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Abstract

This paper considers mechanism design for capacity allocation in a se-
lective distribution model under a price competition. We investigate
how allocation mechanisms in an upstream market affect market be-
haviors in a downstream market. Unlike Kreps and Scheinkman [18],
we show that an equilibrium order quantity is not always Cournot
quantity, which is dependent on properties of allocation mechanisms
in the upstream market.

1 Introduction

Since the emergence of electronic commerce, mechanism design has been
spread out from the economical field to other fields such as computer sci-
ence, artificial intelligence or information systems. Typical examples are
mechanism designs for electronic market [6, 14, 12, 27], combinatorial auc-
tions [19, 25] and task allocation [15, 17, 23, 24, 28].

Research on mechanism design mainly focuses on a single market. How-
ever, it has been shown (see for example [13]) that small changes of the
market structure may lead to significant change of the market behavior. Fur-
thermore, considering only a particular single market often fails to achieve
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expected outcomes. This is because outputs of the market behaviors by
self-interested participants in a certain market are treated as inputs of the
successive markets and they may cause a poor performance of the other sup-
ply chain partners. One of the typical example of such a phenomena is the
so-called bullwhip effect, which shows that a smaller forecast error at the
downstream in a supply chain is amplified toward the upper stream of sup-
ply chain. This could lead to inefficient inventory level at upper stream of
suppliers, inaccurate size of capacity construction or inefficient allocation.
This kind of problems can be prevented by acquiring accurate market infor-
mation through the supply chain. However, incentive conflicts often obstruct
information sharing in supply chain.

In this paper, we present allocation mechanism design in two connected
markets. Unlike a single market model, we investigate how the properties of
the connected markets affect the properties of allocation mechanisms and how
allocation mechanisms affect the behavior of the connected markets. Typical
allocation mechanisms, such as proportional allocation, uniform allocation
and channel member selection, are applied in industries [5, 9, 16, 22]. Even
if these allocation mechanisms have different properties, one of the key goals
of mechanism design is to acquire truthful information from customers.

The first work on allocation mechanism design in the context of supply
chain network have been made by Cachon and Lariviere [5]. In [5], the au-
thors focus on a single supplier which supplies multiple retailers enjoying
local monopoly (exclusive distribution). They formally represent the design
of allocation mechanisms, which induces retailers (the supplier’s customers)
truthful order information. In [11], we have relaxed this Cachon and Lar-
iviere’s assumption, and we have investigated when competition exists in
retail market. We assume that all retailers are in the Cournot competition
in an oligopolistic market. Having direct competition in the retail market is
more general and complicated. It has been shown that the allocation mecha-
nisms used in the upstream market (wholesale market) are highly related to
the characteristics of the downstream market [11]. For instance, the typical
capacity allocation mechanism, proportional allocation, is no longer Pareto
optimal in [11], whilst it is so in [5]. Other mechanism properties, such as
individual rationality and incentive compatibility, are investigated in more
closed to the real market situations.

In this paper, we further investigate the capacity allocation problem with
the situation where price competition is encountered in the oligopolistic
downstream market. Our model can be treated as an extension model of
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Kreps and Scheinkman model (hereafter KS model) in [18], where sellers are
in a price competition in a duopoly with pre-commitment of supply limit
(capacity) for each seller. The main difference is our model has an alloca-
tion process. Once allocation is executed in our model, by treating allocated
quantity as supply limit, the market behavior can be explained by using
the KS model. While each seller is able to determine its supply limit in
the KS model, each seller (in our context retailer) is not able to set desir-
able supply-limit (allocation quantity) independently in our model. Notice
that our model deals with the case where the allocation does not satisfy the
desirable supply limit.

Since Kreps and Scheinkman [18], several works on price competition with
capacity constraints have been an active research. A first stream of research
extends the results of the KS model. Vives [30] shows price equilibria in a
symmetric oligopoly case with common capacity constraints among sellers.
De Francesco [7] extends the KS model from a duopoly to an oligopoly.
Madden [21] shows the conditions to obtain the same results with the KS
model in elastic demand. A second stream of research shows the limits of
the KS model by assuming asymmetric cases, including asymmetric cost in
duopoly [8], imperfect capacity pre-commitment [3, 4], uncertain demand [26]
and dynamic capacity accumulation [2]. The difference of the two streams is
caused by the symmetric behavior in the models. Our model is relevant to
both streams of these literatures, since feasible allocation can be symmetric
and asymmetric.

This paper is organized as follows. Section 2 presents the model consisting
of the capacity allocation in the upstream market and the price competition
in the downstream market. In Section 3, we classify price equilibria in the
downstream market according to the capacity size of the upstream market.
In Section 4 we focus on how allocation mechanisms affect the total retailers
profits. Then we show how retailers place orders according to allocation
mechanisms and how retailers determine retail prices in Section 5. Section 6
briefly concludes this paper.

