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Abstract

We discuss Cournot and Stackelberg duopoly models where the �rms are
regulated by a price-cap regulation. The symmetric and asymmetric Cournot
equilibria under the price-cap regulation are characterized. Moreover, we show
that a unique Stackelberg equilibrium exists and relate that to the Cournot
equilibria. We present several comparative statics results with respect to the
outcomes of the Cournot and Stackelberg models. Moreover, we consider an en-
dogenous timing duopoly game where the �rms engage in Stackelberg or Cournot
competition depending on the pair of their actions in a preplay stage. Finally,
we consider the welfare e¤ect of a change in a price-cap level. When asymmetric
equilibria are focused on, a reduction in a price-cap level can be socially harmful
even if the price-cap level is more than the competitive price.
Keywords: Price-cap regulations; Cournot competition; Stackelberg com-

petition; Asymmetric equilibria; Endogenous role
JEL classi�cation codes: D43; L11; L51

1 Introduction

In several industries such as oil, gas, electricity, railways, hospitals and airlines,
�rms have been regulated by price-caps. Especially, we can observe price-cap
regulations in the telecommunications industries of many countries and regions.1

In this paper, we discuss the e¤ect of a change in a price-cap level on market
outcomes. In our model, �rms engage in Cournot or Stackelberg competition
and the market price of the good must be less than a certain price-cap level.
A large number of theoretical works discuss the price-cap regulation in the

contexts of monopoly and oligopoly.2 Earle et al. (2007) consider Cournot
oligopoly models where the demand is deterministic or stochastic and the price

1See, for instance, Sappington (2002).
2See, for example, La¤ont and Tirole (1993) and Armstrong and Sappington (2007) with

regard to examination of the e¤ect of the price-cap in a monopoly market.
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cap level is more than or equal to the competitive price. They show that social
welfare is nonincreasing in the price cap level as long as the level is more than
the competitive price in the deterministic case.3 The model of Earle et al.
(2007) is based on that of Roberts and Sonnenshein (1976); that is, they do not
require the strict concavity of the pro�t function of a �rm, which is assumed in
Cournot models of almost previous works.4 Instead of relaxing the assumption,
they restrict their attention to symmetric equilibria. However, as is shown later
in this paper, there can be asymmetric Cournot equilibria under a price-cap even
if we assume the strict concavity of the pro�t functions.5 Moreover, when we
focus on asymmetric equilibria, a decrease in the price-cap level can be socially
harmful even if the price cap level is more than the competitive price and there
is no uncertainty.
We discuss simple Cournot and Stackelberg duopoly models with symmetric

�rms and a strictly convex cost function. First, we characterize the symmetric
and asymmetric Cournot equilibria with a price-cap. We focus on the price-cap
levels that are not below the competitive price. If the price-cap level is below
the Cournot equilibrium price without any price-cap, then the price-cap level is
binding; that is, the market price is equal to the price-cap level in any equilib-
rium. Moreover, there is a unique symmetric equilibrium. However, there are
also asymmetric equilibria; that is, the output of a �rm is larger than that of
the other �rm in some equilibria. We characterize each equilibrium as a convex
combination of the symmetric equilibrium and the most asymmetric equilibrium
where a coe¢ cient of the convex combination represents the degree of symme-
try of the equilibrium. By using the characterization, we provide comparative
statics analyses. Unlike the comparative statics results of a monopoly model,
we show that tightening or imposing a price-cap may decrease the equilibrium
output of a �rm and increase the pro�t of a �rm.
Second, we consider a Stackelberg game with a price-cap. We show that

the Stackelberg equilibrium is unique for any price-cap levels. Moreover, if the
price-cap level is binding, then the Stackelberg equilibrium outputs are equal to
the most asymmetric Cournot equilibrium. We give several comparative statics
results of the Stackelberg equilibrium. The results are also di¤erent from those
of a monopoly model.
Third, we consider an endogenous timing duopoly model à la Hamilton

and Slutsky (1990) where Cournot competition or Stackelberg competition is

3Earle et al. (2007) show that if demand is uncertain, a reduction of the price cap level
can decrease social welfare. See also Grimm and Z½ottl (2010) on related results. Roques
and Savva (2009) consider the e¤ect of price caps on investment in Cournot oligopoly with
uncertainty. Reynolds and Rietzke (2012) discuss an oligopoly model with endogenous entry.
Corchón and Marcos (2012) consider the model where a regulater faces uncertainty about the
marginal costs of �rms.
There also exist several previous works that consider a Bertrand model with a price cap

regulation. See, for example Bhaskar (1997) and Matsumura and Matsushima (2003).
4See also Milgrom and Roberts (1994) and Acemoglu and Jensen (2013) on related imper-

fect competition models.
5Earle et al. (2007) assume that the marginal cost of a �rm is constant. On the other

hand, we consider a convex cost function. Therefore, the model of Earle et al. (2007) is not
a generalization of ours and vice versa.
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achieved depending on the choices of the �rms in a preplay stage. We show that
the Cournot competition is achieved in the combination of the weakly dominant
strategies of the �rms in the preplay stage. Amir and Grilo (1999) considers a
similar model but without any regulation and shows that the Cournot compe-
tition is realized in the combination of the weakly dominant strategies. Thus,
our result shows the robustness of that of Amir and Grilo (1999).
Finally, we consider the welfare e¤ect of the price-cap. First, since the cost

functions are assumed to be identical and strictly convex, for any given price-cap
level social welfare is increasing in the degree of symmetry of the equilibrium.
Thus, if the price-cap level is binding in the Stackelberg competition, then social
welfare under the Stackelberg competition is less than or equal to that under
any Cournot equilibrium. Second, we show that if the price-cap level is equal
to the competitive price, then the �rst best outcome is achieved in both market
structures. Third, when we focus only on the symmetric Cournot equilibrium,
social welfare is increased by a decrease in a price-cap level. Fourth, if the
price-cap level is su¢ ciently close to the competitive price, then social welfare
is also increased by a decrease in a price-cap level. However, if the price-cap
level is su¢ ciently far from the competitive price, then social welfare can be
decreased by a reduction in a binding price-cap level. This result is satis�ed
when we focus on the Stackelberg equilibrium and a su¢ ciently asymmetric
Cournot equilibrium.

