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Abstract

This paper uses high-frequency continuous intraday electricity auction price data from
the EPEX market to estimate and forecast realised volatility. Three different jump
tests are used to break down the variation into jump and continuous components using
quadratic variation theory. Several heterogeneous autoregressive models are then esti-
mated for the logarithmic and standard deviation transformations. GARCH structures
are included in the error terms of the models when evidence of conditional heteroscedas-
ticity is found. Model selection is based on various out-of-sample criteria. Results show
that decomposition of realised volatility is important for forecasting and that the deci-
sion whether to include GARCH-type innovations might depend on the transformation
selected. Finally, results are sensitive to the jump test used in the case of the standard
deviation transformation.
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1 Introduction

With the liberalisation of European electricity markets, a need for transparency in elec-
tricity price formation has arisen. Market participants rely on these prices as a signpost
for making optimal consumption and production decisions. A better understanding of
their dynamics is therefore crucial. Electricity is a non-storable good, which makes prices
very volatile. This is a significant difference with respect to other traded commodities.
Moreover, characteristics such as mean reversion, seasonality and stationarity lead to fre-
quent price spikes. The need to continuously balance demand and supply complicates
market architecture and has led to the development of market solutions such as intra-day
markets, futures and other derivatives. Hence, price dynamics need to be modelled and
forecasted to enable participants to hedge against the risk of unforeseen contingencies. As
Geman and Roncoroni (2006) point out, electricity price risk forces the energy industry
to develop more accurate forecasting models. In particular, the analysis of volatility is
crucial in ensuring market efficiency and derivative pricing.

With the availability of high-frequency, highly volatile data, quadratic variation theory
has proved to be a useful approach for analysing the daily realised volatility (RV) of
prices (Barndorff-Nielsen and Shephard, BNS, 2004, 2006 and Andersen et al., ABD,
2007). It is employed to identify significant price jumps and decompose total variation
into its jump and non-jump components non-parametrically, as introduced by BNS (2004)
and modified by ABD (2007) so as to prevent the process of jump detection from being
downward biased. Applications to electricity markets can be found in Chan et al. (2008),
Ullrich (2012), Haugom et al. (2011) and Haugom and Ullrich (2012), among others.
Additionally, other jump-robust test statistics have been developed using different types
of estimators for continuous variation in price processes. Some examples are Andersen
et al. (2012) and Corsi et al. (2010). To our knowledge they have not been applied to
electricity markets. The continuous nature of the price process required means that the
analysis is better suited to continuous intra-day markets such as the German-Austrian
one.

RV has been treated econometrically in several ways, starting with the heterogeneous
autoregressive process (HAR) introduced by Müller et al. (1990) for financial time series
(subsequently improved by Corsi, 2004) and the so-called HAR-RV model, in which RV is
parameterised as a function of its own lags averaged over different time horizons. Based on
the HAR-RV model, ABD (2007) introduce the jump component of variation and develop
the so-called HAR-RV-CJ forecasting model. Chan et al. (2008) modify the model to fit
electricity price time series more closely. In general, benefits in forecasting are obtained
when total variation is decomposed into jump and non-jump components.

GARCH-type models have also been employed to model the second moment of elec-
tricity prices, but they are thought to be less suited than RV models to capturing the
intraday volatility of high-frequency data. In fact, Andersen et al. (2003) suggest that
simple models of RV explain electricity price dynamics better than GARCH and related
stochastic volatility models in out-of-sample forecasting. Chan et al. (2008) compare the
HAR-CV-JV model with EGARCH in five power markets in Australia and find mixed
results. Frömmel et al. (2014) compare the EGARCH model to Realised GARCH-type
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models in the estimation of price volatility in the EPEX market and find better one-step-
ahead predictions using the latter. Corsi et al. (2008) add GARCH innovations to the
HAR model to account for volatility clusters and non-Gaussian distribution of RV using
financial data.