2 Model

We consider a supply chain model with two connected markets: a monopo-
listic upstream market (wholesale market) and an oligopolistic downstream
market (retail market) as shown on Figure 1. The upstream market uses an
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allocation mechanism with respect to a predefined capacity. The downstream
market applies a competitive market mechanism. In the upstream market,
a supplier sells products to intermediaries, called retailers. Note that we
assume that the customers of the intermediaries are end-users. When the
sum of order quantities from the retailers exceeds the capacity size of the
supplier, the supplier allocates products according to a selected allocation
mechanism. In the downstream market, the retailers resale products to a
range of end-users under some competitive mechanisms. We investigate how
the competitive model in the downstream market affects the properties of
the allocation mechanism in the upstream market and how the allocation
mechanism affects behaviors of the successive downstream market. In [11],
we have considered the situation where the retailers are under quantity com-
petitions. In this paper, we consider the more complicated situation where
retailers encounter price competition.

Figure 1: Supply Chain Model

With the supply chain model, the whole capacity allocation game consists
of two stages: order placement and allocation in the upstream market and
price setting and resale to end-users in the downstream market.

2.1 Upstream Market

In the first stage, the supplier sets capacity K and selects allocation mecha-
nism g by which the supplier allocates product when the capacity is bound.
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The supplier notifies the selected allocation mechanism to all retailers. Let
N = {1, . . . , n} be the set of retailers usually noted i, j or k. Retailer i
determines order quantity mi with respect to market demand, allocation
mechanism g, and other retailers’ orders in order to maximize its profit πi.
Let us denote revenue of retailer i as Πi. All retailers submit their orders,
m = (m1, . . . , mn), simultaneously and independently with respect to fixed
cost w. If the total order quantity exceeds K, the supplier allocates products
according to the adopted allocation mechanism. Let A = {a ∈ <n : a ≥
0 &

n∑
i=1

ai ≤ K}, where a vector a ≥ 0 means for any component ai of the

vector, ai ≥ 0. We call each a ∈ A a feasible allocation.

Definition 1. An allocation mechanism is a function g : <n → A which as-
signs a feasible allocation to each vector of orders such that for any retailers’
order vector m, gi(m) ≤ mi for each i = 1, · · · , n.

Let gi(m
∗) be the allocation quantity of retailer i under allocation mecha-

nism g with respect to the vector of the equilibrium order quantity m∗. An

allocation g is said to be efficient if
n∑

i=1

gi(m) = K whenever
n∑

i=1

mi ≥ K. For

the supplier, the efficient allocation is the preferable one since the capacity
has been fully used.

2.2 Downstream Market

In the second stage of the capacity allocation game, the retailers are in the
price competition in the downstream market. Let D(p) be the demand of the
end-users at price p and P (q) be its inverse function where q stands for the
total supply quantity. We assume that the function P (q) is strictly positive on
some bounded interval (0, q̂), on which it is twice-continuously differentiable,
strictly decreasing and concave. For q ≥ q̂, we simply assume P (q) = 0. Let
ai be the allocated quantity for retailer i which has been determined in the
first stage. Like Once retailers are allocated by the supplier, the retailers
determine prices pi simultaneously and independently. Like [20] and [18], we
assume surplus maximizing rule where the end-users choose from the lowest
price-offering retailers.
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2.2.1 Quantity Competition

Before describing market behaviors in the downstream market, we show some
assumptions and facts in Cournot quantity competition that are used in our
price competition. Let us assume that retailers are in Cournot competition.
Let q−i stands for

∑
j 6=i∈N

qj. We define the best response function for retailer i

at cost w is defined as:

rw(q−i) = arg max
qi

{qiP (qi + q−i)− wqi}.

If all retailers take the best responses to other retailers, we have the Cournot

equilibrium qcw and the total Cournot quantity qCw =
N∑

i=1

qcw. Note that

rw(qcw
−i ) = qcw. At the special case where cost is zero, we denote qc as the

Cournot equilibrium at zero cost and qC as the total Cournot quantity.
For the existence of the Cournot equilibrium, Frank Jr. and Quandt [10]

assume that qiP (qi + q−i) − wqi is concave in qi. In the following, we also
assume this concavity. Based on this assumption, rw(q−i) is a unique solution
of

P (qi + q−i) + qi
dP (qi + q−i)

dqi

− w = 0, (1)

and satisfies

−1 <
∂rw(q−i)

∂q−i

< 0, (2)

Hence, rw(q−i) + q−i is increasing in q−i. In order to ensure that the profit
of each retailer is positive, we assume that w < P (qCw).