2 Model and Competitive Equilibrium

We assume that there are exactly two �rms 1 and 2 that decide their output
denoted by xi for i = 1; 2. Let X = x1+x2. The cost functions of the �rms are
identical and given by C(xi) that satis�es C 0 > 0 and C 00 > 0; that is, C(xi) is
strictly convex. The inverse demand function of this market is given by P (X)
satisfying P 00X + P 0 < 0 for all X > 0. Thus, the pro�t of �rm i = 1; 2 is
P (X)xi � C(xi). Note that by assumptions above, the pro�t function of i is
strictly concave with xi.
To characterize the Cournot and Stackelberg equilibria, we �rstly derive the

competitive equilibrium without any price caps. In this case, each �rm decides to
maximize their pro�t given the market price. Therefore, the �rst order condition
of i is P (X)�C 0(xi) = 0. Let ?C(X) = C 0�1(P (X)). Moreover, let rC (xj) be
the solution of xi = ?C(xi + xj): The competitive equilibrium output of a �rm
is xC = ?C(XC) where XC = 2?C(XC). Since ?C(X) is smooth and ?C0 � 0;
the equilibrium uniquely exists. We call P (XC) the competitive price.

3 Cournot Equilibria

Without loss of generality, in this section, we assume that x1 � x2 in any
equilibrium. At �rst, we derive the Cournot equilibria without any price caps.
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The �rst order condition of i is

P 0(X)xi + P (X)� C 0(xi) = 0:

This condition yields the best reply function of �rm i be r(xj) for i 6= j. The
cumulative best reply function?(X) that is the optimal output of a �rm which is
consistent with an aggregate outputX. Formally, ?(X) is the unique solution of
xi = r(X�xi). The Cournot equilibrium output of a �rm is xN = ?(XN ) where
XN = 2?(XN ). Since ? is smooth and ?0 � 0; the equilibrium uniquely exists.6
See Vives (2001, Ch.4) on the complete proof of this result. By comparing the
competitive case, we have ?(X) < ?C(X) for all X satisfying ?C(X) > 0.
Therefore, we have XN < XC and ?(X) < ?C(X) for all X � XC .
Next, we consider Cournot equilibria with a price-cap �P . Thus, the pro�t

of the �rm is given by

min
�
P (X); �P

	
xi � C(xi):

Let �X be such that P ( �X) = �P . Throughout this paper, we focus on the price
cap level over the competitive equilibrium price: �P � P (XC).
First, suppose �P � P (XN ). Then,

�
xN ; xN

�
is the unique equilibrium. That

is, if the price-cap level is more than or equal to the Cournot equilibrium price
without any price-cap, then the price-cap level is not binding and thus imposing
the price-cap does not a¤ect the equilibrium as long as �P � P (XN ).
Second, suppose �P 2

�
P (XN ); P (XC)

�
. At �rst, consider (x1; x2) that

satis�es �P > P (x1 + x2). Since
�
xN ; xN

�
is the unique Cournot equilibrium

without any price caps, either of the �rms has the incentive to change its output.
Therefore, a pair (x1; x2) that satis�es �P > P (x1+x2) is not an equilibrium and
thus �P is binding in any equilibrium; that is, �P = P (XN

�
�P
�
) andXN

�
�P
�
= �X.

Now, consider (x1; x2) that satis�es x1 + x2 = �X. We derive the condition
that (x1; x2) is a pair of equilibrium outputs. First, �rm i has no incentive to
increase its output if and only if

P 0( �X)xi + P ( �X)� C 0(xi) � 0) xi � ?( �X): (1)

On the other hand, �rm i has no incentive to decrease its output if and only if

P ( �X)� C 0(xi) � 0) xi � ?C( �X): (2)

This is because, any decrease of �rm i�s output never raises the price. Therefore,
the equilibrium output of �rm i must satisfy ?( �X) � xi � ?C( �X).
To completely characterize the equilibrium, consider the symmetric equi-

librium
�
�X=2; �X=2

�
and the most asymmetric equilibrium

�
xN
�
�P
�
; xN

�
�P
��

where

xN
�
�P
�
= minf �X �?( �X);?C( �X)g;

xN
�
�P
�
= maxf?( �X); �X �?C( �X)g.

6Earle et al. (2007) discuss a model where multiple symmetric equilibria can exist and
focus only on the symmetric equilibria. On the other hand, although we do not consider
the case of multiple symmetric equilibria, we focus on both the symmetric and asymmetric
equilibria.
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Then, as will be shown later, the equilibrium output is represented by the convex
combination of the two equilibria. Thus, let

xNB
�
�P ; �

�
= � �X=2 + (1� �)xN

�
�P
�
,

xNS
�
�P ; �

�
= � �X=2 + (1� �)xN

�
�P
�

for �P 2
�
P (XN ); P (XC)

�
and � 2 [0; 1] ; and xNB

�
�P ; �

�
= xNS

�
�P ; �

�
= xN

for �P > P (XN ) and � 2 [0; 1]. Note that xNB
�
�P ; �

�
+ xNS

�
�P ; �

�
= �X and

xNB
�
�P ; �

�
� xNS

�
�P ; �

�
for any �P 2

�
P (XN ); P (XC)

�
and � 2 [0; 1]. If � = 1;

then the equilibrium is symmetric. Moreover, if � = 0; then the equilibrium
is the most asymmetric one. Therefore, � represents the degree of symmetry
of the equilibrium. Note that @xNB

�
�P ; �

�
=@� < 0 and @xNS

�
�P ; �

�
=@� > 0 for

�P 2
�
P (XC); P (XN )

�
.

In sum, we have the following result.

Theorem 1 A pair of the outputs of the �rms is an equilibrium if and only
if (x1; x2) =

�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
for � 2 [0; 1]. Moreover, xN

�
�P
�
is a U-

shaped function and xN
�
�P
�
is an inverted U-shaped function of �P 2

�
P (XN ); P (XC)

�
.

In addition, the minimizer of xN
�
�P
�
; denoted �P �; is equivalent to the maxi-

mizer of xN
�
�P
�
and �P � 2

�
P (XN ); P (XC)

�
.

The proof of this is provided in the Appendix.
By this result, if �P 2

�
P (XN ); P (XC)

�
, then xN

�
�P
�
is not unique and

there are asymmetric equilibria. This is because if x1 + x2 > XN and there
is no price-cap, then �rm 2 has an incentive to reduce its output. However,
if x1 + x2 2

�
XN ; �X

�
, then �rm 2 may not have the incentive because any

reduction does not raise the price. Therefore, there are multiple equilibria under
�P 2

�
P (XN ); P (XC)

�
.