The aim of this paper is to estimate different econometric models for the RV obtained
from the prices of continuous intraday 15-minute blocks on the German and Austrian
electricity market and select the best one in terms of volatility forecasting performance.
This is why this market is used to make almost-real-time adjustments. Although the
volume traded is only 1-2% of total electricity trading, its importance is growing be-
cause it enables selling and purchasing agents to optimise generation and consumption
plans, respectively. Therefore, there is growing interest in understanding the dynamics of
markets of this type. Following ABD (2007), two non linear transformations of RV are
considered in the analysis: the logarithmic, whose distribution is closer to the Gaussian,
and the square root, which is the standard deviation. The HAR-RV and HAR-CV-JV
models by Chan et al. (2008) are estimated, in which the total RV is decomposed using
three robust-to-jumps tests. Additionally to the BNS test, widely employed in electricity
markets, the Andersen et al. (2012) and Corsi et al. (2010) jump tests are also used. The
characteristics of the innovations in the models are also studied to determine whether
GARCH-type structures are appropriate, as per Corsi et al. (2008) for financial markets.
In this paper, both simple GARCH and more elaborate EGARCH structures are consid-
ered. The models are compared in terms of out-of-sample forecast performance according
to several criteria, thus enabling conclusions to be drawn in regard, for instance,to the
importance of including jumps and the sensitivity of the results to the jump test used.

The rest of the paper is organised as follows: Section ?? explains how quadratic vari-
ation theory is used to decompose RV into its continuous and jump components. Section
?? describes the EPEX continuous auction and the data used in the analysis. Section
?? presents the econometric models used and the estimation results. Section ?? presents
several out-of-sample forecast criteria used to compare the predictive power of each model
estimated. Finally, Section ?? summarises and concludes.

2 Realised volatility and jump detection

RV is taken as a measure for the unobserved volatility of a high-frequency time series.
It is estimated based on quadratic variation theory, which also enables total price varia-
tion to be decomposed non-parametrically into its continuous and jump components for
sufficiently equally spaced observations.1

Assume that prices are set M times each day t and that there are T days in the sample.
The RV for day t can be estimated as:

1A detailed explanation can be found in BNS (2004, 2006) and ABD (2007).
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RVt =
M∑
j=1

r2
j , (1)

where rj is the intraday price difference for time j.2

Integrated volatility (IV), which captures the continuous, predictable component of
RV, can be estimated using different methods. Although each estimator has its own
properties, there is no single method which is preferred to the rest. In this paper three
jump-robust type estimators are considered. First, BNS (2004, 2006), based on realised
bipower variation, second Andersen et al. (2012), based on the minimum or median RV
and finally Corsi et al. (2010), based on threshold bipower variation. BNS (2004, 2006)
estimate the IV using bipower variation (BV), given by:

BVt = 1.57
M

(M − 1)

M∑
j=2

|rj||rj−1|

Huang and Tauchen (2005) suggest the following statistic, based on the difference
between RV and the jump-robust measure of variance, BV, to detect significant jumps:

√
M

(RVt −BVt)/RVt√
0.61 max[1, TQt/BV 2

t ]
(2)

The denominator represents the effect of integrated quarticity, which can be estimated

using tripower quarticity, TQt = 1.74
(

M2

M−2

)∑M
j=3(|rj||rj−1||rj−2|)4/3.

In finite samples the BV is upward biased in the presence of jumps and consequently
the jump component is underestimated, but on the other hand the BV is affected by zero
returns, thus reducing its value and consequently detecting more jumps.

Corsi et al. (2010), CPR henceforth, propose a consistent and nearly unbiased estima-
tor of IV based on threshold bipower variation:

CTBPVt = 1.57
M∑
j=2

Z1(rj, ϑj)Z1(rj−1, ϑj−1),

where the function Z1 is defined as:

2Negative prices in the sample make it unfeasible to calculate returns as log price differences. There-
fore, we use price differences as in Chan et al. (2008). Moreover, electricity is a non-storable good so
price differences should not be considered as returns in a traditional sense, but we refer to them as such
for the sake of notational convenience. Given the continuous nature of the electricity market, the first
value of r for each day is calculated as the difference between the first price of that day and the last one
of the previous day.
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Z1(rj, ϑj) =


|rj| if r2

j ≤ ϑj

1.094ϑ
1/2
j if r2

j > ϑj

which depends on the returns and the value of the threshold ϑj = c2
ϑV̂j. As Corsi et al.