2.2.2 Price Competition

Now we consider how retailers set the price. We start from the case when the
supplier allocates the product exclusively. Let i be the exclusively allocated
retailer. In this case, the exclusively allocated retailer enjoys the benefits of
the monopoly price pM . Since qP (q) is concave in q, where q ∈ (0, q̂), we
have,

qM = argmax
q

qP (q). (3)
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Therefore, the selling quantity is xi = min{qM , ai}. Hence retailer i sets the
monopoly price pM to maximize its profit πi,

pM =

{
P (ai) if ai ≤ qM

P (qM), otherwise
(4)

πM =

{
aiP (ai)− wai if ai ≤ qM

qMP (qM)− wai, otherwise
(5)

Now let us consider the case where the capacity is allocated to several
different retailers. Suppose a feasible allocation has been executed. The
remaining part of the problem is how the retailers determine retail prices
according to the allocation which is a pricing subgame. Since the allocation
has already been executed, we treat the purchase cost of the retailers as a
sunk cost. This situation is similar to the model of De Francesco [7]: several
manufacturers are in a price competition with capacity pre-commitments.
The manufacturers in [7] correspond to the retailers in our model and the
pre-committed capacity corresponds to the allocation quantity. When the
allocation of the retailers exceeds the best response quantity, the retailer
considers two options which are: (i) selling all allocated products at a lower
price or (ii) selling a limited quantity at a higher price. Before we describe
the relation between allocation quantity and the best response, we show the
relation between allocation and best response (the lemma is based on [3, 4]).

Lemma 1. Suppose an efficient allocation mechanism and let a be the allo-
cated quantities. Suppose ai > aj. If ai ≤ r(a−i) then aj < r(a−j).

Proof. Since the allocation is efficient, if ai > aj then a−i < a−j. According
to Equation (2), we have r(a−i) < r(a−j). Hence we have aj < ai ≤ r(a−i) <
r(a−j).

According to Lemma 1, if the allocation is less than the best response for the
largest allocated retailer l, then all other allocated retailers have the same
characteristic. By considering the allocation quantity of the largest allocated
retailer, De Francesco [7] classifies the price equilibria, the pure strategy
equilibrium and the mixed strategy equilibrium, according to the patterns of
the pre-committed capacity sizes. Now let us denote, p̄ and p as an upper and
a lower bound of the price equilibrium of the mixed strategy. The following
lemma characterizes the price equilibrium in the pricing subgame, which is
a straightforward conversion from the capacity sizes of the manufacturers in
the model of De Francesco [7] in terms of the allocated quantities of retailers,
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Lemma 2. [7] Given an allocation mechanism g, and order m, let ai =
gi(m). Let the largest allocated retailer l = argmax

i∈N
ai. Then

1. if for all i, ai ≤ r(a−i), P (ai + a−i) is a unique equilibrium in the
pricing subgame.

2. if al > r(a−l) and D(0) > a−l, then
p̄l = P (r(a−l) + a−l) ,

pi = P (r(a−l)+a−l)r(a−l)

al
for all i, and

Πl = r(a−l)P (r(a−l) + a−l),

3. if D(0) ≤ a−l, p∗ = 0 is the unique price equilibrium.

Proof. Let i and ai be a certain manufacturer and its respective capacity
choice (see [7]). The pricing subgame can be seen as the same problem as
[7]. See proofs of Propositions 1 and 2 in [7].

The result of De Francesco is applicable in our model to describe the relation-
ship between allocation quantities of the retailers and the price equilibrium.
We extend the link between the capacity size of the supplier and the price
equilibrium with the help of Lemma 2 in the next section.

According to the result of the pricing subgame, Kreps and Scheinkman
show that the equilibrium for the capacity size becomes Cournot equilib-
rium q∗i = qcw. In the KS model, manufacturers do not have any constraints
to determine their capacity sizes. In our model, each retailer is not able to
determine allocation quantity, which is determined by the order quantity and
the allocation mechanism. Therefore, the equilibrium analysis on purchase
quantity becomes more complex in our model.

3 The Pricing Subgame

Kreps and Scheinkman [18] and De Francesco [7] show the link between
supply-limits and the pricing equilibria in a single market. In this section,
we construct the link between the capacity of the supplier in the upstream
market and the pricing equilibrium in the downstream market, i.e. allocations
act as bridges.

Suppose allocations are efficient. Once the supplier sets its capacity K,
the patterns for the feasible allocations are limited. By using Lemma 2, we
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classify possible price equilibria in the downstream market with respect to
the capacity size in the upstream market.

As a primary supply chain member, the supplier focuses on two aspects:
market price in the downstream market and the total profits of all supply
chain members. Even if the supplier has no direct control over the retail
price in the downstream market, we show the possible circumstance that the
supplier is able to make influence on the market prices via allocations.

First we consider the situation where the capacity of supplier is very
limited (i.e. its capacity size is less than the monopoly quantity).

Theorem 1. Suppose that K ≤ qM and g is efficient. p∗ = P (K) is an
equilibrium of the pricing subgame under any feasible allocation g.

Proof. According to Lemma 2, it is sufficient to show that for any i, gi(m) ≤
r(g−i(m)). Since g is efficient and K ≤ qM , we have gi(m) + g−i(m) = K ≤
qM = argmax

q
qP (q), with respect to Equation (3).

