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Short Summary 

 In this paper, we study revenue maximizing 

mechanisms. Especially, we focus on the 

mechanism which extracts the full surplus. 

 We show that full surplus extraction in a 

dynamic environment is basically ‘easier,’ since 

its complicated structure help the mechanism 

designer (MD) achieve both efficiency and 

extraction. 
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Classical Result 

 Under independent value environment, it is 

impossible to design a mechanism which is 

 incentive compatible, 

 individually rational, 

 extracts the whole surplus. 

 On the contrary, we have a chance if the signals 

agents receive are mutually correlated (not 

independent). 
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“Independent Value” 

 Agents always share some common shock 

factors. 

 Valuations are independent only after these 

factors are perfectly revealed (Conditional 

independence). 

 If we have conditionally independent values, 

after revelation of the common shock, we 

cannot realize full extraction (Myerson 1981, 

Myerson and Satterthwaite 1988). 
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Intertemporal Correlation 

 However, many real-world allocation problems are 

dynamic in nature. 

 

 If each agent has a piece of information about 

future common shock, agent 𝑖’s signal today is 

correlated with the other agents’ signals tomorrow. 

 MD can utilize this feature. 

 cf. Cremer and McLean (1985, 1988) 
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Closely Related Literature 

 DMD: very hot issue! (Licensing problem etc.) 

 Efficiency in dynamic environments 

 IPV environments: Athey and Segal (2013), 

Bergemann and Valimaki (2010) 

 Correlated value environments: Liu (2013) 

 

 This paper’s goal: Efficiency + Extraction 
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Two-Period Example 

𝑓𝐴 𝜃2
2 

H L 

𝜃2
1 

H 0.64 0.16 0.8 

L 0.16 0.04 0.2 

0.8 0.2 1 

𝑓𝐵 𝜃2
2 

H L 

𝜃2
1 

H 0.25 0.25 0.5 

L 0.25 0.25 0.5 

0.5 0.5 1 

𝑓𝑂 𝜃1
2 

H L 

𝜃1
1 

H 0.25 0.25 0.5 

L 0.25 0.25 0.5 

0.5 0.5 1 

𝑡 = 1 

𝑡 = 2 if 𝜃1
1 = 𝜃1

2 otherwise 



Periodic Mechanism 

 State transition does not depend on allocation. 

→ A periodically efficient allocations is also 

efficient as a whole.  

 

 Distributions are conditionally independent 

→ If we divide this problem into two static 

problems, surplus extraction is impossible! 
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IR and surplus extraction 

 Here we simply fix each agent’s outside option 

to zero, but agent can escape from the 

mechanism anytime (wp-EPIR). 

 The mechanism extracts the full surplus if 

1. allocation is efficient, 

2. the mechanism is individually rational, and 

3. individual rationality binds in the initial 

period. (justified by Bayesian setting and 

risk-neutrality.) 
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𝑓𝐴 𝜃2
2 

H L 

𝜃2
1 

H 0.64 0.16 0.8 

L 0.16 0.04 0.2 

0.8 0.2 1 

𝑓𝐵 𝜃2
2 

H L 

𝜃2
1 

H 0.25 0.25 0.5 

L 0.25 0.25 0.5 

0.5 0.5 1 

𝑓𝑂 𝜃1
2 

H L 

𝜃1
1 

H 0.25 0.25 0.5 

L 0.25 0.25 0.5 

0.5 0.5 1 

𝑡 = 1 

𝑡 = 2 if 𝜃1
1 = 𝜃1

2 otherwise 

Intertemporal Correlation 

Different! 

𝜃1
𝑖  is  

informative  

for 𝜃 2
−𝑖! 
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Intertemporal Correlation 

 We can construct a Cremer-McLean lottery from 

this probabilistic structure. 

 Assume that 𝜃1
2 = 𝐻 (and agent 1 knows that). 

 Then, agent 1’s belief over 𝜃 2
2 is  

(H, H) (L, H) 

H 0.8 0.5 

L 0.2 0.5 

True social state in 𝑡 = 2 

𝜃2
2 

wp-EPIC 
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Cremer-McLean lottery 

 Define 𝑤1(𝜃1, 𝜃2
2) as 

𝑤1( 𝐻,𝐻 ,𝐻) = 1  

𝑤1( 𝐻,𝐻 , 𝐿) = −4  

𝑤1( 𝐿, 𝐻 , 𝐻) = −1  

𝑤1( 𝐿, 𝐻 , 𝐿) = 1  

1. Truthful report gives zero expected profit. 

2. Misreport gives negative expected profit. 

3. Agent 1’s report in 𝑡 = 2 is irrelevant. 

(H, H) (L, H) 

H 0.8 0.5 

L 0.2 0.5 

True social state in 𝑡 = 1 

𝜃1
2 
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ICMM 
 Assume that we have private values. Then, 

efficiency can be achieved by (iterative) 

Groves Mechanism (w/o constant payment). 