Next, we consider the e¤ect of changes in �P and � on the market outcomes.
It should be noted that xNB

�
�P ; �

�
and xNS

�
�P ; �

�
is not di¤erentiable at �P � for

all � < 1. However, since they are di¤erentiable at the other points, we will use
di¤erential representations such as @xNB

�
�P ; �

�
=@ �P and @xNS

�
�P ; �

�
=@�.

At �rst, we focus on the most asymmetric equilibrium (x1; x2) =
�
xN
�
�P
�
; xN

�
�P
��
=�

xNB
�
�P ; �

�
; xNS

�
�P ; �

��
. By Theorem 1, xN

�
�P
�
and xN

�
�P
�
are a U-shaped

and an inverted U-shaped functions of �P , respectively. First, suppose �P 2�
P (XC); �P �

�
; that is, �X is relatively large. If the total production is equal

to �X, then no �rm changes the production as far as ?( �X) � xi � ?C( �X).
Note that both ?( �X) and ?C( �X) are decreasing in �X (increasing in �P ). In
this case, ?C( �X) < �X� ?( �X) because �X is large. Thus, in the most asym-
metric equilibrium, �rm 1 produces ?C( �X) and �rm 2 produces the remain-
der: �X � ?C( �X). Second, suppose �P 2

�
�P �; P (XN )

�
; that is, �X is rela-

tively small. In this case, ?( �X) > �X� ?C( �X) because �X is small. Thus,
if (x1; x2) =

�
?C( �X); �X �?C( �X)

�
; then �rm 2 has an incentive to increase its

output. Thus, in the most asymmetric equilibrium, �rm 2 produces ?( �X) and
�rm 1 produces the remainder: �X � ?( �X). Since both ?( �X) and ?C( �X) are
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decreasing in �X (increasing in �P ), both �X� ?C( �X) and �X� ?( �X) are increas-
ing in �X (decreasing in �P ). Therefore, xN

�
�P
�
and xN

�
�P
�
are a U-shaped and

an inverted U-shaped functions of �P , respectively.
By using the characterization of the Cournot equilibria, we provide compar-

ative statics results. Since there are multiple equilibria, we �x � in this analysis.
Note that, if we focus on the symmetric equilibrium, � is �xed to be 1. Then,
we immediately have the following results on the equilibrium output.

Corollary 1 1. If �P 2
�
P (XC); �P �

�
and � is su¢ ciently small, then @xNB

�
�P ; �

�
=@ �P >

0.

2. If �P 2
�
�P �; P (XN )

�
and � is su¢ ciently small, then @xNS

�
�P ; �

�
=@ �P > 0.

The �rst and second results are obvious from the facts that xN
�
�P
�
is

a U-shaped function and xN
�
�P
�
is an inverted U-shaped function. If �P 2�

P (XC); P (XN )
�
; then the total output is equal to �X and thus decreasing in

�P . However, if � is su¢ ciently small, then a rise in �P increases the equilibrium
output of either �rm.
The �rst and second results of Corollary 1 imply that a reduction of �P may

decrease the output of a �rm. To provide an intuition of this result, suppose
� = 0. First, we focus on xNB

�
�P ; 0

�
; the equilibrium output of a �rm that is

larger than that of the other �rm. As is shown earlier, xNB
�
�P ; 0

�
is increasing

in �P if and only if �P 2
�
P (XC); �P �

�
; that is, xNB

�
�P ; 0

�
= ?C( �X). This

function represents the optimal output level of a price taker where the price is
given by �P and thus it is increasing in �P (decreasing in �X ). Thus, xNB

�
�P ; 0

�
is increasing in �P if �P 2

�
P (XC); �P �

�
. Second, we focus on xNS

�
�P ; 0

�
; the

equilibrium output of a �rm that is smaller than that of the other �rm. As
is shown earlier, xNS

�
�P ; 0

�
is increasing in �P if and only if �P 2

�
�P �; P (XN )

�
;

that is, xNS
�
�P ; 0

�
= ?N ( �X). This is the best reply function where the price is

given by �P and thus it is increasing in �P (decreasing in �X). These comparative
statics results are sharply contrast to that of a usual monopoly model. In a
monopoly model, a decrease in a binding price-cap level increases the output of
a monopolist, because the market price is not risen by a reduction of the output.
However, in our duopoly model, this result may not be satis�ed. Moreover, since
@xNB

�
�P ; 1

�
=@ �P = @xNS

�
�P ; 1

�
=@ �P � 0, the results are dependent on the degree

of symmetry �.

Example 1

Let P (X) = 1 �X=2 and C(xi) = x2i =2. Then, XN = 4=5 and P (XN ) = 3=5,
and XC = 1 and P (XC) = 1=2, and �P � = 6=11. In addition,

?
�
�X
�
= 2=3� �X=3;?C( �X) = 1� �X=2;

�X �?( �X) = 4 �X=3� 2=3; �X �?C( �X) = 3 �X=2� 1:
Figure 1 depicts xN

�
�P
�
and xN

�
�P
�
of this example.As illustrated in the Figure

1, the range of the equilibrium outputs; xN
�
�P
�
�xN

�
�P
�
, is increasing between

P (XC) and �P � and is decreasing between �P � and P (XN ).
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Figure 1: xN
�
�P
�
;xN

�
�P
�

Example 2

Let P (X) = 1�X10 and C(xi) = x2i =2. Then, X
N � 0:795 and P (XN ) � 0:900,

and XC � 0:939 and P (XC) � 0:469. Moreover,

?( �X) =
1� �X10

10 �X9 + 1
;?C( �X) = 1� �X10;

�X �?( �X) = �X � 1� �X10

10 �X9 + 1
; �X �?C( �X) = �X �

�
1� �X10

�
:

Thus, �P � � 0:714 and the corresponding total output is about 0:882. We can
write the similar graphs of xN

�
�P
�
and xN

�
�P
�
to those of Figure 1.

Next, we focus on the pro�ts of the �rms. We have the following result. Let
the Cournot equilibrium pro�t under

�
�P ; �

�
be

�NJ
�
�P ; �

�
= P (xNB

�
�P ; �

�
+ xNS

�
�P ; �

�
)xNJ

�
�P ; �

�
� C(xNJ

�
�P ; �

�
) for J = B;S.

Corollary 2 Suppose �P 2
�
P (XC); P (XN )

�
. Then,

1. �NB
�
�P ; �

�
> �NS

�
�P ; �

�
for all � 2 [0; 1).