Case 1: If r(g−i(m)) + g−i(m) ≥ qM , we have

gi(m) + g−i(m) ≤ r(g−i(m)) + g−i(m).

It follows that gi(m) ≤ r(g−i(m)) as desired.
Case 2: Assume that r(g−i(m)) + g−i(m) < qM . According to the defi-

nition of Cournot best response function, we have

r(g−i(m)) = argmax
qi

qiP (qi + g−i(m))

= argmax
qi

((qi + g−i(m))P (qi + g−i(m))− g−i(m)P (qi + g−i(m))).

Let y = qi + g−i(m) and y∗ = argmax
y

(yP (y)− g−i(m)P (y)); we have:

r(g−i(m)) = argmax
y

(yP (y)− g−i(m)P (y))− g−i(m)

= y∗ − g−i(m) (6)

According to the assumption of Case 2, Equation (6) implies y∗ < qM . It
follows that P (y∗) > P (qM) because P is strictly decreasing in quantity. It
turns out that

−g−i(m)P (y∗) < −g−i(m)P (qM)
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Notice that the case g−i(m) ≤ 0 is ruled out since y∗ < qM . On the other
hand, y∗P (y∗) ≤ qMP (qM) because qM = argmax

q
qP (q). Therefore, we have,

y∗P (y∗)− g−i(m)P (y∗) < qMP (qM)− g−i(m)P (qM)

This contradicts the definition of y∗. That is r(g−i(m)) + g−i(m) ≥ qM and
we have gi(m) ≤ r(g−i(m)).

The above result shows that when the capacity size of the supplier is less
than the market monopoly quantity, all retailers enjoy a higher price than
the monopoly price, i.e., P (K) ≥ P (qM), under any allocations. No retailers
have incentive to charge less than P (K) and no retailers can make greater
profit by charging greater than P (K), while the other retailers set price as
P (K). Therefore, the allocation mechanism does not affect the market price
and the total retailers’ profits as long as the capacity is significantly scarce.
In other words, in this context, the supplier has no interests to choose a
specific allocation mechanism as long as the mechanism is efficient.

Now let us consider the case where the capacity is relatively scarce that is
qM < K ≤ qC . In KS model, Cournot quantity qc is the equilibrium capacity
investment at zero cost. In our context of oligopolistic downstream market
and scarce capacity, we have the following result:

Theorem 2. Suppose qM < K ≤ qC. Under any efficient allocation mecha-
nism g, price equilibria are,

1. p∗ = P (K), if for all i gi(m) ≤ r(g−i(m));

2. p∗ > P (K), if there exists i such that gi(m) > r(g−i(m)).

Proof. Since g is efficient, we have K
n
≤ gl(m) ≤ K. It implies n−1

n
K ≥

g−l(m) ≥ 0. Since K < qC , we have n−1
n

K ≤ qc
−i. According to Equation

(2), we obtain r(qc
−i) ≤ r(n−1

n
K) ≤ r(g−l(m)) ≤ r(0) = qM . Therefore, we

have either gl(m) ≤ r(g−l(m)) or gl(m) > r(g−l(m)). In the former case,
according to Lemma 1 and Lemma 2 case 1, we have p∗ = P (K). In the later
case, according to Lemma 2 case 2, we have p∗ > P (K).

This theorem shows that when the capacity is relatively scarce the choice of
the allocation mechanism has an effect on the pricing strategy in the down-
stream market. If allocation quantities are symmetric or do not exceed the
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best responses, the market price is stable and the equilibrium price reaches
the price at the capacity size K. Otherwise, the market price becomes unsta-
ble and higher than the price at P (K). In that case, the supplier prioritizes
certain retailers in a significant way. This leads to higher and fluctuating
retail prices, which is a unique phenomenon in the price competition. In the
quantity competition, we have shown in [11] that the retail price is deter-
mined by the total allocation quantities. In other words, the difference of
allocation among retailers does not affect the retail price. Hence, the sup-
plier is more sensitive to choose allocation mechanism, when the downstream
market is in the price competition.

Now we investigate the case when qC < K < q̂. In this case, the largest
allocated retailer must be allocated greater than the Cournot quantity, since
qC < K and the allocation mechanism is efficient. On the other hand, the
allocation of the largest allocated retailer is always less than q̂, since K < q̂.
Therefore, if the capacity is allocated to several retailers, the equilibrium
price is in the mixed strategy as shown by the following theorem.

Theorem 3. Suppose qC < K < q̂. For any efficient allocation mechanism
g, p∗ > P (K).

