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Abstract

In this paper, we study revenue maximizing mechanisms in dynamic environments. Es-

pecially we focus on the mechanisms which extract the full surplus. In order to extract

the surplus, we have to (i) implement the efficient allocation rule, and (ii) retrieve whole

the surplus and incentive payment. We show that intertemporal correlation between

signals is crucial for both of these two requirements. Given the dynamic version of

full rank condition proposed in this paper, we can construct a mechanism which is

(within-period) ex post incentive compatible, individually rational, and extracts the

whole surplus. Fortunately, this rank condition is weaker than the one in a static en-

vironment. Full surplus extraction might be possible even when state distributions are

conditionally independent for all periods, or when we have “independent types” in the

dynamic sense for most of periods.

Keywords: Dynamic mechanism design, perfect Bayesian equilibrium, revenue maxi-

mization, full surplus extraction.

1 Introduction

In this paper, we study revenue maximizing mechanisms under dynamic information envi-

ronments with discrete state spaces. Especially, we focus on mechanisms which extract the

full surplus. In order to maximize the revenue, the mechanism designer may have to imple-

ment an inefficient allocation to reduce the information rent. However, if the mechanism

designer can implement the efficient allocation rule without leaving any information rent

to the agents, it is definitely the best outcome for the mechanism designer who wants to

maximize his revenue.
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Unfortunately, full surplus extraction is not always possible. For a static independent

and private value auction problem, Myerson (1981) shows that the allocation of the revenue-

maximizing mechanism is different from the efficient one. Furthermore, Myerson and Sat-

terthwaite (1983) proves that the mechanism designer has to subsidize the agents in order

to achieve the efficient allocation in bilateral trade problems. In these cases, the mechanism

designer should leave information rent to give each agent an incentive to report his private

information truthfully. When we have interdependent values, i.e., one agent’s valuation for

the object depends on the other agents’ private signals, even the efficient allocation itself

might not be implementable (for example, see Example 10.1 in Krishna (2002))1. Crémer

and McLean (1985, 1988) shed light on the necessary and sufficient condition for full surplus

extraction. They prove that in static problems with private values, if the agents’ private

signals are mutually correlated (satisfy the full rank condition), existence of a mechanism

which extracts the whole surplus is guaranteed.

Should we give up full extraction when this condition fails, for example, agents’ signal

are distributed independently at the time of allocation problem? If we extend the scope of

examination to dynamic environments, we still have a chance to extract the whole surplus.

In order to get intuition for this, it is helpful to reconsider the meaning of “independent

types.” When all the stake holders of the allocation problem are truly blind to the common

shock factors, agents’ valuations must be correlated. For example, consider a used car

auction. Consumers’ reservation prices for the car is correlated if quality of the car has not

been completely revealed. If the detail of the selling object, which is called common shock

factor here, is uncovered, the remaining factors which determines each consumer’s valuation,

e.g. preference for color, size, design, etc. are private, so we can interpret this situation

as a problem with independent types. Taken together, it is inevitable to leave information

rent after all the common shocks are unveiled, however, if we can require agents to report

their signals before it happens, it is possible to utilize the correlation lying there.

As a matter of fact, many real-world allocation problems are dynamic, and the mech-

anism designer may realize a desired outcome by making use of this dynamic nature. In

dynamic information environments, each agent’s state evolves over time, depending on the

sequence of allocations and state profiles. In this case, even if the state distribution is

independent conditional on the history, i.e., agents’ signals does not have any correlation

within period, one agent’s today’s signal might be correlated with another agent’s tomor-

row’s signal. Naturally we may apply Crémer-McLean scheme here and reveal each agent’s

true state without leaving information rent.

Fortunately, the rank condition needed to construct a dynamic version of Crémer-

McLean mechanism is substantially weaker than the one in static environments. In a

classical one-shot allocation problem, its probabilistic structure is simple so that the only

object which might be correlated with a agent’ signal is the other agents’ ones (in the same

period). On the contrary, because of complexity of the dynamic information problem, there

1Maskin (1992) shows that the single crossing condition iss sufficient to guarantee implementability of

the efficient allocation.
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are so many random variables we can make use of.

Thanks to the richness of the environment, we can discard intractable intratemporal

probabilistic structure, which is the key thing of the static Crémer-McLean mechanism.

By abandoning it, we can strengthen the incentive condition. As a matter of fact, in our

mechanism, it is the strict best response to make a truthful report every period, regardless of

the realization of the other agents’ states. It is a quite desirable property because it implies

that the mechanism (i) works well regardless of the intertemporal probabilistic structure,

for example, under conditionally independent, short rank correlation or full rank correlation

within period, and (ii) is robust to leakage of any information available up to that time. Even

after discarding intratemporal structure and requiring a stronger incentive condition, we

can construct a mechanism which extracts the whole surplus from intertemporal correlation

under generic assumptions.

In order to represent this idea formally, we introduce the costless revelation condition

of the state transition process. Intuitively, the costless revelation condition guarantees the

possibility to construct a Crémer-McLean lottery which gives each agent (i) zero expected

payoff if he reports the true state, and (ii) negative expected payoff if he misreports the

state. Using this lottery, we can construct a payment rule which gives an incentive for

truthful report, without leaving information rent.

If the efficient allocation itself is implementable by the other scheme, the costless reve-

lation condition in the initial period guarantees that the mechanism designer can retrieve

whole the surplus and incentive payment, so it is sufficient for full surplus extraction. A num-

ber of papers have analyzed the design of efficient mechanisms. Bergemann and Välimäki

(2010), Cavallo, Parkes, and Singh (2010) and Athey and Segal (2013) introduce several

dynamic counterparts of the Groves mechanism, originally established by Groves (1973).

If the precondition for their mechanisms (private values) are satisfied, we can implement

efficient allocation by the Groves scheme and extract the surplus from the mechanism by

costless revelation in the initial period.

If the costless revelation condition is satisfied throughout the time horizon, the state

transition process also guarantees implementability of the efficient allocation. Together with

the extraction scheme described in the previous paragraph, we can characterize a sufficient

condition for the state transition to guarantee the possibility of full surplus extraction.

Liu (2013) also analyzes the design of an efficient mechanism, which utilizes intertemporal

correlation between state profiles. Despite Dasgupta and Maskin (2000) and Jehiel and

Moldovanu (2001) prove that efficient allocation is not implementable if the problem is

static and private signals are multidimensional and statistically independent, Liu shows

that the efficient mechanism design is possible even when we have conditionally independent

types, by utilizing the environment’s dynamic feature. Although we limit our attention on

environments with discrete and finite state spaces, our costless revelation condition is further

weaker than Liu’s identification condition, because we utilize intertemporal correlation not

only between two adjacent, but longer consecutive periods.

Though our rank condition is satisfied generically as long as multiple agents participate
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in the mechanism, when it fails, full surplus extraction may not be possible and some

different techniques are needed to maximize the revenue. Baron and Besanko (1984) and

Courty and Li (2000) considere optimal pricing policies in a two-period problem. Battaglini

(2005) studies the optimal contract in a model with infinite time horizon when the preference

of the buyer follows a Markov process. All of the papers above analyzed single-agent models,

so our Crémer-McLean scheme is not applicable. In contrast, Pavan, Segal, and Toikka

(2014) studies a general dynamic information model with multi-agent with private and

independent values in the dynamic sense. They establish a dynamic version of revenue

equivalence principle and derive the optimal revenue-maximizing mechanism. When the

rank condition fails, their works give us an insight for methods to maximize the revenue.

2 Short-period examples

2.1 A two-period example

Figure 1: A two-period example

Consider a two-period example. Two identical agents (say, agent 1 and 2) participate

in the mechanism. Each agent’s outside opportunity is fixed to zero. The game proceeds in

a following way.

Period 1 Agent i observes his private state θi1 ∈ {H,L}. The joint distribution of θ1 =

(θ11, θ
2
1) is given by fO (see Figure 1). Each agent reports θit, which is not necessarily

the truth, and the mechanism designer determines the allocation in period 1, xt ∈
X = {χ(H,H), χ(H,L), χ(L,H), χ(L,L)}.
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Period 2 Basically, the procedure is same as that in period 1, however, the state distri-

bution is different. If θ11 ̸= θ21, θ2 is drawn from fA. Otherwise, it is drawn from fB.

After the report and allocation, each agent’s payoff is finalized. Agent i’s valuation is

given by v(x1, θ
i
1) + v(x2, θ

i
2) + yi, where v is the agent’s valuation function and yi is

monetary transfer.

Assume that χ(θt) maximizes the social welfare in period t, when the social state is θt
2.