2. @�NB
�
�P ; �

�
=@� < 0 and @�NS

�
�P ; �

�
=@� > 0 for all � 2 [0; 1) :

3. If �P 2
�
�P �; P (XN )

�
and � is su¢ ciently small, then @�NB

�
�P ; �

�
=@ �P < 0

can be satis�ed.
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4. If �P 2
�
P (XC); �P �

�
and � is su¢ ciently small, then @�NS

�
�P ; �

�
=@ �P < 0

can be satis�ed.

The proof of the �rst and second results are provided in the Appendix. Here,
we show that @�NJ

�
�P ; �

�
=@ �P can be negative for J = B;S. We reconsider

Example 2. Suppose � = 0. We have

�NB (0:88; 0) � 0:297 > 0:289 � �NB (0:89; 0) ;
�NS (0:64; 0) � 0:134 > 0:131 � �NS (0:65; 0) :

This is because the reduction of the output of a �rm by an increase of �P can be
large when � is small. Thus, @�NJ

�
�P ; �

�
=@ �P can be negative for J = B;S.

Note that, if � = 1, then @�NB
�
�P ; �

�
=@ �P � 0 and @�NS

�
�P ; �

�
=@ �P � 0.

Therefore, the comparative statics results are dependent on �.

4 Stackelberg Equilibrium

We consider the case where two �rms engage in Stackelberg competition where
a �rm is a leader and the other is a follower. Let L and F represent the leader
and follower, respectively, where L;F = 1; 2 and L 6= F . First, we derive the
Stackelberg equilibrium without any price caps. Firm L�s maximization problem
is

max
xL

P (xL + r (xL))xL � C(xL):

The �rst order condition of �rm L is

P (X) + P 0(X)(1 + r0 (xL))xL � C 0(xL) = 0: (3)

Moreover, we assume that the second order condition is satis�ed for all xL.
Let xSL and x

S
F be the Stackelberg equilibrium outputs of the leader and the

follower without any price caps. Then,
�
xSL; x

S
F

�
is unique, and xSL satis�es (3)

and xSF = r
�
xSL
�
. Moreover, let XS = xSL+x

S
F . We give three well-known facts

on the Stackelberg equilibrium. First, xSL > x
S
F . Second, the pro�t of the leader

in the Stackelberg equilibrium is larger than that in the Cournot equilibrium.
Third, P

�
XN

�
> P

�
XS
�
> P

�
XC

�
or equivalently XC > XS > XN . See,

for instance, Etro (2008) and Ino and Matsumura (2011) on the proofs of these
results.
Next, we consider the Stackelberg equilibrium with a price-cap �P . We derive

the best reply of the follower rF
�
xL; �P

�
under �P . First, if �X � xL � r (xL),

then rF
�
xL; �P

�
= r (xL) because �P is not binding for (xL; r (xL)). Second, if

�X � xL � r (xL) ; then �P is binding for (xL; r (xL)). Therefore, if �X � xL 2�
r (xL) ; r

C (xL)
�
; then rF

�
xL; �P

�
= �X � xL. This is because any decrease of

the follower�s output does not increase the market price. Recall (1) and (2) with
regard to this point. Moreover, if �X�xL � rC (xL) ; rF

�
xL; �P

�
= rC (xL). This

is because, in this case, any decrease of the follower�s output does not increase
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the market price. In sum, rF
�
xL; �P

�
is given by

rF
�
xL; �P

�
= r (xL) if �X � xL � r (xL) ;
= �X � xL if �X � xL 2

�
r (xL) ; r

C (xL)
�
;

= rC (xL) if �X � xL � rC (xL) :

Then, we have the following result.

Theorem 2 If �P > P
�
XS
�
; then

�
xSL
�
�P
�
; xSF

�
�P
��
=
�
xSL; x

S
F

�
. If �P 2�

P
�
XC

�
; P
�
XS
��
, then

�
xSL
�
�P
�
; xSF

�
�P
��
=
�
xNB
�
�P ; 0

�
; xNS

�
�P ; 0

��
.

The proof of this is provided in the Appendix.
As shown in the previous section, there can be multiple Cournot equilibria

but the Stackelberg equilibrium is always unique. Moreover, if �P � P
�
XS
�
(<

P
�
XN

�
), then the Stackelberg equilibrium is equal to the most asymmetric

Cournot equilibrium. If �P is binding, then the leader has an incentive to in-
crease its production as long as the output is less than ?C( �X). However, if the
production of the leader is more than �X�?( �X), then the follower has an incen-
tive to choose its production more than ?( �X). Since the leader wants to keep
the price-cap binding, it chooses xSL

�
�P
�
= xNB

�
�P ; 0

�
= minf?C( �X); �X�?( �X)g

and thus the follower chooses xSF
�
�P
�
= xNS

�
�P ; 0

�
= minf?( �X); �X �?C( �X)g.

Next, we give comparative statics results on the Stackelberg equilibrium.
In Corollaries 1 and 2, we provide some counterintuitive results when we focus
on a su¢ ciently asymmetric Cournot equilibrium. By Theorem 2, we have the
results as a comparative statics analysis of the unique equilibrium.

Corollary 3 1. �P � < P (XS).

2. If �P 2
�
P (XC); �P �

�
, then xS0L

�
�P
�
> 0. If �P 2

�
�P �; P (XS)

�
, then

xS0L
�
�P
�
< 0.

3. If �P 2
�
�P �; P (XS)

�
, then xS0F

�
�P
�
> 0. If �P 2

�
P (XC); �P �

�
, then

xS0F
�
�P
�
< 0.

The �rst result of Corollary 3 implies P (XC) < �P � < P (XS) < P
�
XN

�
.

Since xSL
�
�P
�
= xNB

�
�P ; 0

�
and xSF

�
�P
�
= xNS

�
�P ; 0

�
, we have the second and

third results. This implies that if �P is binding, then a decrease in �P increases
the output of a �rm but decrease that of the other.
Next, we consider the pro�ts of the �rms.

Corollary 4 1. If �P 2
�
�P �; P (XS)

�
, then �0L

�
�P
�
< 0 can be satis�ed.

2. If �P 2
�
P (XC); �P �

�
, then �0F

�
�P
�
< 0 can be satis�ed.