(2010) suggest, we consider cϑ = 3 and use a non-parametric filter to obtain the local
volatility estimate V̂j based on an iterative process and the use of a Gausssian kernel.
The authors show that the choice of the threshold does not affect the robustness of the
IV estimator, and its impact on estimation is marginal.

The corresponding jump test statistic is:

√
M

(RVt − CTBPVt)/RVt√
0.61max

[
1, CTTriPVt

CTBPV 2
t

] , (3)

where CTTriPVt = 1.74M
∑M

j=3

∏3
k=1 Z4/3(rj−k+1, ϑj−k+1) and Z4/3 is defined in the orig-

inal paper. The test statistic is more powerful than those based on multipower variation,
but it is also affected by zero returns.

Finally, Andersen et al. (2012) propose the MinRV and MedRV jump-robust consistent
estimators of IV using the nearest neighbour truncation. These estimators provide better
jump-robustness than BV in finite samples, but they have a larger asymptotic variance
than the CTBPV. Moreover, the MinRV is exposed to zero returns and is less efficient
than the MedRV estimator, which is why we only consider the latter. This is based on
the median on blocks of three consecutive returns:

MedRVt = 1.42

(
M

M − 2

)M−1∑
j=2

med(|rj−1|, |rj|, |rj+1|)2

and can be used to construct the jump test statistic:

√
M

(RVt −MedRVt)/RVt√
0.96max

[
1, MedRQt

MedRV 2
t

] , (4)

where MedRQt = 0.92 M2

M−2

∑M−1
j=2 med(|rj−1|, |rj|, |rj+1|)4 is the estimator of the inte-

grated quarticity.

Andersen et al. (2012) argue that increasing the block length of the returns in the
estimation of IV means losing efficiency as occurs in the case of higher order multipower
variation measures. Therefore, we conduct all the jump tests for the IV estimators based
on adjacent returns.
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It can be proved that the jump test statistics obtained with the three methods (equa-
tions (??), (??) and (??)) converge to a normal distribution when M →∞. Hence, if the
statistic exceeds the critical value Φ1−α, day t is classified as a jump day. For a chosen
significance level α, the jump component of volatility at day t is obtained as:

JVt = IZt>Φ1−α(RVt − ÎV t),

where Zt is the jump test statistic and ÎV t the corresponding estimator of IV obtained
with each method, and IZt>Φ1−α is 1 if Zt > Φ1−α, and 0 otherwise.

Once total RV and jump variation (JV) are estimated, the continuous component of
the total variation, CV, is given by the difference between the two, CVt = RVt−JVt, and
measures the variation without taking jumps into account.

3 Data

EPEX is the European Power Exchange platform for day-ahead and intraday trading of
electricity on the French, German, Austrian and Swiss markets. These four countries
account for approximately a third of Europe’s electricity consumption. Although the
volume traded on the intraday market is not as big as on the day-ahead market, it is
designed to fit generation to real time demand, so there is increasing interest on the part
of the different market agents in forecasting close-to-delivery electricity demand. Within
the intraday market, we focus on the 15-minute contract continuous auction for Germany
and Austria, which is the closest-to-real-time market mechanism used to balance demand
and supply.

In the intraday continuous market, 15-minute periods can be traded until 45 minutes
before delivery begins. Starting at 4pm on the current day, all 15-minute periods in the
following day can be traded. The prices range from e-9999.99 to e9999.99/MWh and the
minimum increment is e0.01/MWh. The sample period runs from November 18, 2012
to April 30, 2016 (EPEX, 2016). Before that time, intraday continuous auctions for 15-
minute contracts were not sufficiently developed at either pole and very few quarters with
observations are available. Thus, overall we have 1260 days and 120,956 observations.