 Then, agent 1’s EPV is equal to expected social 

welfare 𝑆(𝜃1) 

 Add participation fee to this original mech. Let 

agent 1’s additional payment in 𝑡 = 1 be 

𝜓2
1 𝜃1, 𝜃2 = −𝑆 𝜃1 + 𝛼 ⋅ 𝑤1(𝜃1, 𝜃2

2) 

 

15 

𝔼 𝑤1 𝜃1, 𝜃 2
2 |𝜃1 = 0   𝔼 𝑤1 𝜃 1

1, 𝜃1
2 , 𝜃 2

2 |𝜃1 < 0 

 



ICMM (2) 

 Taking 𝛼 sufficiently large, this additional 

payment does not hurt the incentive structure.  

 Total payment = Groves + Additional, so the 

whole mechanism is also wp-EPIC. 

 Moreover, each agent’s individual rationality 

binds in 𝑡 = 1 → Full extraction. 

 The remaining part is individual rationality in 

𝒕 = 𝟐. 
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Time Inconsistency 

 Given 𝜃1, 𝜃2, agent 1’s on-path payoff from 

participating this mechanism in period 2 is 

𝑠 𝜃2 − 𝑆 𝜃1 + 𝛼 ⋅ 𝑤1(𝜃1, 𝜃2
−𝑖) 

 

 

 We give an incentive for truthful report in 𝒕 = 𝟏 

by payment in 𝒕 = 𝟐 (time inconsistency). 

 We must induce a new scheme to prevent 

agents from escaping. 
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Possibly negative 

=
 

𝑠(𝜃1) Non-negative 



Deposit Scheme 

 As long as the participation constraint in the 

initial period is satisfied, we can easily keep 

agents in the mechanism in successive periods. 

 

 The key assumption for this scheme is the 

common discount factor. If MD and agents 

share the same 𝛿, deposit is irrelevant to both (i) 

MD’s revenue and (ii) agent’s EPV. 
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On-path EPVs 

 𝑡 = 1 

 

 

 

 𝑡 = 2 

 

 

 This mechanism satisfies wp-EPIR. 
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      𝑠 𝜃1 −𝐾𝑖  

  +   𝔼 𝑠 𝜃 2 + 𝛼 ⋅ 𝑤1(𝜃1, 𝜃 2)|𝜃1 − 𝑆 𝜃1 + 𝐾𝑖 

   =   0  

cancel out 

𝑠 𝜃2 − 𝑆 𝜃1 + 𝛼 ⋅ 𝑤1 𝜃1, 𝜃2 +𝐾𝑖 > 0 

for sufficiently large 𝑲𝒊 



Remarks 

 We can also use the Cremer-McLean lottery to 

achieve efficiency (cf. Liu 2013). 

 This mechanism satisfies wp-EPIC and wp-EPIR 

→ More desirable than interim ones! 

 wp-EPIC, wp-EPIC → intratemporal 

probabilistic structure does not matter! (We 

can apply this, but not limited to conditionally 

independent environments.) 
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Rank Condition 

 The previous two-period example indicates that 

a sufficient condition to construct a Cremer-

McLean lottery for period 𝑡 if 𝜃𝑡
𝑖 and 𝜃𝑡+1

−𝑖  are 

correlated given for any 𝜃𝑡
−𝑖. 

 

 Indeed, the rank condition needed in a 

dynamic environment is much weaker than 

this. (See next Three-Period Example!) 
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𝜃2
2 

H L 

𝜃2
1 

H 0.21 0.09 0.3 

L 0.49 0.21 0.7 

0.7 0.3 1 

𝜃2
2 

H L 

𝜃2
1 

H 0.49 0.21 0.7 

L 0.21 0.09 0.3 

0.7 0.3 1 

𝜃2
2 

H L 

𝜃2
1 

H 0.21 0.49 0.7 

L 0.09 0.21 0.3 

0.3 0.7 1 

𝜃2
2 

H L 

𝜃2
1 

H 0.09 0.21 0.3 

L 0.21 0.49 0.7 

0.3 0.7 1 

if 𝜃1 = (𝐻,𝐻) if 𝜃1 = (𝐻, 𝐿) if 𝜃1 = (𝐿,𝐻) if 𝜃1 = (𝐿, 𝐿) 