These results are obvious from Corollary 2, �L
�
�P
�
= �B

�
�P ; 0

�
and �F

�
�P
�
=

�S
�
�P ; 0

�
. Therefore, �0I

�
�P
�
can be negative for I = L;F .
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5 Endogenous Timing

We consider an endogenous timing duopoly model à la Hamilton and Slutsky
(1990) called an observable delay game.7 In the �rst stage, the �rms simulta-
neously chooses l or f . On the one hand, if the �rms choose the same strategy
in the �rst stage, then they engage in Cournot competition in the second stage.
On the other hand, if the �rms choose di¤erent strategies, they engage in Stack-
elberg competition where the �rm that chooses l is a leader and the other �rm
is a follower. Thus, the games in the second stage have already been discussed
in the previous sections. We focus on the subgame perfect equilibria. We have
the following result.

Theorem 3 For any �P � P
�
XC

�
, l is the weakly dominant strategy of each

�rm.

The proof of this is provided in the Appendix.
Amir and Grilo (1999, Theorem 2.2 and Corollary 2.5) show that when there

is no price-cap, l is the dominant strategy of each �rm. If �P � P
�
XN

�
; that

is, if �P is not binding in any cases, then we can apply their result. Next, if
�P 2

�
P (XC); P (XS)

�
; that is, if �P is binding in both cases, then �F

�
�P
�
=

�S
�
�P ; 0

�
� �S

�
�P ; �

�
, because of Corollary 2 and Theorem 2. Finally, suppose

�P 2
�
P (XS); P

�
XN

��
; that is, if �P is binding only in the case of Cournot

compeition. Since �P � < P (XS) and Corollary 1 holds, @xNS
�
�P ; 0

�
=@ �P > 0.

This implies �F
�
�P
�
� �S

�
�P ; �

�
. Therefore, we have Theorem 1.

By this result, the Cournot competition is realized in the second stage as
a pair of the weakly dominant strategies. Our result implies that the result of
Amir and Grilo (1999) continues to hold even if there is a price-cap regulation
whose level is not less than P (XC).

6 Welfare E¤ects

We consider the welfare e¤ect of a change in �P . Social welfare is de�ned as the
simple sum of the consumers�and producers�surplus; i.e.,

W (x1; x2) =

Z X

0

P (Z)dZ � P (X)X + �1 + �2

=

Z X

0

P (Z)dZ � C(x1)� C(x2):

First, we examine the e¤ect of a change in � on social welfare for given
�P 2

�
P (XC); P (XN )

�
. Then, we have the following result.

7See also Matsumura (1995, 2003), Pal (1998), Amir and Grilo (1999), van Damme and
Hurkens (1999) and Matsumura and Ogawa (2009) on the applications of the observable delay
game.
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Proposition 1 For any given �P 2
�
P (XC); P (XN )

�
; dW

�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d� <

0 for all � 2 [0; 1]. In addition, for any given �P 2
�
P (XC); P (XS)

�
; W

�
xSL
�
�P
�
; xSF

�
�P
��
<

W
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
for all � 2 (0; 1] and they are equivalent for � = 0.

Since we assume a strictly convex cost function; that is, C 00(�) > 0; the
symmetric equilibrium is the most e¢ cient on for any �P 2

�
P (XC); P (XN )

�
.

Moreover, a decrease of the degree of symmetry increases xNB
�
�P ; �

�
�xNS

�
�P ; �

�
and the total cost of this market. Therefore, it reduces social welfare.
Since the Stackelberg equilibrium is equal to the most asymmetric Cournot

equilibrium, social welfare of the Stackelberg equilibrium is less than or equal to
that of a Cournot equilibrium as long as �P is binding. This implies an e¢ cient
outcome is achieved as a result of the endogenous timing game discussed in the
previous section as long as �P 2

�
P (XC); P (XS)

�
.

Second, we have the following result on the �rst best outcome.

Proposition 2 If �P = P (XC); then the �rst best outcome is achieved in both
Cournot and Stackelberg equilibria; that is,

W (xNB
�
�P ; �

�
; xNS

�
�P ; �

�
) =W (xSL

�
�P
�
; xSF

�
�P
�
) =W (xC ; xC) �W (x1; x2)

for all x1; x2 and � 2 [0; 1] :

By Corollary 1, this proposition is straightforward. Note that the output
�oor also yields the �rst-best outcome if the output �oor level is equal to XC .
See Matsumura and Okumura (2013) on this fact.
Proposition 2 implies that the authority should set the price-cap level equal

to the competitive price. However, in the real world, it may be di¢ cult to know
the exact competitive price. Therefore, we also focus on the price-cap level
between the competitive price and the Cournot equilibrium price without any
price-caps.
We focus on social welfare under xNB

�
�P ; �

�
; xNS

�
�P ; �

�
for given � 2 [0; 1].

Moreover, since any changes in �P do not change the market outcomes as long
as �P > P (XN ); we focus on �P 2

�
P (XC); P (XN )

�
. Note that, this analysis

includes the case of the Stackelberg competition with a binding �P as a special
case.
First, we restrict our attention to the case where the degree of symmetry is

su¢ ciently large.

Proposition 3 Suppose � is su¢ ciently large. If �P 2
�
P (XC); P (XN )

�
; then

dW
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d �P < 0.

It is su¢ cient to consider the case where � = 1. Fix �P 2
�
P (XC); P (XN )

�
.

Then,
�
xNB
�
�P ; 1

�
; xNS

�
�P ; 1

��
= ( �X=2; �X=2) and social welfare is

W ( �X=2; �X=2) =

Z �X

0

P (Z)dZ � 2C( �X=2).
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Therefore, dW ( �X=2; �X=2)=d �X = P ( �X)� C 0( �X) > 0 as long as �X < XC .
Note that Earle et al. (2007) assume that each �rm has a constant marginal

cost and focus only on the symmetric equilibria. They show dW
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d �P �

0 for all �P � P (XC). On the other hand, we show that if an equilibrium is su¢ -
ciently symmetric and the cost function is convex, then dW

�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d �P �

0 for all �P � P (XC). Therefore, the result of Earle et al. (2007) is robust as
long as we focus on a symmetric equilibrium.
This result implies that if the degree of symmetry is su¢ ciently large, any

decrease in �P is socially desirable as long as �P > P (XC), because a decrease in
�P increases the total production. However, if we focus on asymmetric equilibria,
then some decrease in �P may not be socially desirable.
Next, consider the case where the degree the degree of symmetry is small.

First, we show that a decrease in �P can reduce social welfare only if �P 2�
�P �; P (XN )

�
.

Proposition 4 If �P 2
�
P (XC); �P �

�
; then dW

�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d �P < 0

for any � 2 [0; 1] and thus dW
�
xSL
�
�P
�
; xSF

�
�P
��
=d �P < 0.