The mechanism designer wants to maximize ex ante revenue from this mechanism and can

commit a mechanism before the game, and to achieve the efficient outcome, he chooses χ(θt)

in period t if the reported state profile is θt. Since we have private values here, the efficient

allocation is ex post implementable by the Groves mechanism, whose payment rule is given

by ψi(θ1, θ2) = v(χ(θ1), θ
−i
1 ) + v(χ(θ2), θ

−i
2 ). On the contrary, since the state distributions

are conditionally independent, it is impossible to extract the full surplus if we apply static

mechanisms periodically.

However, making use of the problem’s dynamic structure, the mechanism designer can

extract the whole surplus. Consider a payment rule wi s.t.

wi(θ1, θ
−i
2 ) =



1 (if θ1 ∈ {(H,H), (L,L)} and θ−i
2 = H)

−4 (if θ1 ∈ {(H,H), (L,L)} and θ−i
2 = L)

−1 (if θ1 ∈ {(H,L), (L,H)} and θ−i
2 = H)

1 (if θ1 ∈ {(H,L), (L,H)} and θ−i
2 = L)

(1)

Then, for any realization of θ1, E
[
wi((θ̂i1, θ

−i
1 ), θ̃−i

2 )
∣∣∣ θ1] = 0 if θ̂i1 = θi1 and otherwise,

E
[
wi((θ̂i1, θ

−i
1 ), θ̃−i

2 )
∣∣∣ θ1] < 0. To see this, suppose that θ1 = (H,H) and agent 2 reports

his state truthfully. Since θ11 = θ21 = H, θ2 is drawn from fA, so Pr(θ̃22 = H) = 0.8 and

Pr(θ̃22 = L) = 0.2. In this case, if agent 1 reports truthfully, his expected payment is

0.8 · 1+ 0.2 · (−4) = 0. Conversely, if he misreports his state, 0.8 · (−1)+ 0.2 · 1 = −0.6 < 0.

Remaining parts can be verified in a similar way.

Let the payment rule ψi be

ψi(θ1, θ2) = v(χ(θ2), θ
−i
2 )− v(χ(θ1), θ

i
1)

− E
[
v(χ(θ̃2), θ̃

i
2) + v(χ(θ̃2), θ̃

−i
2 )

∣∣∣ θ1]+ α · wi(θ1, θ
−i
2 ).

(2)

Then, in period 2, each agent tell the truth regardless of θ−i
2 since only the first term

depends on θ̂i2. Consider agent i’s incentive compatibility in period 1. Given θ1, agent i’s

utility maximization problem in period 1 is

max
θ̂i1∈{H,L}

{
v(χ(θ̂i1, θ

−i
1 ), θi1) + E

[
v(χ(θ̃2), θ̃

i
2) + ψi((θ̂i1, θ

−i
1 ), θ̃2)

∣∣∣ θ1]} (3)

2Formally, χ(θt) ∈ argmaxxt [v
1(xt, θ

1
t ) + v2(xt, θ

2
t )]. Since the allocation does not affect the state tran-

sition in this example, we don’t have to worry about continuation values.
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Expanding ψi in (3), the objective function can be rewritten as

v(χ(θ̂i1, θ
−i
1 ), θi1)− v(χ(θ̂i1, θ

−i
1 ), θ̂i1)

+ E
[
v(χ(θ̃2), θ̃

i
2) + v(χ(θ̃2), θ̃

−i
2 )

∣∣∣ θ1]− E
[
v(χ(θ̃2), θ̃

i
2) + v(χ(θ̃2), θ̃

−i
2 )

∣∣∣ (θ̂i1, θ−i
1 )

]
+ α · E

[
wi((θ̂i1, θ

−i
1 ), θ̃−i

2 )
∣∣∣ θ1] .

(4)

Therefore, if agent i tell the truth in period 1, his expected payoff from the mechanism is

zero. In addition, letting α sufficiently large, we can make the value of objective function

in (3).

Finally, we consider individual rationality. In period 1, each agent’s on path expected

payoff is zero, so it is equal to the value of outside opportunity here. On the contrary, in

period 2, both agents do not always want to attend the mechanism. However, this is not

a very serious problem since by requiring each agent to make a deposit in period 1 and

returning it in period 2, we can keep participation constraints in period 2, without hurting

any incentive structure.

The mechanism we constructed above is (i) efficient, and (ii) each agent’s individual

rationality is satisfied with equality. Therefore, the mechanism designer’s ex ante revenue

attains the maximum amount. Here are three remarks. First, as we will show later, such

a lottery wi exists as long as given for any θ−i
1 , θi1 and θ−i

2 have a full-rank correlation.

In this example, given θ21 = H, the probability vectors of θ̃22 are (0.8, 0.2) given θ11 = H

and (0.5, 0.5) given θ11 = L, so they are linearly independent. Second, when we consider

the possibility of full surplus extraction in dynamic environments, it is effective to divide

it to two different problems—implementation and extraction. In this case, we used the

Groves scheme to implement the efficient allocation in period 2, and extract the expected

surplus and subsidy conditional on θ1 using the Crémer-McLean scheme. In general, if we

can reveal θ1 without leaving information rent, the mechanism designer can extract the

surplus from the mechanism. Finally, although we considered a conditionally independent

type environment here, the logic we introduced here is free from the intratemporal proba-

bilistic structure. In every period, each agent has an incentive to report his state truthfully,

regardless of the realization of the opponent’s private signal. Therefore, this technique is

applicable to the environment where agents’ signals are intratemporally correlated.

2.2 A three-period example

In order to gain further insights, let us introduce one more example. The game procedure is

basically the same as the previous example, while the new example has three periods. The

state transition is depicted in Figure 2. We add new period in the middle of the two-period

example, and in this new period (period 2), each agent’s marginal distribution depends only

on his own past state. Each agent’ state in period 2 is persistent, so θi2 is likely to be ‘high’

(marginal probability vector is (0.7, 0.3)) if θi1 = H and vice versa.

When we focus on period 1 and 2, each agent has independent types, which is defined by

Bergemann and Välimäki (2010) and Athey and Segal (2013). Each agent’s private states
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Figure 2: A three-period example

are not only conditionally independent but also intertemporally independent, i.e., θi1 is not

informative to predict θ−i
2 .

Although we cannot directly apply the intertemporal Crémer-McLean scheme introduced

in the previous example, we still have a chance to extract the whole surplus. While θi1 and

θ−i
2 are not correlated, there is positive correlation between θi1 and θi2. Of course, if we

construct a Crémer-McLean lottery from them, each agent sometimes has an incentive to

tell a lie in period 2. However, even then, giving a further stronger incentive to tell the

truth in period 2 by a different scheme, we can make agent 2 report his state truthfully

in period 2. Given this, it is possible to reveal agent i’s state in period 1 without leaving

information rent.

Define wi
1 and wi

2 for i = 1, 2 as follows.

wi
1(θ

i
1, θ

i
2) =

1 (if θi1 = θi2)

−1 (if θi1 ̸= θi2)
(5)

and

wi
2(θ2, θ

−i
3 ) =



1 (if θ2 ∈ {(H,H), (L,L)} and θ−i
3 = H)

−4 (if θ2 ∈ {(H,H), (L,L)} and θ−i
3 = L)

−1 (if θ2 ∈ {(H,L), (L,H)} and θ−i
3 = H)

1 (if θ2 ∈ {(H,L), (L,H)} and θ−i
3 = L)

(6)

We can easily verify that E
[
wi
1(θ̂

i
1, θ̃

−i
2 )

∣∣∣ θ1] = 0 if θ̂i1 = θi1 and E
[
wi
1(θ̂

i
1, θ̃

i
2)
∣∣∣ θ1] < 0
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otherwise, and E
[
wi
2((θ̂

i
2, θ

−i
2 ), θ̃−i

3 )
∣∣∣ θ2] = 0 if θ̂i2 = θi2 and E

[
wi
2((θ̂

i
2, θ

−i
2 ), θ̃−i

3 )
∣∣∣ θ2] < 0

otherwise. Define the payment rule as

ψi(θ1, θ2, θ3) = −v(χ(θ1), θi1)− v(χ(θ2), θ
i
2)

+ v(χ(θ3), θ
−i
3 )− E

[
v(χ(θ̃3), θ̃

i
3) + v(χ(θ̃3), θ̃

−i
3 )

∣∣∣ θ2]
+ α1w

i
1(θ

i
1, θ

i
2) + α2w

i
2(θ2, θ

−i
3 )

(7)

Again, we check the agent i’s utility maximization problem backward. Since θ̂i3 affect only

the allocation and v(χ(θ3), θ
−i
3 ), it is just a static Groves mechanism, so truthtelling is

incentive compatible regardless of the past history.