𝜃1
2 

H L 

𝜃1
1 

H 0.25 0.25 0.5 

L 0.25 0.25 0.5 

0.5 0.5 1 

𝜃3
2 

H L 

𝜃3
1 

H 0.64 0.16 0.8 

L 0.16 0.04 0.2 

0.8 0.2 1 

𝜃3
2 

H L 

𝜃3
1 

H 0.25 0.25 0.5 

L 0.25 0.25 0.5 

0.5 0.5 1 

if 𝜃2
1 = 𝜃2

2 if 𝜃2
1 ≠ 𝜃2

1 

𝑡 = 1 

𝑡 = 2 

𝑡 = 3 

Three-Period Example 



Three-Period Example (2) 

 B/w period 1 and 2, state 

distributions are truly 

independent (the distribution 

of 𝜃2
𝑖  only depends on 𝜃1

𝑖 ). 
 

 𝜃1
𝑖  is not informative for 𝜃1

−𝑖 

nor 𝜃2
−𝑖 → Surplus extraction 

is impossible if this game 

ends in period 2. 
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𝑡 = 1 

𝑡 = 2 

𝑡 = 3 

   Prob. vector of 𝜃 1
𝑖  

= (0.5, 0.5)  

   Prob. vector of 𝜃 2
𝑖  

=  
 0.7, 0.3   if  𝜃1

𝑖 = 𝐻

0.3, 0.7   if  𝜃1
𝑖 = 𝐿

  

   Prob. vector of 𝜃 3
𝑖  

=  
 0.8, 0.2   if  𝜃2

1 = 𝜃2
2

 0.5, 0.5   if  𝜃2
1 ≠ 𝜃2

2  



Three-Period Example (3) 

 However, 𝜃1
𝑖  is correlated 

with 𝜃2
𝑖 ! 

 

 If MD can prevent agent 𝑖’s 

contingent deviation, it is 

possible to construct a 

Cremer-McLean lottery 

from this structure. 
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𝑡 = 1 

𝑡 = 2 

𝑡 = 3 

   Prob. vector of 𝜃 1
𝑖  

= (0.5, 0.5)  

   Prob. vector of 𝜃 2
𝑖  

=  
 0.7, 0.3   if  𝜃 1

𝑖 = 𝐻

0.3, 0.7   if  𝜃 1
𝑖 = 𝐿

  

   Prob. vector of 𝜃 3
𝑖  

=  
 0.8, 0.2   if  𝜃 2

1 = 𝜃 2
2

 0.5, 0.5   if  𝜃 2
1 ≠ 𝜃 2

2  



Insights from Examples 

 In order to extract the full surplus, we have to 

i. implement the efficient allocation, and 

ii. reveal the private signal in the initial 

state costlessly, i.e., construct a Cremer-

McLean lottery for the initial report. 
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Insights from Examples (2) 

 We can unveil 𝜃𝑡
𝑖 without leaving information 

rent if there exists 𝑇 = 𝑡, 𝑡 + 1,… , 𝑡  s.t. 

i. For all 𝜏 ∈ 𝑇, given for any 𝜃𝜏
−𝑖, 𝜃𝜏

𝑖 is 

informative for 𝜃𝜏+1 = (𝜃𝜏+1
𝑖 , 𝜃𝜏+1

−𝑖 ). 

ii. Given for any 𝜃𝑡 
−𝑖, 𝜃𝑡 

𝑖 is informative for 𝜃𝑡 +1
−𝑖 . 

 

 

 

 

 

 

27 



Outline 

1. Introduction 

2. Two-Period Example 

3. Three-Period Example 

4. Model 

5. Main Results 

6. Conclusion 

28 



Model (1) 

 Finitely many agents 𝑖 ∈ {1,2, … , 𝐼} 

 Finite or Infinite time horizon 𝑡 ∈ ℤ+ 

 Finite and Discrete state space 

𝜃𝑡
0 ∈ Θ𝑡

0: public state in period 𝑡 

𝜃𝑡
𝑖 ∈ Θ𝑡

𝑖 : 𝑖’s private state in period 𝑡 

 𝜃𝑡 = 𝜃𝑡
0, 𝜃𝑡

1, … , 𝜃𝑡
𝐼 : state profile in period 𝑡 

 𝑥𝑡 ∈ 𝑋𝑡  MD’s allocation decision in 𝑡 
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Model (2) 

 𝜇𝑡+1: 𝑋𝑡 × Θt → Δ(Θt)  state transition function 

𝜇𝑡+1(𝑥𝑡 , 𝜃𝑡) denotes 𝜃𝑡+1’s state distribution. 