Proof. Since K < q̂, for any g, we have gl(m) ≤ K < q̂. Suppose, for all
i, we have gi(m) ≤ r(g−i(m)). According to the definition of Cournot best

response function, we obtain gi(m) ≤ qc
i . It implies

n∑
i=1

gi(m) ≤ qC which

is a contradiction of the supposition of an efficient allocation
n∑

i=1

gi(m) =

K. Hence, we have retailer i such that gi(m) > r(g−i(m)). According to
Lemma 2 case 2, we have p∗ > P (K).

This theorem shows that when the capacity is greater than the Cournot quan-
tity, the retail price is higher than P (K) under any allocation mechanisms.
Now we consider the final case when K ≥ q̂.

Theorem 4. Suppose K ≥ q̂. For any efficient allocation mechanism,

1. p∗ = 0, if g−l(m) ≥ q̂.

2. p∗ > 0, otherwise.
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Proof. Since K ≥ q̂ and g is efficient, g satisfies either g−l(m) ≥ q̂ or 0 ≤
g−l(m) < q̂. The first case is the condition of Lemma 2 case 3. Hence, we
have p∗ = 0. In the later case, since K

n
> qc, we obtain p∗ > P (K) as same

as Theorem 3.

Since the capacity range of this theorem is K ≥ q̂, the supplier has enough
capacity to satisfy the market demand. Hence, allocation is not so important
in this range.

Assuming that the allocation mechanisms are efficient, we have character-
ized the price equilibria in the pricing subgame according to capacity sizes
of the supplier. Unlike the model having the quantity competition in the
downstream market in [11], the equilibrium price can be greater than P (K)
in this model, when K > qM . When the capacity is strictly limited, the
selection of the allocation mechanism does not have a significant impact on
the market behavior in the downstream market. On the other hand, when
the capacity is relatively scarce, the mechanism selection affects the pricing
strategy of the retailers and the price equilibria.

4 Total Retailers’ Profits

Now we shift from the pricing subgame to the total retailers’ profits. In
general, the supplier is interested in the total retailers’ profit. Therefore, it
is a reasonable behavior for the supplier to select the allocation mechanism,
which maximizes the total retailers’ profits. However, the supplier since it
is the primary member of the supply chain also has to consider the overall
quantity of sold products. In other words, a low market price may decrease
the retailers’ profits.

In the previous section, we have shown that both the properties of the
allocation mechanism and the capacity size of the supplier have an influence
on the price equilibria. When the capacity of the supplier is in the range
qM < K ≤ qC , the selection of the allocation mechanism in the upstream
market has an effect on the selection of the pricing strategy in the downstream
market. Thus, we focus on this capacity range. Let gP(m) be the mechanisms
satisfying the condition of case 1 in Lemma 2 and gM(m) for the condition
of case 2. According to these conditions, mechanisms gM(m) reflects the
case where some retailers have been privileged. Notice that the symmetric
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allocation is included in gP(m), since K ≤ qC . We show how heterogeneously
distributed allocations make the total retailers’ profit increase.

Theorem 5. Suppose that qM < K ≤ qC. For any efficient gP(m) and
gM(m),

∑
i∈N

πi(g
M
i (m), gMj 6=i(m)) >

∑
i∈N

πi(g
P
i (m), gPj 6=i(m)).

Proof. First we show the total retailers’ profit under gP(m). According to
the case 1 of Lemma 2, the total retailers’ profit is

∑
i∈N

πi(g
P
i (m), gPj 6=i(m)) =

∑
i∈N

(P (K)gi(m)− wgi(m)) ,

= P (K)K − wK. (7)

Now we show the case of gM(m). If gl(m) 6= K, according to the case 2
of Lemma 2, the total retailers’ profit is,

∑
i∈n

πi(g
M
i (m), gMj 6=i(m)) =

∑
i∈n

(
pig

M
i (m)− wgMi (m)

)

According to Theorem 2, we have p∗ > P (K) under gM(m). Hence, we have

∑
i∈n

πi(g
M
i (m), gMj 6=i(m)) = pK − wK

> P (K)K − wK. (8)

According to Equation (7) and (8), we obtain

∑
i∈n

πi(g
M
i (m), gMj 6=i(m)) >

∑
i∈N

πi(g
P
i (m), gPj 6=i(m))

Now we consider the case gl(m) = K, which is a special case of gM(m).
In this case, gl(m) > r(g−l(m)). For pricing, obviously, P (qM) > P (K).
Since K > qM , the profit of the monopolist is πM

l = qMP (qM) − wK from
Equation (5). Since

∑
i∈n πi(g

P
i (m)) = KP (K)−wK and K > qM , we have

πM
l >

∑
i∈n πi(g

P
i (m)).

When the capacity of the supplier is relatively scarce, the very heteroge-
neous allocation gM(m) makes the profits of the total retailers greater than
ones under gP(m). This is because the prioritized retailers enjoy benefits
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by charging higher retail price than the price under gM(m). Meanwhile,
under gM(m), the products are less supplied under gP(m), which is not
beneficial for the end-users. If the supplier takes the profits of the end-users
into account more than total retailers’ profits, the supplier chooses allocation
mechanism gM(m) rather than gP(m). In the supplier’s point of view, gP(m)
is more preferable allocation than gM(m) as long as allocation is efficient.