Next, we consider agent i’s problem in period 3. Given that this agent will make a

truthful report in period 3, it can be written as

max
θ̂i1∈{H,L}


v(χ(θ̂i2, θ

−i
2 ), θi2)− v(χ(θ̂i2, θ

−i
2 ), θ̂i2)

+ E
[
v(χ(θ̃3), θ̃

i
3) + v(χ(θ̃3), θ̃

−i
3 )

∣∣∣ θ2]− E
[
v(χ(θ̃3), θ̃

i
3) + v(χ(θ̃3), θ̃

−i
3 )

∣∣∣ (θ̂i2, θ−i
2 )

]
+ α1w

i
1(θ

i
1, θ̂

i
2) + α2E

[
wi
2((θ̂

i
2, θ

−i
2 ), θ−i

3 )
∣∣∣ θ2]

 .

(8)

Note that “θi1” appears here is not necessarily the true state but the reported i’s state

in period 1. If agent i tell the truth, his expected payoff is α1w
i
1(θ

i
1, θ

i
2). Therefore, by

setting α2 sufficiently large (relative to α1), we can prevent each agent from deviation, since

E
[
wi
2((θ̂

i
2, θ

−i
2 ), θ−i

3 )
∣∣∣ θ2] < 0 if θ̂i2 ̸= θi2 and all the other terms are bounded.

Given that each agent does not have an incentive to misreport his state regardless of

the history, the problem in period 1 is completely isomorphic to the previous example.

Sufficiently large α1 gives each agent an incentive for truthful report, and each agent’s

expected payoff from the mechanism is fixed to zero. Participation constraints in later

periods are easily resolved by requiring a deposit in period 1, and returning it in the final

period. Thus, this mechanism extracts the whole surplus.

As we will show later, we can apply this scheme to longer-period problems. Surprisingly,

it is verified that we can extract the full surplus even when agents’ states are distributed

independently (in the dynamic sense) for most of periods, as long as there exists a time

point when the private information is revealed costlessly.

3 Set up

Consider an environment with finite agents and discrete-time, infinite time horizon, indexed

by i ∈ I = {1, 2, ..., I} and t ∈ N = {0, 1, 2, ...} respectively. In each period t, each agent

i observes the realization of his private state θit ∈ Θi
t and the public state θ0t ∈ Θ0

t . We

assume that Θi
t is discrete and finite for all i and t. Θt = ×I

i=0Θ
i
t denotes the state space in

t. After the state θt is realized, the mechanism designer decides an allocation xt ∈ Xt and

a transfer yt = (y1t , y
2
t , ..., y

I
t ) ∈ RI according to the mechanism he committed ex ante.
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Agent i wants to maximize his payoff,

∞∑
t=0

δt[vit(xt, θt) + yit] (9)

determined by the sequences of states (θt)
∞
t=0, allocations (xt)

∞
t=0 and transfers (yt)

∞
t=0,

where δ ∈ (0, 1) 3 is a discount factor and vit : Xt ×Θt → R is agent i’s valuation function

in t. We assume that (vit)
∞
t=0 is bounded uniformly.

The state distribution in the initial period is given by µ0 ∈ ∆(Θ0) and subsequent states

are distributed according to the transition probability measure µt : Xt−1 ×Θt−1 → ∆(Θt),

which is measurable. As Athey and Segal (2013) noted, Markov formulation is without loss

of generality since we can take the state space which includes all the past history. We call

(Θt, µt)
∞
t=0 the information structure.

Here we focus on direct mechanisms. In each period t, each agent i reports his state θit.

Then the mechanism designer decides xt and yt, according to the mechanism (χ, ψ), where

χt : Θt → Xt is the allocation rule in t and ψt = (ψ1
t , ..., ψ

I
t ) where ψ

i : Θ0×· · ·×Θt → R is a

payment rule of agent i in t. χ and ψ are sequences of these payment rules, i.e., χ := (χt)
∞
t=0

and ψ := (ψt)
∞
t=0. Note that although we can restrict ψi

t’s domain to Θt without loss of

generality because the public state θ0t can include all the past reported state profiles, we

explicitly state here because the payment rules proposed in this paper crucially depend on

the history of reports. θt
τ denotes the sequence of reported state profiles from τ to t, i.e.,

θt
τ := (θτ , θτ+1, · · · , θt). Especially, we define θt := θt

0. We call (Θt, µt, χt)
∞
t=0 the state

transition process.

In this setting, each agent i chooses a reporting strategy σit : Θ0
t × Θi

t → Θi
t which

maximizes his expected present value (hereafter we use EPV as an abbreviation) in each

period t. The truthful strategy of agent i always reports his current state θit, i.e., σ
i
t(θ

0
t , θ

i
t) =

θit for all θ
0
t and θit. A mechanism M = (χ, ψ) is interim incentive compatible if the truthful

strategy profile with the consistent belief is a Perfect Bayesian Equilibrium.

We focus on a stronger equilibrium concept in this paper. We say that (χ, ψ) is within-

period ex post incentive compatible (wp-EPIC) if truthtelling is a best response regardless

of the history and the current state of the other agents. This definition is the same as the

one in Bergemann and Välimäki (2010) and Athey and Segal (2013).

Define V i
t (χ) : Θt → R as agent i’s on-path periodic ex post expected present value

(EPV) from valuations, given that the current state profile is θt, and the mechanism designer

adopts the allocation rule χ. Formally, V i
t (χ) is defined as

V i
t (χ)(θt) := E

[ ∞∑
τ=t

δτ [vit(χτ (θ̃τ ), θ̃τ )]

∣∣∣∣∣ θt
]
, (10)

where expectations are taken according to (Θt, µt, χt)
∞
t=0. Clearly, this does not depend

on payment rule ψ. Since monetary transfers are zero-sum, social surplus is determined

only by the EPV from valuations. Given an allocation policy χ, expected social surplus
3When we consider a finite-horizon problem, δ = 1 is permitted.
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is W (χ) := E
[∑

i∈I V
i
0 (χ)(θ̃0)

]
. An efficient allocation policy is an allocation policy χ∗

which maximizes expected social surplus W (χ). For notational simplicity, in this paper

we abbreviate χ if it does not cause confusion. In most cases, χ denotes the efficient

allocation policy. To be precise, there may exist several different efficient allocation rules,

since different allocation rules sometimes give the same social surplus. For simplicity, we

ignore this multiplicity by assuming that tie is broken in some arbitrary, but deterministic

ways.

Even after we pick an efficient allocation rule, there are tremendously many payment

rules which implement it. Similar to the EPV from valuation V i
t , given an allocation rule

χ and a payment rule ψ, here we define agent i’s EPV from monetary transfer as

Ψi
t(θ

t) := E

[ ∞∑
τ=t

δτ [ψi
t(θ̃

τ )]

∣∣∣∣∣θt

]
. (11)

Here we also abbreviate χ for notational simplicity.

Using these EPV terms, each agent i’s on-path EPV in period t with the state θt can

be written as

U i
t (θ

t) := V i
t (θt) + Ψi

t(θ
t). (12)

Note that thanks to the Markov formulation of the state transition, the history until

t − 1 affect only EPV of the payment. Furthermore, if the agents have beliefs consistent

with a truthful equilibrium, i.e., assign probability 1 on the other agents’ latest reports,

E[f(θ̃∞
t+1)|xt, θt] = E[f(θ̃∞

t+1)|(xτ )tτ=0,θ
t] always holds.

Using this notation, it is easy to show that the mechanism (χ, ψ) is wp-EPIC if and

only if for all i ∈ I, t ∈ N, today’s true state profile θt ∈ Θt, possible report θ̂it ∈ Θi
t, and

the history of reported state profile θt−1,

U i
t (θ

t) ≥ vit(χ(θ̂
i
t, θ

−i
t ), θt) + ψi

t(θ
t−1, (θ̂it, θ

−i
t ))

+ δE
[
U i
t (θ

t−1, (θ̂it, θ
−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]
,

(13)

i.e., one-shot deviation is not profitable after any history.

We define within period ex post individual rationality as follows.

Definition 1 (wp-EPIR) A mechanism (χ, ψ) is within period ex post individually ratio-

nal (wp-EPIR) if for all i, t,, and θt,

U i
t (θ

t) ≥ Oi
t(θt), (14)

where Oi
t : Θt → R denotes the value of agent i’s outside opportunity (assumed to be

uniformly bounded).

Intuitively, Oi
t(θt) is the value agent i can acquire without permission or cooperation of

the mechanism designer and the other agents. The mechanism designer cannot prevent him

from taking this option. However, if we take the possible allocation space Xt sufficiently

10



rich, we can include this “outside option behavior” as a part of allocations. The mechanism

designer can designate this kind of allocations as long as each agent’s EPV is equal to or

larger than his outside opportunity. Otherwise, the agent escapes from the mechanism and

does everything by himself.

