)3
=
1� 2 a
3

+
3 a� 1
2

(bc)2 + 1� 2 a
3

(bc)3 . (95)

(86) and (95) imply:

c2 � bc+ Aw
T

= bc+ 1� 1
y

�
1� 2 a
3

+
3 a� 1
2

(bc)2 + 1� 2 a
3

(bc)3 � , (96)

where bc is determined by:
G(bc) = 1

2
+ [ 3 a� 1 ] [bc� 1 ] + � 1� 2 a

2

� �
(bc)2 � 1 � = y

) 1

2
+ [ 3 a� 1 ] bc� (3 a� 1)� 1� 2 a

2
+

�
1� 2 a
2

�
(bc)2 = y

)
�
1� 2 a
2

�
(bc)2 + [ 3 a� 1 ] bc+ 1� 2 a� y = 0

) (bc)2 + 2 [ 3 a� 1 ]
1� 2 a bc+ 2 [ 1� 2 a� y ]

1� 2 a = 0
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) bc = 1

2

"
� 2 [ 3 a� 1 ]

1� 2 a +

s
4 [ 3 a� 1 ]2

[ 1� 2 a ]2
� 8 [ 1� 2 a� y ]

1� 2 a

#

=
1

2

�
� 2 [ 3 a� 1 ]

1� 2 a +
2

1� 2 a

q
[ 3 a� 1 ]2 � 2 [ 1� 2 a� y ] [ 1� 2 a ]

�

=
� (3 a� 1) +

p
a2 + 2 a+ 2 y � 4 a y � 1
1� 2 a . (97)

(90) and (96) imply:

c1 � bc� Aw
T

�
y

1� y

�
= bc� y

1� y [ c2 � bc ]
= bc � 1 + y

1� y

�
� y c2
1� y =

bc
1� y �

y c2
1� y . (98)

(84) and (96) imply:

G (c2) =
1

2
+ [ 3 a� 1 ] [ c2 � 1 ] +

�
1� 2 a
2

� �
(c2)

2 � 1
�
. (99)

(83) and (98) imply:

G (c1) = [ 1� a ] c1 +
�
2 a� 1
2

�
(c1)

2 . (100)

(99) and (100) imply:

G (c2)�G (c1) =
1

2
+[ 3 a� 1 ] [ c2 � 1 ]+

�
1� 2 a
2

� �
(c2)

2 � 1
�
�[ 1� a ] c1�

�
2 a� 1
2

�
(c1)

2

=
1

2
� (3 a� 1)�

�
1� 2 a
2

�
+ [ 3 a� 1 ] c2+

�
1� 2 a
2

�
(c2)

2� [ 1� a ] c1�
�
2 a� 1
2

�
(c1)

2

= 1� 2 a+ [ 3 a� 1 ] c2 � [ 1� a ] c1 +
�
1� 2 a
2

� �
(c2)

2 + (c1)
2 � � 	2(a) .

Mathematica reveals that for all a 2 [ 0:042; 0:5), 	2(a) < 1
2
(so Aw < Am from (28)) for

all y 2
�
1
2
; 1
�
. Mathematica also reveals that if a = 0, then: (i) 	2(a) > 1

2
for all y � 0:586,

i.e., for N
T
2 (1; 1:7 ]; and (ii) 	2(a) < 1

2
for all y 2 (0:5; 0:586), i.e., for N

T
2 (1; 1:7). �
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Now consider the modi�ed OJS policy analyzed in Section 5, where an individual�s request
for exemption from jury service is approved with probability p 2 (0; p ], where p < 1.
Proposition 9 reports that such limits on exemptions from jury service can reduce the extent
to which majority rule entails a bias against OJS.

Proposition 9. Am Q Aw as p R 0:75 under the optimal modi�ed OJS policy if g(c) is

as speci�ed in equation (82) with a = 0.

Recall from Proposition 8 that whenN=T > 1 is su¢ ciently small or �nite and su¢ ciently
large, majority rule introduces a bias against OJS when g(c) is as speci�ed in equation (82)
with a = 0. Proposition 9 reports that in the corresponding setting when p < 0:75, majority
rule entails a bias in favor of OJS for all �nite N=T . This conclusion re�ects the fact that
as p declines, the welfare gains and losses from OJS become less sensitive to c (because the
individuals with the highest c�s who request exemption from jury service are not ensured
of exemption). Consequently, the extent to which majority rule fails to fully re�ect the
intensity of preferences for OJS is diminished, which eliminates the bias against OJS under
the identi�ed conditions.45

45The identi�ed bias in favor of OJS also re�ects the more limited potential gains from OJS as p declines.
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