Proposition 4 implies that if the price-cap level has already been su¢ ciently
near the competitive price, then making the price-cap level closer to the compet-
itive level is socially desirable. In this case, a decrease in �P reduces the di¤erence
between xNB

�
�P ; �

�
and xNS

�
�P ; �

�
for all � 2 [0; 1]. Since we consider a strictly

convex cost function, a reduction in the di¤erence decreases the industry cost.
Thus, in this case, decreasing the price-cap level is socially desirable.
By Propositions 2 and 3, if �P 2

�
P (XC); �P �

�
or � is su¢ ciently large, then

any decrease of �P increase social welfare. However, in the other case, we have
the following result.

Proposition 5 If �P 2
�
�P �; P (XN )

�
and � is su¢ ciently small, then dW

�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d �P >

0 can be satis�ed. Moreover, if �P 2
�
�P �; P (XN )

�
, then dW

�
xSL
�
�P
�
; xSF

�
�P
��
=d �P >

0 can be satis�ed.

If �P 2
�
�P �; P (XN )

�
and � is su¢ ciently small, then a reduction of �P in-

creases the equilibrium output of a large �rm and decreases that of a small �rm.
That is, in this case, a decrease in �P expands the di¤erence between xNB

�
�P ; �

�
and xNS

�
�P ; �

�
. This implies, although a reduction of �P increases the total out-

put, it vitally increases the industry cost. This is because we consider a strictly
convex cost function. Formally, we show this fact by reexamining the examples
above.
First, we reconsider Example 1. In this example, the Stackelberg equilibrium

without any price-cap is
�
xSL; x

S
F

�
= (3=7; 11=28) and P

�
XS
�
= 33=56. Next, if

�P 2
�
�P �; P (XN )

�
= (6=11; 3=5] ;

dW
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
d �P

=
100

9
�P�� 20

3
�� 86

9
�P +

10

3
�2 � 50

9
�P�2 +

16

3
.
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If � = 0 and �P 2 (6=11; 24=43), then

dW
�
xNB
�
�P ; 0

�
; xNS

�
�P ; 0

��
d �P

=
dW (xSL

�
�P
�
; xSF

�
�P
�
)

d �P
> 0:

This result implies that if the �rms engage in the Stackelberg competition, then
a reduction of �P can reduce social welfare. Moreover, if the �rms engage in the
Cournot competition and the degree of symmetry is su¢ ciently small, then a
reduction of �P can also reduce social welfare. However, in this example, any
reduction of �P increase social welfare if � is not very small; e.g., if � = 1=2. In
the next example, we show that even if � = 1=2, then a reduction of �P can also
reduce social welfare.
Second, we reconsider Example 2. The equilibrium outcomes for several

pairs of (�; �P ) are summarized as Table 1.

� n �P 0:9 0:85 0:8 0:75 0:72 0:7
1 0:397; 0:397 0:414; 0:414 0:426; 0:426 0:435; 0:435 0:440; 0:440 0:443; 0:443
3=4 0:397; 0:397 0:442; 0:386 0:473; 0:379 0:496; 0:375 0:507; 0:373 0:507; 0:379
1=2 0:397; 0:397 0:470; 0:385 0:519; 0:333 0:556; 0:315 0:574; 0:306 0:572; 0:315
1=4 0:397; 0:397 0:497; 0:330 0:566; 0:286 0:617; 0:254 0:641; 0:239 0:636; 0:251
0 0:397; 0:397 0:525; 0:302 0:612 ; 0:239 0:677; 0:194 0:708; 0:172 0:700; 0:187

Table 1: Equilibrium outputs xNB
�
�P ; �

�
; xNS

�
�P ; �

�
Since �P � � 0:714; xNB

�
�P ; �

�
is increasing and xNS

�
�P ; �

�
is decreasing in �P

if �P � 0:72 and � is su¢ ciently small. Next, we derive social welfare for the
same pairs of (�; �P ) as Table 1.

� n �P 0:9 0:85 0:8 0:75 0:72 0:7
1 0:629 0:645 0:655 0:661 0:664 0:666
3=4 0:629 0:644 0:653 0:658 0:660 0:662
1=2 0:629 0:642 0:646 0:647 0:646 0:649
1=4 0:629 0:638 0:635 0:629 0:624 0:629
0 0:629 0:632 0:620 0:603 0:592 0:600

Table 2: Equilibrium Welfare

We can con�rm that social welfare is decreasing in �P if � = 1. However, if
� = 0; then social welfare is decreasing in �P as long as �P 2 [0:72; 0:85]. This is
because xNB

�
�P ; 0

�
�xNS

�
�P ; 0

�
is decreasing in �P and C 00 > 0. Moreover, even if

� = 1=2; the social welfare under �P = 0:75 is larger than that under �P = 0:72.
Therefore, for some �, making the price-cap level closer to the competitive level
may be socially harmful. Finally, we consider the robustness of this result. In
this example, the result is robust when we consider the average of welfare. That
is, if each Cournot equilibrium is realized in the equal probability, then expected
welfare can be decreased by some reduction of a price-cap level.

13



7 Concluding Remarks

This paper discusses the e¤ect of a price-cap regulation on market outcomes.
First, we consider the Cournot model. If the price-cap level is between the com-
petitive price and the Cournot equilibrium price without any price-caps, then
there are a unique symmetric equilibrium and asymmetric equilibria, and the
price-cap is binding in any equilibria. Since we assume a convex cost function,
the symmetric equilibrium is the most e¢ cient one for any given price-cap lev-
els. Thus, when we focus only on the symmetric equilibrium, any increase of
the price-cap level is welfare improving as long as the level is less than the com-
petitive price. However, when we focus on asymmetric equilibria, a decrease of
the price-cap level may be socially harmful even if the level is more than the
competitive price. To derive the result, we focus on the convex combinations of
the symmetric equilibrium and the most asymmetric equilibrium. A coe¢ cient
of the convex combination represents the degree of symmetry of the equilib-
rium. Although Earle et al. (2007) also consider a Counot model, they focus
only on the symmetric equilibria and show that social welfare is nonincreasing
in the price cap level in the case where the demand is deterministic. On the
other hand, we focus on the asymmetric equilibria and show that if the degree
of symmetry is su¢ ciently low, then an increase in the price cap level may raise
social welfare.
Moreover, we also derive the Stackelberg equilibrium under a price-cap reg-

ulation. If the price-cap level is binding, then the Stackelberg equilibrium is
equivalent to the most asymmetric Cournot equilibrium. Therefore, social wel-
fare can also be decreased by a reduction of the price-cap level.
We also consider the endogenous timing duopoly game where the �rms en-

gage in either Cournot or Stackelberg competition in the second stage depending
on the actions of the �rms in the �rst stage. We show that the Cournot compe-
tition happens as the pair of the weakly dominant strategies under any price-cap
levels.