This definition of individual rationality is most flexible since the value of agent i’s outside

opportunity can depend on all the information available for him at that moment. Oi
t actually

changes depending on the state in some problems. For example, considering public goods

provision, “exit” means leaving from the meeting and stopping payment on the park. In

this case, even after this agent decides to exit from the mechanism, he can enjoy the park

built by the other agents because neighbors cannot exclude him. Furthermore, expected

quality of the park depends on the amount of neighbors’ investment, so it crucially depends

on the social state.

4 Surplus Extraction

As I noted it in the introduction, we will investigate mechanisms which extract whole

the surplus from the agents. To consider this problem, firstly we give a definition of the

mechanism designer’s ‘revenue’ in dynamic environments.

Definition 2 (Revenue) The revenue R of a dynamic mechanism (χ, ψ) is defined as

R := −E

[∑
i∈I

Ψi
0(θ̃0)

]
. (15)

In other words, R is the summation of ex ante EPV of payments from the agents. We can

interpret this as the mechanism designer’s expected monetary payoff from the mechanism

(χ, ψ). Since the mechanism designer commits a dynamic mechanism ex ante, it is natural to

assume that he wants to maximize ex ante payoff. Furthermore, if the mechanism designer’s

utility is linear in monetary transfer (risk-neutral) and he shares the same discount factor

δ with the agents, his payoff is ex ante payoff is exactly same as the ‘revenue’ defined here.

Next, we will formally define “full surplus extraction” under the dynamic environment.

Definition 3 (Full Surplus Extraction) A mechanismM = (χ, ψ) extracts the full sur-

plus if (i) the allocation rule χ is efficient and (ii) the mechanism does not leave any

information rent, i.e.,

R = E

[∑
i∈I

[V i
0 (θ̃0)−Oi

0(θ̃0)]

]
(16)

holds.

Clearly, this amount of revenue is maximal since the allocation is efficient and wp-EPIR

in the initial period requires us that −Ψi
0(θ0) ≤ V i

0 (θ0)−Oi
0(θ0) for all i and θ0. Therefore,

it is the most desirable outcome for the mechanism designer who wants to maximize the

revenue from the mechanism, if it is possible.

11



Then, what is the sufficient condition for the existence of a mechanism which achieves

full surplus extraction? To address this problem, it is effective to “divide each difficulties

as many parts as is feasible and necessary to resolve it.” In fact, there are three difficulties;

(i) implement the efficient allocation (meet the incentive compatibility), and (ii) reveal the

initial state without leaving information rent (make the individual rationality binds in the

initial period).

In this section, we hire one of existing schemes to implement the efficient allocation, and

retrieve the surplus and incentive payments by adding a participation fee to the original

mechanism. Here the possibility of full surplus extraction is equivalent to the existence of

such a participation fee schedule.

In order to address the points at hand, we introduce one more concept.

Definition 4 (Costless Revelation) An state transition process (Θτ , µτ , χτ )
∞
τ=0 satis-

fies the costless revelation condition in t if there exists a (part of) payment rule ϕ =

((ϕiτ )i∈I)
∞
τ=t+1 s.t.

(i) each ϕiτ is uniformly bounded and irrelevant to the history of reported state profiles

until t− 1, i.e., ϕiτ : ×τ
s=tΘs → R for all i and τ ,

(ii) Φi
t satisfies

E
[
Φi
t+1(θt, θ̃t+1)

∣∣∣χt(θt), θt

]
= 0 (17)

and

E
[
Φi
t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]
< 0 (18)

for all i ∈ I, θt ∈ Θt and θ̂
i
t ̸= θit,

(iii) Φi
τ satisfies

Φi
τ (θ

τ
t ) ≥ ϕit(θ

τ−1
t , (θ̂iτ , θ

−i
τ )) + δE

[
Φi
τ+1(θ

τ−1
t , (θ̂iτ , θ

−i
τ ), θ̃τ+1)

∣∣∣χτ (θ̂
i
τ , θ

−i
τ ), θτ

]
(19)

for all τ > t, i ∈ I, θτ−1
t ∈ ×τ

s=tΘs, θτ ∈ Θτ and θ̂it ̸= θit

If we have the costless revelation condition in t, we can give each agent an arbitrary strong

punishment for misreport at that time. If this condition is satisfied in the initial period, we

can always make each agent’ individual rationality fixed to be zero. Theorem 1 formally

states this result.

Theorem 1 Suppose that (Θt, µt, χt)
∞
t=0 satisfies the costless revelation condition in t = 0,

where χ is the efficient allocation rule. Suppose also that there exists a direct dynamic

mechanism (χ, g), which is wp-EPIC and (git)
∞
t=0 is uniformly bounded. Then, there exists

a mechanism (χ, ψ) which is wp-EPIC, wp-EPIR and extracts the full surplus.

In order to prove Theorem 1, we firstly show Lemma 1, which allows us to focus on the

individual rationality in the initial period.
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Lemma 1 Suppose that there exists a bounded payment rule ϕ s.t. (χ, ϕ) is wp-EPIR,

which yields the revenue R and satisfies wp-EPIR in period 0, i.e.,

V i
0 (θ0) + Φi

0(θ0) ≥ Oi
0(θ0) (20)

holds for all i ∈ I and θ0 ∈ Θ0. Then, there exists a mechanism (χ, ψ) which is wp-EPIC,

wp-EPIR and yields the revenue R.

Proof of Lemma 1 Define dit : Θt → R by

dit(θt) = max
θt+1∈Θt+1

{Oi
t+1(θt+1)− V i

t+1(θt+1)− Φi
t+1(θ

t, θt+1)} (21)

for all t ∈ N. By assumption, vit, ϕ
i
t and O

i
t are uniformly bounded, so dit is.

Define a new mechanism (χ, ψ) by

ψi
0(θ0) = ϕi0(θ0)− δdi0(θ0) (22)

for t = 0 and

ψi
t(θ

t) = ϕit(θ
t)− δdit(θ

t) + dit−1(θ
t−1) (23)

Intuitively, δdit(θt) is the deposit to the social planner and dit−1(θt−1) is withdrawal. Then,

for any t and for any realizations of θt,

Ψi
t(θ

t) = lim
T→∞

E

[
T∑

τ=t

δτ−tψi
τ (θ̃

τ )

∣∣∣∣∣θt
]

= lim
T→∞

E

[
−δT−t+1diT (θ̃

T ) + dit−1(θ
t−1) +

T∑
τ=t

δτ−tϕiτ (θ̃
τ )

∣∣∣∣∣θt
]

= Φi
t(θ

t) + dit(θ
t−1)

(24)

The last equality holds because uniform boundedness of dit assures that δ
T−t+1E[diT (θ̃T )] →

0 as T → ∞. Then, agent i’s EPV is

V i
t (θt) + Ψi

t(θ
t) = V i

t (θt) + Φi
t(θ

t) + dit−1(θ
t−1) ≥ Oi(θt). (25)

Furthermore, since agent i cannot manipulate θt−1, we can treat dit−1(θt−1) as a constant

term. Therefore, the wp-EPIC in the original mechanism (χ, ϕ) is preserved in (χ, ψ).

Similarly, in the initial period, Ψi
0(θ0) = Φi

0(θ0) for all θ0 ∈ Θ0. Therefore, (χ, ψ) is

wp-EPIC, wp-EPIR and yields the revenue R. ■

Proof of Theorem 1 By Lemma 1, it suffices to show that there exists a mechanism

(χ, ψ) s.t. (i) (χ, ψ) gives each agent exactly the same EPV as the outside opportunity, i.e.,

V i
0 (θ0)+Ψi

0(θ0) = Oi
0(θ0) for all θ0 ∈ Θ0 and (ii) (χ, ψ) is wp-EPIC, and (iii) ψi

t is uniformly

bounded.

By assumption, there exists g s.t. (χ, g) is wp-EPIC and git is uniformly bounded. In

addition, by the costless revelation condition in t = 0, it is guaranteed that there exists a
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part of payment rule ϕ which satisfies all the three conditions introduced in Definition 4.

Using these g and ϕ, construct a new payment rule ψ as

ψi
0(θ0) = −vi0(χ0(θ0), θ0)− δE

[
V i
1 (θ̃1) + Gi

1(θ0, θ̃1)
∣∣∣χ0(θ0), θ0

]
+Oi

0(θ0) (26)

for t = 0 and

ψi
t(θ

t) = git(θ
t) + αi(θ−i

0 )ϕit(θ
t) (27)

for t ≥ 1, where αi(θ−0 i) ∈ R++ is a sufficiently large scalar (the detail is shown later).