5 Equilibrium in Full Game

In this section, we consider how retailers set order quantities based on allo-
cation mechanisms and determine selling prices according to allocated quan-
tities in the full game. Since our interest is capacity allocation problems, we
focus on the case when the demand exceeds the capacity size, K ≤ qCw. We
assume all retailers do not know the capacity size K, but they know that the
capacity is less or equal to the total Cournot quantity at cost w. Prior to
show how allocation mechanisms affect the market behaviors of retailers, we
introduce mechanism design criteria on capacity allocation problems.

The main concerns of mechanism design are efficiency and stability. For
a supplier, capacity utilization is a key performance index to evaluate its
performance. If a mechanism makes the capacity utilization increase, it is a
preferable mechanism for the supplier. A typical mechanism design criterion
in capacity allocation is individually responsive (IR) which contributes to
increase the capacity utilization.

Definition 2. An allocation mechanism g is said to be IR if for any i,

m′
i > mi and gi(m) < K imply gi(m

′
i,mj 6=i) > gi(mi, mj 6=i)

where m is a vector of retailers’ orders, mi is the i’s component of m, mj 6=i

is a vector of the other retailers’ orders, and m′
i is a variation of mi.

Under IR mechanisms, a retailer receives more allocations if it orders more.
Consequently, retailers frequently place more orders than they actually need
to acquire more allocation. On the other hand, the inflated orders prevent
a right evaluation of the capacity investment. When demand is unstable,
the supplier often fails to make decision on capacity planning due to lack of
truthful order information. Hence, a mechanism inducing truthful order in-
formation from retailers is desirable mechanism design criteria. This criterion
is formally represented as follows:
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Definition 3. An allocation mechanism g is said to be incentive compatible
(IC) or truth-inducing if all retailers placing orders truthfully at their optimal
sales quantities is a Nash equilibrium of g, formally for all i:

πi(gi(m
∗), gj 6=i(m

∗)) ≥ πi(gi(mi,m
∗
j 6=i), gj 6=i(mi,m

∗
j 6=i)).

First we consider market behaviors under a representative allocation mech-
anism proportional allocation, which is the most commonly used allocation
in industry. An allocation mechanism g is proportional allocation if

gi(m) = min

{
mi,

mi∑N
j=1 mj

K

}
. (9)

In other words, whenever capacity binds, allocated quantity to each retailer
is the same fraction of its order under the proportional allocation. Obviously
the proportional allocation is an IR allocation. As Cachon and Lariviere
show in [5], the retailers inflate orders and there is no equilibrium under
proportional allocation in the exclusive distribution model. We show a similar
result in the selective distribution model with price competition.

Theorem 6. Under proportional allocation g, there is no equilibrium in m,
if K ≤ qCw.

Proof. Suppose there exists symmetric m∗. Since K ≤ qCw, we have gi(m
∗) ≤

qcw and g−i(m
∗) ≤ qcw

−i . According to Equation (2), we have r(g−i(m
∗)) ≥

r(qcw
−i ). Since gi(m

∗) ≤ qcw
i = rw(qcw

−i ) < r(qcw
−i ) ≤ r(g−i(m

∗)), the profit of
retailer i is

πi(gi(m
∗), gj 6=i(m

∗)) = P (gi(m
∗) + g−i(m

∗))gi(m
∗)− wgi(m

∗),

according to Lemma 2 case 1. Let m′ = (m′
i,m

∗
j 6=i). Since g is IR, we have

gi(m
′) > gi(m

∗) where m′
i > m∗

i .
If

∑
i∈N

gi(m
∗) < K, we have gl(m

′) such that gl(m
′) < qcw

l . Accord-

ing to Equation (9), we have g−l(m
′) ≤ g−l(m

∗) that induces r(g−l(m
′)) ≥

r(g−l(m
∗)). Therefore, we have gl(m

′) < qcw
l = rw(qcw

−l ) < r(g−l(m
∗)) ≤

r(g−l(m
′)). According to Lemma 2 case 1, we have

πl(gl(m
′), gj 6=l(m

′)) = P (gl(m
′) + g−l(m

′))gl(m
′)− wgl(m

′).
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According to the concavity of the profit function and gi(m
∗) < gl(m

′) ≤
r(g−l(m

′)), we have πl(gl(m
′), gj 6=l(m

′)) > πi(gi(m
∗), gj 6=i(m

∗)). Hence,
∑
i∈N

gi(m
∗) <

K is not the case of the existence of symmetric m∗.
If

∑
i∈N

gi(m
∗) = K, according to Equation (9), we have

gl(m
′)− gl(m

∗) = −(g−l(m
′)− g−l(m

∗)) (10)

where m′
l > m∗

l . According to Equation (2), (10) and gi(m
∗) < r(g−i(m

∗)),
we have m′

l such that gl(m
′) < r(g−l(m

′)). The profit of retailer l is

πl(gl(m
′), gj 6=l(m

′)) = P (gl(m
′) + g−l(m

′))gl(m
′)− wgl(m

′).