Appendix

Proof of Theorem 1. We show the �rst sentence. First, suppose �P � P (XN ).
If �P is not binding, then any pairs of outputs are not equilibrium unless xi =
xN for i = 1; 2. This is because

�
xN ; xN

�
is the pair of the unique Cournot

equilibrium output without any regulation. Suppose that (x1; x2) 6=
�
xN ; xN

�
and �P is binding; that is, (x1; x2) satis�es �P � P (x1 + x2). Then, x1 + x2 � �X
and x2 � �X=2 < xN . However, since ?(x1 + x2) � ?( �X) � xN , �rm 2 has the
incentive to increase its output. Therefore, if �P � P (XN ), then

�
xN ; xN

�
is the

unique equilibrium.
Second, suppose �P 2

�
P (XN ); P (XC)

�
. As is explained before, for given

�P 2
�
P (XN ); P (XC)

�
; (x1; x2) is an equilibrium if and only if x1 + x2 =

�X and ?( �X) � xi � ?C( �X) for all i = 1; 2. First, suppose �X � ?( �X) <
?C( �X). Then, �X �?C( �X) < ?( �X). If x1 > �X �?( �X); then �X � x1 < ?( �X).
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Therefore, if x1 > �X � ?( �X); then (x1; x2) satisfying x1 + x2 = �X is not
equilibrium, because �rm 2 has an incentive to increase its output. On the
other hand, if x1 � �X �?( �X); then �X � x1 � ?( �X). Thus, (x1; x2) satisfying
x1 + x2 = �X is an equilibrium if and only if �X=2 � x1 � �X � ?( �X) or
equivalently ?( �X) � x2 � �X=2. Second, suppose �X � ?( �X) > ?C( �X). Then,
�X �?C( �X) > ?( �X). If x1 > ?C( �X); then (x1; x2) is not equilibrium. On the
other hand, if x1 � ?C( �X); then �X�x1 � �X�?C( �X) > ?( �X). Thus, (x1; x2)
satisfying x1 + x2 = �X is an equilibrium if and only if �X=2 � x1 � ?C( �X)
or equivalently �X � ?C( �X) � x2 � �X=2. These fact imply that (x1; x2) is
an equilibrium if and only if x1 = xNB

�
�P ; �

�
= � �X=2 + (1� �)xN

�
�P
�
and

x2 = x
N
S

�
�P ; �

�
= � �X=2 + (1� �)xN

�
�P
�
for all � 2 [0; 1].

We show the second sentence. First, we show that xN
�
�P
�
is a U-shaped

function between P (XC) and P (XN ). If �P = P (XC)+" where " is a su¢ ciently
small positive integer, then ?( �X) < �X�?C( �X) and thus xN

�
�P
�
= ?( �X). This

is because, if �P = P (XC), then 2?C( �X) = �X and ?( �X) < ?C( �X). Next, if
�P = P (XN )�", then �X�?C( �X) < ?( �X) and thus xN

�
�P
�
= �X�?C( �X). This

is because, if �P = P (XN ), then 2?( �X) = �X and ?( �X) < ?C( �X). Moreover,
?( �X) is increasing and �X �?C( �X) is decreasing in �X. Therefore, xN

�
�P
�
is a

U-shaped function between P (XC) and P (XN ). Finally, we show xN
�
�P
�
> 0.

To show ?( �X) > 0 for all �X 2
�
XN ; XC

�
is su¢ cient for the proof. If ?( �X) = 0;

then P ( �X)� C 0(0) � 0. This contradicts P (XC)� C 0(xC) = 0 and xC > 0.
We show the third sentence. The minimizer of xN

�
�P
�
between P (XC) and

P (XN ) is �P that satis�es

?( �X) = �X �?C( �X), ?( �X) +?C( �X) = �X: (4)

We similarly show that xN
�
�P
�
is an inverted U-shaped function between P (XC)

and P (XN ). The maximizer of xN
�
�P
�
between P (XC) and P (XN ) is �P satis-

fying (4). Therefore, �P � is also the maximizer of xN
�
�P
�
. Q.E.D.

Proof of Corollary 2. Suppose �P 2
�
P (XC); P (XN )

�
. Then, for J =

B;S,
�NJ

�
�P ; �

�
= �PxNJ

�
�P ; �

�
� C(xNJ

�
�P ; �

�
)

and �P � C 0(xNB
�
�P ; �

�
) > C 0(xNS

�
�P ; �

�
) for all � 2 [0; 1). Therefore, we have

the �rst result. Moreover, by the third result of Corollary 1 we have the sec-
ond result. Next, we show that if @xNJ

�
�P ; �

�
=@ �P > 0, then �NJ

�
�P ; �

�
. Q.E.D.

Proof of Theorem 2. The �rst sentence is obvious. We show the second
sentence. Suppose �P 2

�
P
�
XC

�
; P
�
XS
��
, �X 2

�
XS ; XC

�
. Since �X � XS ;

�X � xSL + r
�
xSL
�
. Moreover, rC

�
xSL
�
> r

�
xSL
�
: Therefore, if xL = xSL; then

xSL + rF
�
xSL;

�P
�
� �X and thus the price-cap is binding.