Then, agent i’s on-path EPV in t = 0 from the payment rule is

Ψi
0(θ0) = −V i

0 (θ0), θ0) +Oi
0(θ0) (28)

for all θ0, so the first condition is satisfied.

Next, we want to show that (χ, ψ) is wp-EPIC. When t ≥ 1, wp-EPIC is obviously hold

since (χ, g) satisfies wp-EPIC and ϕ does not hurt the incentive structure. If agent i makes

one-shot deviation to θ̂i0 in t = 0, his EPV is

vi0(χ0(θ̂
i
0, θ

−i
0 ), θ0) + δE

[
V i
1 (θ̃1) + Gi

1((θ̂
i
0, θ

−i
0 ), θ̃1)

∣∣∣χ0(θ̂
i
0, θ

−i
0 ), θ0

]
− vi0(χ0(θ̂

i
0, θ

−i
0 ), (θ̂i0, θ

−i
0 ))− δE

[
V i
1 (θ̃1) + Gi

1((θ̂
i
0, θ

−i
0 ), θ̃1)

∣∣∣χ0(θ̂
i
0, θ

−i
0 ), (θ̂i0, θ

−i
0 )

]
+Oi

0(θ̂
i
0, θ

−i
0 ) + δαi(θ−i

0 )E
[
Φi
1((θ̂

i
0, θ

−i
0 ), θ̃1)

∣∣∣χ(θ̂i0, θ−i
0 ), θ0

] (29)

Let

αi(θ−i
0 ) = max

θi0,θ̂
i
0∈Θi

0

θi0 ̸=θ̂i0



− vi0(χ0(θ̂
i
0, θ

−i
0 ), θ0) + vi0(χ0(θ̂

i
0, θ

−i
0 ), (θ̂i0, θ

−i
0 ))

− δE
[
V i
1 (θ̃1) + Gi

1((θ̂
i
0, θ

−i
0 ), θ̃1)

∣∣∣χ0(θ̂
i
0, θ

−i
0 ), θ0

]
+ δE

[
V i
1 (θ̃1) + Gi

1((θ̂
i
0, θ

−i
0 ), θ̃1)

∣∣∣χ0(θ̂
i
0, θ

−i
0 ), (θ̂i0, θ

−i
0 )

]
−Oi

0(θ̂
i
0, θ

−i
0 ) +Oi

0(θ0)


δ
∣∣∣E [

Φi
1((θ̂

i
0, θ

−i
0 ), θ̃1)

∣∣∣χ0(θ̂i0, θ
−i
0 ), θ0

]∣∣∣ . (30)

Then his EPV from any deviation becomes smaller than or equal to Oi
0(θ0), which is his

on-path EPV.

Finally, since all of vit, g
i
t, ϕ

i
t, and Oi

t’s are uniformly bounded, ψi
t are also bounded

uniformly. Applying Lemma 1, we obtain a mechanism which is wp-EPIC, wp-EPIR and

extracts the full surplus. ■

Although individual rationality in later periods can be solved by “borrowing and lending

agreement,” if the amount of the deposit increases faster than inverse of the discount rate,

the EPV of transaction is not zero. Uniform boundedness of the valuation functions and

payments are one of the most tractable sufficient conditions which guarantee no Ponzi game

condition here.

Many preceding papers studied the dynamic counterparts of the Groves mechanisms.

Above all, the Team mechanism suggested by Athey and Segal (2013) is the most suitable

for the “original mechanism” (χ, g) in Theorem 1.
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Theorem 2 (the Team mechanism: Athey and Segal (2013)) Suppose that we have

private values, i.e., for any i ∈ I, t ∈ N, vit is irrelevant to θ
j
t ∈ Θj

t for all j ∈ I\{i}. Suppose
also that χ is the efficient allocation rule. Then, (χ, g) where git(θt) =

∑
j∈I\{i} v

j
t (χ(θt), θt)

is wp-EPIC.

Proof See Athey and Segal (2013).

Athey and Segal (2013) named this (χ, g) the Team mechanism. Since we assume that

vit’s are uniformly bounded, so git’s are. Combining Theorem 1 and 2, we obtain Corollary

1, since this mechanism is wp-EPIC regardless of the shape of µ.

Corollary 1 Suppose that (Θt, µt, χt)
∞
t=0 satisfies the costless revelation condition in t = 0,

where χ is the efficient allocation rule. Suppose also that we have private values. Then,

there exists a mechanism which is wp-EPIC, wp-EPIR and extracts the full surplus.

5 Full Rankness and Costless Revelation

In section 4, we have shown that the costless revelation condition in the initial period is

the key for possibility of full surplus extraction. Here a question naturally arises. When

is the costless revelation condition satisfied? As is shown in the short period examples, we

can reveal each agent’s private information without leaving information rent when agents’

states are intertemporally correlated.

Similar to static environments, in order to apply the Crémer-McLean scheme, a dynamic

version of full rank condition is needed. For notational simplicity, here we interpret each

µt(xt−1, θt−1) ∈ ∆(Θt) (µ
−i
t (xt−1, θt−1) ∈ ∆(Θ−i

t )) as a |Θt|-length (|Θ−i
t |-length) probabil-

ity vector.

Definition 5 (Intertemporal Full Rankness) (Θτ , µτ )
∞
τ=0 satisfies the full rank condi-

tion in t if one of the following conditions are satisfied.

(i) For any i, xt ∈ Xt, and θ
−i
t ∈ Θ−i

t , {µ−i
t+1(xt, (θ

i
t, θ

−i
t ))}θit∈Θi

t
are linearly independent.

(ii) For any i, xt ∈ Xt, and θ−i
t , {µt+1(xt, (θ

i
t, θ

−i
t ))}θit∈Θi

t
are linearly independent and

(Θτ , µτ )
∞
τ=0 satisfies the full rank condition in t+ 1.

The first condition requires that given any θ−i
t , θit has some information about the

other agents’ future states θ−i
t+1. Since this agent cannot manipulate the report of θ−i

t+1,

the first condition itself is sufficient for constructing a Crémer-McLean lottery. This is the

mechanism designer’s first chance, and it generically holds as long as |Θ−i
t+1| ≥ |Θi

t|.
Even when the first condition fails, we still have a chance. The second condition is

given any θ−i
t , θit has full rank correlation with something which will realize tomorrow, and

the mechanism designer can surely reveal the true realization of it. Although the former

part of the second condition is weaker than the first one, it is not sufficient by itself to
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produce a Crémer-McLean lottery because the mechanism designer might not detect the

agent’s contingent deviation. However, if the agent foresights that he does not have any

profitable deviation in the next period, there is no essential difference between θit+1 and θ
−i
t+1

because the true realizations of both are surely unveiled tomorrow. Therefore, given the full

rank condition in the next period, the mechanism designer has a rather rich information

structure.

It is obvious that linear independence of θ−i
t , {µt+1(xt, (θ

i
t, θ

−i
t ))}θit∈Θi

t
is always weaker

than that of θ−i
t ∈ Θ−i

t , {µ−i
t+1(xt, (θ

i
t, θ

−i
t ))}θit∈Θi

t
. Note that the second condition might

be satisfied even when we have independent types in the dynamic sense in t + 1, i.e.,

the transition probability can be written in the form that µt+1(xt, θt) = µ0t+1(xt, θ
0
t ) ·∏

i∈I µ
i
t+1(xt, θ

0
t , θ

i
t)

4, while there is no hope for the first one. In reality, this general-

ization is much more than a mathematical, dimensional extension. Without controversy, it

is natural to expect that the most promising clue to predict θit+1 is θit and sometimes θit is

useless for predicting θ−i
t+1. A typical example is persistent types, shown as the three-period

example.

The intertemporal full rank condition is sufficient for costless revelation. Thereom 3

states this result.

Theorem 3 Suppose that (Θτ , µτ )
∞
τ=0 satisfies the full rank condition in t. Then, for any

χ, (Θτ , µτ , χτ )
∞
τ=0 satisfies the costless revelation condition in t.

Proof of Theorem 3 If (i) of the full rank condition is satisfied, µ−i
t+1(χt(θt), θt) is not

in the convex hull of {µ−i
t+1(χt(θt), (θ̂

i
t, θ

−i
t )}θ̂it∈Θi

t\{θit}
. Applying the separating hyperplane

theorem, there exists a |Θ−i
t+1|-length vector bit+1(θt) s.t.

bit+1(θt) · µ−i
t+1(χt(θt), θt) > bit+1(θt) · µ−i

t+1(χt(θt), (θ̂
i
t, θ

−i
t )), (31)

equivalently,

E
[
bit+1(θt)(θ̃

−i
t+1)

∣∣∣χt(θt), θt

]
> E

[
bit+1(θt)(θ̃

−i
t+1)

∣∣∣χt(θt), (θ̂
i
t, θ

−i
t )

]
(32)

holds for all θ̂it ∈ Θi
t\{θit}, and ||bit+1(θt)|| = 1.