 𝑣𝑡
𝑖(𝑥𝑡, 𝜃𝑡)  agent 𝑖’s flow valuation function. 

 𝛿 ∈ (0,1) common discount factor 

 𝑦𝑡
𝑖 ∈ ℝ  monetary transfer to 𝑖 in 𝑡 

 Agent payoff is given by 

 𝛿𝑡𝑣𝑡
𝑖(𝑥𝑡, 𝜃𝑡) + 𝑦𝑡

𝑖

𝑡
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Mechanism 

 𝜒𝑡(𝜃𝑡): allocation rule in 𝑡 

By Markov formulation, there exists an efficient Markov 

allocation rule. (hereafter we focus on it.) 

 𝜓𝑡
𝑖(𝜃0, 𝜃1, … , 𝜃𝑡): payment rule in 𝑡 

We write the history of reports explicitly here. 

𝜽𝒔
𝒕 = (𝜃𝑠, 𝜃𝑠+1, … , 𝜃𝑡): sequence of reports 

𝜓𝑡 = (𝜓𝑡
1, … , 𝜓𝑡

𝐼)  

 The mechanism is 𝜒, 𝜓 = 𝜒𝑡 , 𝜓𝑡 𝑡=0
∞  
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EPVs 

 EPV from valuation 

 

 EPV from payment 

 
 Total EPV 
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wp-EPIC and wp-EPIR 

 𝜒, 𝜓  is wp-EPIC if ∀𝑖, ∀𝑡, ∀𝜃𝑡 , ∀𝜽
𝑡−1, ∀𝜃 𝑡

𝑖 

 

 
 𝑂𝑖: Θ → ℝ  agent 𝑖’s outside option 

 (𝜒, 𝜓) is wp-EPIR if ∀𝑖, ∀𝑡, ∀𝜃𝑡 , ∀truthful 𝜽𝑡−1, 
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(𝜽𝑡−1: seq. of reported state profiles (not true realization)) 



Revenue 

 MD commits a (𝜒, 𝜓) ex ante. 

→ 𝜒, 𝜓  maximizes ex ante expected revenue. 

 

 

 Full Surplus Extraction iff 

i.  𝜒 is the efficient allocation rule, 

ii.   

34 



Outline 

1. Introduction 

2. Two-Period Example 

3. Three-Period Example 

4. Model 

5. Main Results 

6. Conclusion 

35 



(Piecewise) Full Rankness 

 Parallel to the condition introduced in examples. 
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Main Result (1) 

 Costless revelation of 𝜃0 is crucial. 
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Main Result (2) 

 Efficiency: Dynamic Groves mechanism suggested by 

Athey and Segal (2013) (available if private values) 

 Make wp-EPIR binds by Cremer-McLean method. 
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Main Result (3) 

 However, to sustain wp-EPIR, we need 

boundedness of the payment rule. 
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 If the full rank condition is satisfied throughout 

the time horizon, it also guarantees 

implementability of the efficient allocation. 



Uniform Full Rankness 
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Main Result (4) 

 Uniform full rankness excludes “asymptotically 

short rank environment.” 
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Conclusion 

 In this paper, we investigate revenue maximizing 

mechanisms in dynamic environments. 

 

 We show the sufficient condition for full surplus 

extraction, and construct a mechanism which 

extracts the whole surplus and works under 

generic environments. 
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Conclusion (2) 

 This result gives us clear insight about the 

mechanism design in dynamic environments. 

 

 Even under the environment where static 

models and mechanisms are applicable, the 

mechanism designer can increase his revenue 

by utilizing the problem’s dynamic nature.  
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Conclusion (3) 

 ICMM also has some desirable property. 

 It is robust to information leakage (wp-EPIC and 

wp-EPIR). 

 

 Prediction for “common shock” seems rather 

realistic compared to the other agents’ 

valuations at the same time. 
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Conclusion (4) 

 Our setting satisfies Markov property and each 

agent’s belief is affected only by the latest 

reports. 

 However, if the MD can benefit from a 

relationship between far distant periods. 

 This result is quite new and insightful for 

dynamic mechanism design problems. 
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