First, we focus on xL satisfying

�X � xL � r (xL), xL + r (xL) � �X: (5)

Then, for any xL that satis�es (5), rF
�
xL; �P

�
= r (xL). Since r0 2 (�1; 0] ;

xL+ r (xL) is increasing in xL. Since xSL+ r
�
xSL
�
� �X; xL � xSL for all xL that
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satis�es (5). By the second order condition of L, the pro�t of L at x̂L satisfying
x̂L + r (x̂L) = �X is higher than that at any xL satisfying (5).
Second, we focus on xL that satis�es

�X � xL � rC (xL) : (6)

Then, for any xL that satis�es (6), rF
�
xL; �P

�
= rC (xL). In this case, the price-

cap must be binding. If �X�xL = rC (xL) ; then xL = �X�?C( �X). Since rC0 2
(�1; 0] ; xL + rC (xL) is increasing in xL: Thus, (6) implies xL � �X � ?C( �X).
Since ?C( �X) � �X � ?C( �X) and the second order condition is satis�ed, the
pro�t of L at xL = �X �?C( �X) is higher than that at any xL > �X �?C( �X).
Third, we focus on xL that satis�es

�X � xL 2
�
r (xL) ; r

C (xL)
�
: (7)

Then, for any xL that satis�es (7), rF
�
xL; �P

�
= �X �xL. Since (7) includes the

case where �X � xL = r (xL) and �X � xL = rC (xL) ; the pro�t maximizer of
the leader satis�es (7). Since xL + rC (xL) is increasing in xL, (7) is equivalent
to xL 2

�
�X �?C( �X); �X �?( �X)

�
and the price-cap must be binding. There-

fore, the pro�t of �rm 1 is maximized at min
�
�X �?( �X);?C( �X)

	
= xNB

�
�P ; 0

�
because ?C( �X) > �X �?C( �X). Moreover,

xSF
�
�P
�
= �X � xNB

�
�P ; 0

�
= max

�
�X �?C( �X);?( �X)

	
= xNS

�
�P ; 0

�
:

In sum, if �P 2
�
P
�
XC

�
; P
�
XS
��
, then

�
xSL
�
�P
�
; xSF

�
�P
��
=
�
xNB
�
�P ; 0

�
; xNS

�
�P ; 0

��
.

Q.E.D.

Proof of Corollary 3. We show �P � < P (XS). Since xSF = r
�
xSL
�
; xSF =

?(XS) and xSL = X
S �?(XS). Therefore, �P � < P (XS). The remainder of the

proof is direct from Corollary 1 and the fact that if �P 2
�
P
�
XC

�
; P
�
XS
��
,

then
�
xSL
�
�P
�
; xSF

�
�P
��
=
�
xNB
�
�P ; 0

�
; xNS

�
�P ; 0

��
. Q.E.D.

Proof of Theorem 3. Amir and Grilo (1999, Theorem 2.2 and Corollary
2.5) show that l is the dominant strategy of each �rm. That is, �SL

�
P (XS)

�
�

�NB
�
P (XN ); �

�
and �NB

�
P (XN ); �

�
� �SF

�
P (XS)

�
for all � 2 [0; 1]. Therefore,

if �P > P (XN ); that is, if �P is not binding for any market structures, then
Theorem 3 is obvious.
Next, we show that l is a best response of a �rm to f . First, suppose

�P 2
�
P (XS); P (XN )

�
. In this case, �P is binding in the Cournot competition

but not binding in the Stackelberg competition. By Corollary 2, �SL
�
�P
�
=

�NB
�
P (XS); 0

�
� �NB

�
P (XS); �

�
for all � 2 [0; 1]. Moreover, for any �P 2�

P (XS); P (XN )
�
; �NB

�
�P ; 0

�
� �NB

�
�P ; �

�
for all � 2 [0; 1]. If a leader chooses

its output �X � ?( �X), then a follower chooes ?( �X) and thus the pro�t of the
leader is �NB

�
�P ; 0

�
. Since xSL = XS � ?(XS) is the maximizer of the leader,

�SL
�
�P
�
� �NB

�
�P ; 0

�
. Second �P 2

�
P (XC); P (XS)

�
By the de�nition of the

Stackelberg equilibrium, �SL
�
�P
�
� �NB

�
�P ; 0

�
for all �P � P (XC) and � 2 [0; 1].

16



Moreover, by Corollary 1, �NB
�
�P ; 0

�
� �NJ

�
�P ; �

�
for all � 2 [0; 1] and J = B;S.

Therefore, l is a best response of a �rm to f .
Finally, we show that l is a best response of a �rm to l. First, suppose �P 2�

P (XS); P (XN )
�
. By Corollary 2, �SF

�
�P
�
= �NS

�
P (XS); 0

�
� �NS

�
P (XS); �

�
for all � 2 [0; 1]. Moreover, by Corollaries 1 and 3, @xNS

�
�P ; 0

�
=@ �P > 0.

Therefore, �SF
�
�P
�
� �NS

�
�P ; �

�
for all � 2 [0; 1] and �P 2

�
P (XS); P (XN )

�
.

Second, suppose �P 2
�
P (XC); P (XS)

�
. By Corollary 2, �SF

�
�P
�
= �NS

�
�P ; 0

�
�

�NS
�
�P ; �

�
for all � 2 [0; 1]. Therefore, l is a best response of a �rm to l. Q.E.D.

Proof of Proposition 1. Since C 00(�) > 0, an expansion of the di¤erence be-
tween x1 and x2 increases the industry cost and decreases social welfare if x1+x2
is not changed. If �P 2

�
P (XC); P (XN )

�
, then xNB

�
�P ; �

�
+xNS

�
�P ; �

�
= �X for all

� 2 [0; 1]. Thus, dW
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d� < 0 for all � 2 [0; 1]. Q.E.D.

Proof of Proposition 4. Fix � 2 [0; 1] and �P 2
�
P (XC); �P �

�
. Then,�

xNB
�
�P ; �

�
; xNS

�
�P ; �

��
= (� �X=2+(1� �)?C( �X); � �X=2+(1� �)

�
�X �?C( �X)

�
)

and social welfare is

W
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=Z �X

0

P (Z)dZ � C
�
� �X

2
+ (1� �)?C( �X)

�
� C

�
� �X

2
+ (1� �)

�
�X �?C( �X)

��
:

Since

dW
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
d �P

=
dW

�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
d �X

d �X

d �P
;

we will show that dW
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d �X > 0 for all � 2 [0; 1]. More-

over,

dW
�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
d �X

= P ( �X)�
��
2
+ (1� �)?C0( �X)

�
C 0
�
� �X

2
+ (1� �)?C( �X)

�
�
�
1� �

2
� (1� �)?C0( �X)

�
C 0
��
1� �

2

�
�X � (1� �)?C( �X)

�
:

We have

P ( �X) > C 0
�
� �X

2
+ (1� �)?C( �X)

�
> C 0

�
� �X

2
+ (1� �)

�
�X �?C( �X)

��
:

Moreover, since ?C0( �X) < 0, �=2+(1� �)?C0( �X) < 1��=2�(1� �)?C0( �X);
dW

�
xNB
�
�P ; �

�
; xNS

�
�P ; �

��
=d �X > 0 for all � 2 [0; 1]. Q.E.D.
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