Construct ϕ in a following way. ϕit+1 : Θt ×Θ−i
t+1 → R is defined as

ϕit+1(θt, θ
−i
t+1) = bit+1(θt)(θ

−i
t+1)− E

[
bit+1(θt)(θ̃

−i
t+1)

∣∣∣χ(θt), θt] , (33)

and ϕiτ (θ
τ
t ) = 0 for all τ > t+ 1 and θτ

t . Then,

E
[
Φi
t(θt, θ̃

−i
t )

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]
= E

[
bit+1(θ̃

−i
t+1)

∣∣∣χt(θt), θt

]
− E

[
bit+1(θ̃

−i
t+1)

∣∣∣χt(θt), θt

]
= 0

(34)

4If this holds for all t, it becomes the definition of independent types in Athey and Segal (2013), and a

basic assumption in Bergemann and Välimäki (2010) and Cavallo et al. (2010). Note that this condition is

stronger than conditional independence, since the distribution of θit+1 cannot depend on θjt for all j ∈ I\{i}.
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and

E
[
Φi
t(θt, θ̃

−i
t )

∣∣∣χ(θ̂it, θ−i
t ), θt

]
= E

[
bit+1(θ̃

−i
t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]
− E

[
bit+1(θ̃

−i
t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), (θ̂it, θ

−i
t )

]
< 0

(35)

holds. In addition, since agent i’s report after t does not affect ϕiτ ’s, so equation (19)

trivially holds.

Suppose that the full rank condition is satisfied with the second statement. First, we

will prove the following lemma.

Lemma 2 Suppose that for any i, xt ∈ Xt, and θ
−i
t , {µt+1(xt, (θ

i
t, θ

−i
t ))}θit∈Θi

t
are linearly

independent and for any χ, (Θτ , µτ , χτ )
∞
τ=0 satisfies the costless revelation condition in t+1.

Then, costless revelation is also possible in t.

Proof of Lemma 2 By assumption, for any i, θt ∈ Θt, µ
−i
t+1(χt(θt), θt) is not in the convex

hull of {µt+1(χt(θt), (θ̂
i
t, θ

−i
t ))}θ̂it∈Θi

t\{θit}
. Applying the separating hyperplane theorem, there

exists a |Θt+1|-length vector bit+1(θt) s.t.

E
[
bit+1(θt)(θ̃t+1)

∣∣∣χt(θt), θt

]
> E

[
bit+1(θt)(θ̃t+1)

∣∣∣χt(θt), (θ̂
i
t, θ

−i
t )

]
(36)

holds for all θ̂it ∈ Θi
t\{θit}, and ||bt+1(θt)|| = 1. Since costless revelation is possible in t+1 by

assumption, there exists ((wi
τ )i∈I)

∞
τ=t+2 which satisfies all the three conditions of Definition

4. Construct ϕ as follows.

ϕit+1(θt, θt+1) = bit+1(θt)(θt+1)− E
[
bit+1(θt)(θ̃t+1)

∣∣∣χt(θt), θt

]
, (37)

and

ϕiτ (θ
τ
t ) = αi(θt, θ

−i
t+1)w

i
τ (θ

τ
t+1) (38)

for all τ > t+ 1. αi(θt, θt+1) ∈ R++ is a sufficiently large scalar (construction of αi will be

stated in detail later).

Then, for all τ > t + 1, truthtelling is a best response regardless of the history, by

construction of wi
τ . Consider agent i’s problem in period t + 1. Given any yesterday’s

reported state profile θt, and today’s realization θt+1, his EPV from truthful report is

Φi
t+1(θt, θt+1) = bit+1(θt)(θt+1)− E

[
bit+1(θt)(θ̃t+1)

∣∣∣χt(θt), θt

]
. (39)

If he makes a one-shot deviation to θ̂it+1 ̸= θit+1, his EPV from ϕ is

ϕit+1(θt, (θ̂
i
t+1, θ

−i
t+1)) + δE

[
Φi
t+2(θt, (θ̂

i
t+1, θ

−i
t+1), θ̃t+2)

∣∣∣χt+1(θ̂
i
t+1, θ

−i
t+1), θt+1

]
= bit+1(θt)(θ̂

i
t+1, θ

−i
t+1)− E

[
bit+1(θt)(θ̃t+1)

∣∣∣χt(θt), θt

]
+ δαi(θt, θ

−i
t+1)E

[
W i

t+2((θ̂
i
t+1, θ

−i
t+1), θ̃t+2)

∣∣∣χt+1(θ̂
i
t+1, θ

−i
t+1), θt+1

] (40)
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By construction of w, E
[
W i

t+2(θt, (θ̂
i
t+1, θ

−i
t+1), θ̃t+2)

∣∣∣χt+1(θ̂
i
t+1, θ

−i
t+1), θt+1

]
< 0. Then,

defining αi(θt, θ
−i
t+1) as

αi(θt, θ
−i
t+1)

= max
θit+1,θ̂

i
t+1∈Θi

t+1

θit+1 ̸=θ̂it+1

bit+1(θt)(θt+1)− bit+1(θt)(θ̂
i
t+1, θ

−i
t+1)

δ
∣∣∣E [

W i
t+2((θ̂

i
t+1, θ

−i
t+1), θ̃t+2)

∣∣∣χt+1(θ̂it+1, θ
−i
t+1), θt+1

]∣∣∣ , (41)

each agent does not have any profitable deviation in t+1. The incentive condition in period

t can be verified in a similar way to the first part of the proof of Theorem 3. ■

Proof of Theorem 3 (continued) Given Lemma 2, the remaining part of Theorem 3 is

immediate. If the full rank condition is satisfied with the second statement in t, there exists

some t∗ > t when it is satisfied with the first one. Then, by the first part of the proof of

Theorem 3, costless revelation is possible in t∗. Applying Lemma 2 iteratively, it is shown

that costless revelation is also possible in t. ■

6 Implementation by Costless Revelation

As we argued in Section 4, in order to extract the whole surplus, we have to (i) implement

the efficient allocation, and (ii) reveal the initial state profile without leaving information

rent. Theorem 1 and 3 imply that the intertemporal full rank condition in the first period

guarantees the second part of these requirements. In fact, what is better, the full rank

condition is also useful to meet the first requirement.

Theorem 4 (Implementation) Suppose that (Θτ , µτ , χτ )
∞
τ=0 satisfies the costless reve-

lation condition for all t ∈ N. Then, there exists a payment rule ψ which makes (χ, ψ)

wp-EPIC.

Proof of Theorem 4 Since the costless revelation condition holds for all t ∈ N, there exist
(ϕit,τ )

∞
τ=t+1 which satisfies all the three condition in Definition 4, for each t. Define the new

payment rule ψ as ψi
0(θ0) = −vi0(χ0(θ0), θ0) and

ψi
t(θ

t) = −vit(χt(θt), θt) +

t−1∑
s=0

αi
s(θ

−i
s )ϕis,t(θ

t
s). (42)

for each t ≥ 1.

Then, for all t and θt−1, agent i’s EPV from truthful reports is

V i
t (θt) + Ψi

t(θ
t) =

t−1∑
s=0

αi
s(θ

−i
s )Φi

s,t(θ
t
s). (43)
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If he makes a one-shot deviation to θ̂it ̸= θit,

vit(χt(θ̂
i
t, θ

−i
t ), θt) + ψi

t(θ
t−1, (θ̂it, θ

−i
t ))

+ δE
[
V i
t+1(θ̃t+1) + Ψi

t(θ
t−1, (θ̂it, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]
= vit(χt(θ̂

i
t, θ

−i
t ), θt)− vit(χt(θ̂

i
t, θ

−i
t ), (θ̂it, θ

−i
t )) (44)

+
t−1∑
s=0

αi
s(θs)

{
ϕis,t(θ

t−1
s , (θ̂it, θ

−i
t )) + δE

[
Φi
s,t+1(θ

t−1
s , (θ̂it, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]}
(45)

+ δαi
t(θ

−i
t )E

[
Φt,t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]
(46)

By construction of ϕs’s, (43) is always smaller than or equal to (45). Therefore, defining

αi
t(θ

−i
t ) = max

θit,θ̂
i
t∈Θi

t

θit ̸=θ̂it

−vit(χt(θ̂
i
t, θ

−i
t ), θt) + vit(χt(θ̂

i
t, θ

−i
t ), (θ̂it, θ

−i
t ))

δ
∣∣∣E [

Φi
t,t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂it, θ
−i
t ), θt

]∣∣∣ , (47)

wp-EPIC holds in each t. ■

When we are considering a finite-horizon problem, it also implies possibility of full

surplus extraction immediately. However, unfortunately it is not always the case for an

infinite-horizon problem. Our strategy for keeping wp-EPIR in later periods is the deposit

scheme, and if the amount of deposit increases without bound and faster than discount rate,

it hurts the incentive structure. In order to avoid this, we need a slightly stronger rank

condition.