The difference between πl(gl(m
′), gj 6=l(m

′)) and πi(gi(m
∗), gj 6=i(m

∗)) is,

πl(gl(m
′), gj 6=l(m

′))− πi(gi(m
∗), gj 6=i(m

∗)) =P (K)gl(m
′)− wgl(m

′)

− (P (K)gi(m
∗)− wgi(m

∗))

=(P (K)− w)(gl(m
′)− gi(m

∗)).

According to the assumption w < P (qCw), we have w < P (K) that implies
πl(gl(m

′), gj 6=l(m
′)) > πi(gi(m

∗), gj 6=i(m
∗)). Hence,

∑
i∈N

gi(m
∗) = K is not the

case of the existence of symmetric m∗.
Suppose there exists asymmetric m∗ such that gl(m

∗) < r(g−l(m
∗)). Ac-

cording to Lemma 1 and Lemma 2 case 1, the profit of retailer l is

πl(gl(m
∗), gj 6=l(m

∗)) = P (gl(m
∗) + g−l(m

∗))gl(m
∗)− wgl(m

∗),

and the profit of retailer i such that gi(m
∗) < gl(m

∗) is

πi(gi(m
∗), gj 6=i(m

∗)) = P (gi(m
∗) + g−i(m

∗))gi(m
∗)− wgi(m

∗).

Similarly to the case of symmetric m∗ and
∑
i∈N

gi(m
∗) < K, we have πl(gl(m

∗), gj 6=l(m
∗)) >

πi(gi(m
∗), gj 6=i(m

∗)). Hence, asymmetric m∗ such that gl(m
∗) < r(g−l(m

∗))
does not exist.

Suppose there exists asymmetric m∗ such that gl(m
∗) > r(g−l(m

∗)). The
profit of retailer l is

πl(gl(m
∗), gj 6=l(m

∗)) = P (r(g−l(m
∗)) + g−l(m

∗))r(g−l(m
∗))− wgl(m

∗),
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Since m∗ is an equilibrium and gl(m
∗) ≤ K ≤ qCw, we have

πl(gl(m
∗), gj 6=l(m

∗)) > 0. (11)

The profit of retailer i where m∗
i < m∗

l is

πi(gi(m
∗), gj 6=i(m

∗)) =
P (r(g−l(m

∗)) + g−l(m
∗))r(g−l(m

∗))
gl(m∗)

gi(m
∗)−wgi(m

∗),

according to Lemma 2 case 2. The difference of profits between retailer l and
i is

πl(gl(m
∗), gj 6=l(m

∗))− πi(gi(m
∗), gj 6=i(m

∗))

= P (r(g−l(m
∗)) + g−l(m

∗))r(g−l(m
∗))

(
gl(m

∗)− gi(m
∗)

gl(m∗)

)
− w(gl(m

∗)− gi(m
∗))

=
gl(m

∗)− gi(m
∗)

gl(m∗)
(P (r(g−l(m

∗)) + g−l(m
∗))r(g−l(m

∗))− wgl(m
∗)).

According to Equation (11), we have πl(gl(m
∗), gj 6=l(m

∗)) > πi(gi(m
∗), gj 6=i(m

∗)).
Hence, asymmetric m∗ such that gl(m

∗) > r(g−l(m
∗)) does not exist.

When the demand exceeds the capacity size, retailers inflate orders to be
allocated more than they need. The different behavior in order quantity from
the KS result is observed under proportional allocation in our model. While
the supply limit determination for each retailer is independent in the KS
model, each retailer is not able to choose allocation quantity independently
under proportional allocation in our model, but it is determined by its order
quantity, competitors order quantity and allocation mechanisms. Hence,
by increasing order quantity the retailer is able to decrease the allocation
quantity for competitors.

To induce truthful orders from the retailers is important for the supplier
to determine its production capacity and its selling price from a long-term
perspective. In other words, by choosing truth-inducing mechanisms, the
supplier acquires truthful demand information of the downstream market
which leads the supplier’s secure decision-makings on capacity planning and
sales planning. As a representative mechanism of a truth-inducing mecha-
nism, we show the equilibrium in order and price under uniform allocation
presented in [29]. Under uniform allocation, the retailers are indexed in
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Figure 2: Uniform Allocation Mechanism

ascending order of their order quantity, i.e., m1 ≤ m2 ≤ . . . ≤ mn. Let

λ = max

{
i : K − nm1 −

i∑
j=2

(n− l)(mj −mj−1) > 0

}
and uniform alloca-

tion is,

gi(m) =





K/n, if nm1 > K,
mi, if i ≤ λ,

mλ +

(
K − (n− λ + 1)mλ −

λ−1∑
j=1

mj

)
/(n− λ), otherwise.