Definition 6 (Uniform Intertemporal Full Rankness) Let ρ be the Euclidean dis-

tance. (Θt, µt)
∞
t=0 satisfies the uniform full rank condition if there exists k > 0 s.t.

(i) there exists T ∈ N s.t. for all t ∈ N, there exists t ≤ t∗ ≤ T s.t. for all xt∗ ∈ Xt∗ and

θt∗ ∈ Θt∗ ,

ρ
(
µ−i
t∗+1(xt∗ , θt∗), conv{µ

−i
t∗+1(xt∗ , (θ̂

i
t∗ , θ

−i
t∗ ))}θ̂i

t∗∈Θ
i
t∗\{θ

i
t∗}

)
> k (48)

(ii) for all t ∈ N, xt ∈ Xt, θt ∈ Θt

ρ
(
µt+1(xt, θt), conv{µt+1(xt, (θ̂

i
t, θ

−i
t ))}θ̂it∈Θi

t\{θit}

)
> k (49)

Theorem 5 Suppose that we have the uniform full rank condition. Then full surplus

extraction is guaranteed, i.e., for any ((vit)i∈I)
∞
t=0 and ((Oi

t)i∈I)
∞
t=0, there exists a direct

mechanism which is wp-EPIC, wp-EPIR and extract the full surplus.

Proof See Appendix.

It is well known that as correlation becomes weaker, the maximal payment of a Crémer-

McLean lottery gets larger and larger. We can interpret this situation as an asymptotically
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short rank environment. Even when {µ−i
t∗+1(xt∗ , (θ

i
t∗ , θ

−i
t∗ ))}θi

t∗∈Θ
i
t∗

are linearly independent,

these probability vectors get closer and closer, and coincide in the limit, the deposit scheme

may skew the incentive structure. In order to avoid this problem, one of the most tractable

and straightforward assumption is to set a minimal difference between a probability vector

and the convex hull of the others. Note that our uniform full rank condition is equivalent

to full rank condition for all t for finite-horizon problems.

7 Conclusion and Discussion

In this paper, we have studied dynamic mechanisms which extract the full surplus. To

analyze it, it is effective to divide it into two different problems; (i) implement the efficient

allocation rule, and (ii) extract whole the surplus and incentive subsidies. Making use of

intertemporal correlation between signals, we can construct a Crémer-McLean like payment

rule which reveals each agent’s private information in the initial period. Moreover, it im-

mediately solves the second requirement for full surplus extraction. If the implementation

of the efficient allocation is guaranteed by some other scheme, like dynamic Groves mech-

anisms, costless revelation (derived from full rank intertemporal correlation) in the initial

period is sufficient for full surplus extraction. We can also implement the efficient alloca-

tion by utilizing intertemporal correlation. Indeed, if costless revelation is possible in each

period, implementability of the efficient allocation is assured. Combining these results, we

can articulate a sufficient condition for full surplus extraction in dynamic environments.

Taken together, the precondition for full surplus extraction in a dynamic environment

is weaker than the one in a static environment. Even when the state distribution is a con-

ditionally independent, we still have a chance. Furthermore, even if we have “independent

types” in the dynamic sense for most of periods, we may realize full surplus extraction by

making use of state correlation in some exceptional periods.

This result gives us a very clear and important message for the field of mechanism

design. Sometimes we can obtain a desirable outcome, which was thought to be impossible

to produce, by utilizing the environment’s dynamic nature. In order to make the most of

dynamic nature, we may have to design a complicated mechanism beforehand. As a matter

of fact, our result suggests that it is not sufficient to examine payment rules which are

associated only with reports made yesterday and today.

Our mechanisms utilize all the existing intertemporal correlation. Therefore, in our

conjecture, the necessary condition for full surplus extraction may be quite close to our full

rank condition. However, it is much more complicated problem than the one in a static

environment, since we have to investigate a very rich class of payment rules, which can

depend on all the past reports. While it is very interesting and important problem, we

leave this problem for future research.
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Appendix

Proof of Theorem 5

Step 1 There exists T < ∞ and k > 0 s.t. for all t ∈ N there exists t∗ s.t. t < t∗ < T and

there exists (ϕt∗,τ )
∞
τ=t∗+1 s.t.

(i) (ϕt∗,τ )
∞
τ=t∗+1 is an appropriate costless revelation payment rule in t∗, i.e., it satisfies

all the three conditions in Definition 4,

(ii) (ϕt∗,τ )
∞
τ=t∗+1 has a uniform upper bound ϕ̄0 <∞,

(iii) ϕit∗,τ (θ
τ
t∗+1) = 0 for all τ ≥ t∗ + 2,

(iv) there exists ϵ > 0 s.t.
∣∣∣E [

Φi
t∗,t∗+1((θ̂

i
t∗ , θ

−i
t∗ ), θ̃t∗+1)

∣∣∣χt∗(θ̂
i
t∗ , θ

−i
t∗ ), θt∗

]∣∣∣ > ϵ for all

θit∗ ̸= θ̂it∗ and θ−i
t∗ ∈ Θ−i

t∗ .

Proof of Step 1 By assumption, there exists T ∈ N s.t. for all t ∈ N, there exists

t ≤ t∗ ≤ T s.t. for all xt∗ ∈ Xt∗ and θt∗ ∈ Θt∗ ,

ρ
(
µ−i
t∗+1(xt∗ , θt∗), conv{µ

−i
t∗+1(xt∗ , (θ̂

i
t∗ , θ

−i
t∗ ))}θ̂i

t∗∈Θ
i
t∗\{θ

i
t∗}

)
> k (50)

Fix any such a t∗ arbitrarily. We will construct a particular bit∗+1 : Θt∗ → ∆(Θ−i
t∗+1)

which separates µ−i
t∗+1(xt∗ , θt∗) and conv{µ−i

t∗+1(xt∗ , (θ̂
i
t∗ , θ

−i
t∗ ))}θ̂i

t∗∈Θ
i
t∗\{θ

i
t∗}

together with an

appropriate constant, and ||bit∗+1(θt∗)|| = 1 for all θt∗ ∈ Θt∗ .

Take any θt∗ ∈ Θt∗ . Since conv{µ−i
t∗+1(χt∗(θt∗), (θ̂

i
t∗ , θ

−i
t∗ ))}θ̂i

t∗∈Θ
i
t∗\{θ

i
t∗}

is compact, there

exists a point λit∗(χt∗(θt∗), θt∗) ∈ conv{µ−i
t∗+1(χt∗(θt∗), (θ̂

i
t∗ , θ

−i
t∗ ))}θ̂i

t∗∈Θ
i
t∗\{θ

i
t∗}

which is clos-

est to µ−i
t∗+1(xt∗ , θt∗). Define

bit∗+1(θt∗) =
µ−i
t∗+1(χt∗(θt∗), θt∗)− λit∗(χt∗(θt∗), θt∗)∣∣∣∣µ−i
t∗+1(χt∗(θt∗), θt∗)− λit∗(χt∗(θt∗), θt∗)

∣∣∣∣ (51)

Then, clearly ||bit∗+1(θt∗)|| = 1. Furthermore,

bit∗+1(θt∗) ·
[
µ−i
t∗+1(χt∗(θt∗), θt∗)− λit∗(χt∗(θt∗), θt∗)

]
=

∣∣∣∣µ−i
t∗+1(χt∗(θt∗), θt∗)− λit∗(χt∗(θt∗), θt∗)

∣∣∣∣
> k

(52)

and

bit∗+1(θt∗) ·
[
λit∗(χt∗(θt∗), θt∗)− µ−i

t∗+1(χt∗(θt∗), (θ̂
i
t∗ , θ

−i
t∗ ))

]
≤ 0 (53)
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holds, since bit∗+1(θt∗) and λ
i
t∗(χt∗(θt∗), θt∗)−µ−i

t∗+1(χt∗(θt∗), (θ̂
i
t∗ , θ

−i
t∗ )) cannot make an acute

angle. Combining (52) and (53), we obtain

bit∗+1(θt∗) ·
[
µ−i
t∗+1(χt∗(θt∗), θt∗)− µ−i

t∗+1(χt∗(θt∗), (θ̂
i
t∗ , θ

−i
t∗ ))

]
> k (54)

for all θ̂it∗ ̸= θit∗ .

As is shown in the first part of the proof of Theorem 3, defining (ϕt∗,τ )
∞
τ=t∗+1 as

ϕit∗,t∗+1(θt∗ , θ
−i
t∗+1) = bit∗+1(θt∗)(θ

−i
t∗+1)− E

[
bit∗+1(θt∗)(θ̃

−i
t∗+1)

∣∣∣χt∗(θt∗), θt∗
]

(55)

and ϕt∗,τ (θ
τ
t∗) = 0 for all τ > t∗ + 2, this (ϕt∗,τ )

∞
τ=t∗+1 reveals the states costlessly, has an

upper bound ϕ̄0 = 2, and irrelevant to the report after t∗ + 2. In addition,∣∣∣E [
Φi
t∗,t∗+1((θ̂

i
t∗ , θ

−i
t∗ ), θ̃t∗+1)

∣∣∣χt∗(θ̂
i
t∗ , θ

−i
t∗ ), θt∗

]∣∣∣
= δ

∣∣∣E [
bit∗+1(θ̂

i
t∗ , θ

−i
t∗ )(θ̃

−i
t∗+1)

∣∣∣χt∗(θ̂
i
t∗ , θ

−i
t∗ ), θt∗

]
− E

[
bit∗+1(θ̂

i
t∗ , θ

−i
t∗ )(θ̃

−i
t∗+1)

∣∣∣χt∗(θ̂
i
t∗ , θ

−i
t∗ ), (θ̂

i
t∗ , θ

−i
t∗ )

]∣∣∣
= δ

∣∣∣bit∗+1(θ̂
i
t∗ , θ

−i
t∗ ) ·

[
µ−i
t∗+1(χt∗(θ̂

i
t∗ , θ

−i
t∗ ), θt∗)− µ−i

t∗+1(χt∗(θ̂
i
t∗ , θ

−i
t∗ ), (θ̂

i
t∗ , θ

−i
t∗ )

]∣∣∣
> δk = ϵ. ■

(56)

Step 2 Let 0 ≤ t∗(t) ≤ T be the closest future start point for t. There exists (ϕ̄0, ϕ̄1, ϕ̄2, ...)

and ϵ > 0 s.t. for any t ∈ N s.t. n = t∗(t)− t, there exists (ϕt,τ )
∞
τ=t+1 s.t.

(i) (ϕt,τ )
∞
τ=t+1 is an appropriate costless revelation payment rule in t, i.e., it satisfies all

the three conditions in Definition 4,

(ii) ϕ̄n is a uniform upper bound of (ϕt,τ )
∞
τ=t+1,

(iii) ϕit,τ (θ
τ
t ) = 0 for all τ ≥ t+ n+ 1,

(iv)
∣∣∣E [

Φi
t,t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]∣∣∣ > ϵ for all θit ̸= θ̂it and θ
−i
t ∈ Θ−i

t .

Proof of Step 2 We prove it by mathematical induction. For n = 0, we have already

proved in Step 1. Assume that we have all the four conditions for n − 1 (n ≥ 1). We will

show that it is true for n.

Take any such t arbitrarily. As we have shown in the proof of Lemma 2, there exists

bit+1 : Θt → ∆(Θt+1) s.t. ||bit+1(θt)|| = 1 and defining

ϕit,t+1(θt, θt+1) = bit+1(θt)(θt+1)− E
[
bit+1(θt)(θ̃t+1)

∣∣∣χt(θt), θt

]
, (57)

and

ϕit,τ (θ
τ
t ) = αi

t(θt, θ
−i
t+1)ϕ

i
t+1,τ (θ

τ
t ) (58)
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for all τ > t+ 2, where

αi
t(θt, θ

−i
t+1)

= max
θit+1,θ̂

i
t+1∈Θi

t+1

θit+1 ̸=θ̂it+1

bit+1(θt)(θt+1)− bit+1(θt)(θ̂
i
t+1, θ

−i
t+1)

δ
∣∣∣E [

Φi
t+1,t+2((θ̂

i
t+1, θ

−i
t+1), θ̃t+2)

∣∣∣χt+1(θ̂it+1, θ
−i
t+1), θt+1

]∣∣∣ , (59)

(ϕit,τ )
∞
τ=t+1 reveals the state in t costlessly.

Since ϕit+1,τ (θ
τ
t ) = 0 for all τ ≥ t + n + 1, so ϕit,τ is. Furthermore, ϕit,t+1(θt, θt+1) < 2

for all θt ∈ Θt and θt+1 ∈ Θt+1, and ϕ
i
t,τ (θ

τ
t ) < 2/δϵ holds for all θτ

t . Thus, (ϕt,τ )
∞
τ=t+1 is

bounded by ϕ̄n = max{2, 2/δϵ}.
In addition, for all t ∈ N, xt ∈ Xt, θt ∈ Θt

ρ
(
µt+1(xt, θt), conv{µt+1(xt, (θ̂

i
t, θ

−i
t ))}θ̂it∈Θi

t\{θit}

)
> k. (60)

Therefore, in a similar way to the proof in Step 1, it is verified that∣∣∣E [
Φi
t,t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]∣∣∣ > δk = ϵ. ■ (61)

Step 3 There exists a ((ϕs,τ )
∞
τ=s+1)

∞
s=0 s.t.

(i) (ϕs,τ )
∞
τ=s+1 is an appropriate costless revelation payment rule in s, i.e., it satisfies all

the three conditions in Definition 4,

(ii) ((ϕs,τ )
∞
τ=s+1)

∞
s=0 has a uniform upper bound ϕ̄ <∞,

(iii) ϕis,τ (θ
τ
s ) = 0 for all τ ≥ s+ T ,

(iv) there exists ϵ > 0 s.t.
∣∣∣E [

Φi
t,t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]∣∣∣ > ϵ for all t, θit ̸= θ̂it

and θ−i
t ∈ Θ−i

t .

Proof of Step 3 We will construct the entire ((ϕs,τ )
∞
τ=s+1)

∞
s=0 in a following way. In period

s,

(i) if for all xs ∈ Xs and θs ∈ Θs,

ρ
(
µ−i
s+1(xs, θs), conv{µ

−i
s+1(xs, (θ̂

i
s, θ

−i
s ))}θ̂is∈Θi

s\{θis}

)
> k, (62)

we construct (ϕs,τ )
∞
τ=s+1 in a way introduced in Step 1.

(ii) otherwise, we construct (ϕs,τ )
∞
τ=s+1 in a way introduced in Step 2.

By assumption, there exists a period which satisfies the condition (i) for every T consecutive

periods. Then, letting ϕ̄ = max{ϕ̄0, ..., ϕ̄T }, it is obvious that this ((ϕs,τ )∞τ=s+1)
∞
s=0 satisfies

all the four conditions above. ■
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Step 4 Given this result, we will show that wp-EPIC payment rule ψ constructed in the

proof of Theorem 4, has a uniform upper bound. Recall that the value of ψi
t is given by

ψi
t(θ

t) = −vit(χt(θt), θt) +

t−1∑
s=0

αi
s(θ

−i
s )ϕis,t(θ

t
s). (63)

where

αi
t(θ

−i
t ) = max

θit,θ̂
i
t∈Θi

t

θit ̸=θ̂it

−vit(χt(θ̂
i
t, θ

−i
t ), θt) + vit(χt(θ̂

i
t, θ

−i
t ), (θ̂it, θ

−i
t ))

δ
∣∣∣E [

Φi
t,t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂it, θ
−i
t ), θt

]∣∣∣ . (64)

Since vit’s are uniformly bounded, |vit(xt, θt)| < v̄ for all i ∈ I, t ∈ N, xt ∈ Xt and θt ∈ Θt.

In addition, for all t, θit ̸= θ̂it and θ
−i
t ∈ Θ−i

t ,
∣∣∣E [

Φi
t,t+1((θ̂

i
t, θ

−i
t ), θ̃t+1)

∣∣∣χt(θ̂
i
t, θ

−i
t ), θt

]∣∣∣ > ϵ.

Thus,

|αi
t| <

2v̄

δϵ
(65)

holds. Since ϕis,t(θ
t
s) = 0 for all t ≥ s+ T , and there exists ϕ̄ ∈ R s.t. |ϕis,t(θt

s)| < ϕ̄ for all

i, t, θt
s. Then,

|ψi
t| < v̄ +

2T v̄ϕ̄

δϵ
. (66)

Thus, this ψ is uniformly bounded. Applying Theorem 1, we obtain the desired result.

■
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