Under uniform allocation mechanism, the retailers with orders less than
a threshold mλ receive the same quantities as respective orders, and the
rest of retailers receive mλ and the rest of capacity divided by the number of
retailers ordered greater than mλ. The threshold of mλ is led by the following
procedure. If m1 × n is greater than the capacity, all retailers receive K

n
,

otherwise, there is a threshold mλ where λ is greater than or equal to 1. In
case of m1 × n ≤ K, the supplier counts up the number of retailers, while

i∑
j=1

mj + mj × (n− i) ≤ K (the sum of i-th smallest orders and the quantity
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of the i-th order times the number of the rest of retailers is less than the
capacity size of the supplier). If the sum of orders is greater than or equal
to the capacity, the allocation quantity is equal to the capacity, which is the
area below the horizontal dashed line in Figure 2.

Under uniform allocation, we have the following order quantities equilib-
ria and the price equilibria.

Theorem 7. Under uniform allocation, m∗
i = qcw is an equilibrium inducing

a price equilibrium p∗ = P (K).

Proof. If m∗
i = qcw for all i, we have gi(m

∗) = K/n ≤ qcw. Since gi(m
∗) ≤

rw(g−i(m
∗)) < r(g−i(m

∗)), the profit of retailer i is

πi = P (gi(m
∗) + g−i(m

∗))gi(m
∗)− wgi(m

∗). (12)

If m′
i > m∗

i and m∗
j 6=i = qcw, we have gi(m

′) = gj 6=i(m
′) = K/n, which is

the same allocation quantity to the case at m∗. Hence, by increasing order
m′

i, retailer i cannot increase its profit. If m′
i < m∗

i , we have gi(m
′) ≤ K

n
≤

gj 6=i(m
′) ≤ qcw. We check whether this case fits to the condition of case 2

of Lemma 2. According to Equation (2), we have r(g−i(m
′)) ≤ r(g−j(m

′)).
Since gj 6=i(m

′) ≤ qcw = rw(qcw
−i ) < r(qcw

−i ) ≤ r(g−i(m
′)) ≤ r(g−j(m

′)), this
case does not satisfies the the condition of case 2 of Lemma 2. Hence, we
only consider the case of the pure strategy. The profit of retailer i is same
as Equation (12). Recall that Equation (12) is concave in gi(m) and max-
imized at rw(g−i(m)). Since gi(m

′) ≤ rw(qcw
−i ), by decreasing m′

i, πi is not
increased. Therefore, we have an equilibrium order quantity m∗

i = K/n and
an equilibrium price p∗i = P (K)

Since uniform allocation is a truth inducing mechanism, all retailers place
truthful order quantities. The allocations at the truth orders induce the
equilibrium price P (

∑
gi(m

∗)) in the price competition of the downstream
market.

6 Conclusion

This paper describes how allocation mechanisms affect the market behav-
iors in the connected downstream market where several retailers are in the
price competition. We have shown that the heterogeneous allocations in the
upstream market affect the pricing strategy of the retailers is dependent on
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the capacity size of the supplier in the upstream market. The interesting
case is when the capacity is relatively scarce. The heterogeneous allocations
lead the higher equilibrium price with fluctuation in the downstream market
compared to the equilibrium price under homogeneous allocations. At the
same time, even though the higher equilibrium price makes the lower market
penetration, the heterogeneous allocations make the total retailers’ profits
greater. Hence, if there exists an influential retailer in the supply chain net-
work, the supplier prioritizes the retailer in allocation, even though it may
yield the undesirable market behaviors for the supplier that are the lower
market penetration and the unstable retail price. These market behaviors
are unique in this model, compared to other models such as the exclusive
distribution model in [5] and the selective distribution model with quantity
competition in [11].

Unlike the Kreps and Scheinkman model, each retailer is not able to
choose its own allocation, supply limit, which is determined by its order
quantity, the competitors’ order quantity and the allocation mechanism.
Hence, the market behaviors are more complex than the ones in Kreps and
Scheinkman model. We show the equilibrium order quantity does not always
equal to Cournot quantity, since the allocation mechanisms play important
roles to determine the equilibrium order quantity. Under proportional allo-
cation, a representative allocation in IR mechanisms, retailers place greater
orders to be allocated even more than Cournot quantity. Contrary, under uni-
form allocation, a representative allocation in Truth-inducing mechanisms,
the equilibrium order quantity is symmetric similar to Vives [?]. Especially,
when the capacity is greater or equal to the total Cournot quantity, the equi-
librium order quantity and the equilibrium price are equal to the results of
Kreps and Scheinkman model.

This research sheds light that mechanism design considering supply chain
is a fruitful research direction. By considering connected markets, the market
behaviors are explained differently and closer to ones in real business.
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