Table ?? reports the descriptive statistics for the total price series and those depending
on the season of the year and the day of the week. The mean price is e33.44/MWh
with a standard deviation of e20.52/MWh, but several seasonal effects are observed.
Mean prices are higher in autumn and summer, probably due to the lower availability of
renewable power generation (especially hydroelectric), which means that fossil fuel plants
must be used to meet demand. Day of the week seasonality is observed because lower
economic activity at weekends results in lower prices. Volatility decreases for summer
and Saturdays. It is also demonstrated that the price series distribution of probability
is skewed and presents excess kurtosis. According to the Jarque-Bera test, the price
distribution of probability is not normal. Finally, seasonal behaviour is observed in the
quarter-hours, since the mean price decreases with the quarter-hours for the first and last
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hours of the day. The behaviour of mean prices in the central hours of the day is more
irregular but in general prices are higher in peak hours.3

Table 1: Descriptive statistics for prices per season and day of the week

Wtr. Spr. Sum. Aut. Mn. Tu. Wd. Th. Fr. St. Sn. Total
Minimum -135.69 -117.06 -73.06 -211.84 -170.34 -211.84 -188.91 -67.98 -84.08 -117.06 -135.69 -211.84
Maximum 212.44 240.99 236.35 250.00 203.97 211.32 174.18 250.00 240.99 136.41 140.16 250.00

Mean 32.88 30.86 34.26 35.83 34.65 37.58 38.03 36.34 36.08 28.89 22.53 33.44
Median 32.00 29.67 32.90 35.53 33.53 35.73 36.01 34.12 34.27 28.80 23.58 32.38

St. Dev. 20.12 19.63 18.54 22.96 20.76 21.35 21.06 19.66 19.05 17.44 19.21 20.52
Skewness 0.26a 0.72a 0.90a -0.66a 0.18a -0.19a -0.23a 0.96a 1.39a -0.35a -0.75a 0.16a

Kurtosis (Ex.) 3.52a 7.35a 4.87a 7.99a 3.81a 8.86a 9.65a 4.67a 10.04a 3.86a 3.37a 6.21a

Jarque-Bera 18311.00a 67912.62a 29763.33a 83820.35a 10569.94a 56600.86a 67265.73a 18355.67a 78200.61a 11079.78a 9780.75a 194852.25a

Wtr., Spr., Sum. and Aut. stand for winter, spring, summer and autumn, respectively. Mn., Tu., Wd.,

Th., Fr., St. and Sn. are the days of the week starting from Monday. St. Dev. and Kurtosis (Ex.)

denote standard deviation and excess kurtosis, respectively. a indicates rejection of the corresponding

null hypothesis (no skewness, no excess kurtosis and normal distribution) at the 1% level.

Following Ullrich (2012), the medians of the returns are subtracted from the returns
for each month of the year, day of the week and quarter-hour of the day to take into
account the seasonal effects observed. The resulting adjusted returns are:

r∗j = rj − r̂m,d,q,

where r̂m,d,q is the median of the month (m), day of the week (d) and quarter-hour (q).
The returns are replaced by adjusted returns, r∗, in all the calculations.

In empirical applications two non-linear transformations of RV are usually considered.
The first is the square root of the volatility,

√
RV , which is the realised standard deviation

and can be of interest in many applications, such as financial ones, and the second is the
logarithmic realised volatility, log RV, which is also used because its distribution is closer
to the normal.4 The concavity of the non-linear forms means that high values of the time
series decrease more than low values, so that the time series becomes smoother and the
jumps are therefore less pronounced. The logarithmic function is more concave than the
square root function. Hence, the smoothest time series is the one with the logarithmic
form. In this paper both non-linear transformations of RV are considered to analyse the
robustness of the results to the type of transformation.

Table ?? presents the descriptive statistics of the RV, defined in equation (??), and
the two transformations defined above. As expected, the standard deviation decreases as
more concave non-linear forms are chosen. The three time series distribution of probability
shows positive skewness and leptokurtosis and none of them is normal, as confirmed by
the Jarque-Bera statistic.

Table ?? reports the descriptive statistics for each component of the total RV, for each
transformation and for each jump test. Jump detection is tested at the 0.1% significance

3To save space, descriptive statistics for the quarter-hours are not shown. They are however available
from the authors upon request.

4Ullrich (2012) and Chan et al. (2008) consider the standard deviation, while Corsi et al. (2008),
Haugom and Ullrich (2012) and ABD (2007) use both transformations.
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Table 2: Descriptive statistics of RV

RV
√
RV logRV

Minimum 1496.00 38.68 7.31
Maximum 297913.72 545.81 12.60

Mean 13626.28 107.18 9.20
Median 9264.61 96.25 9.13

St. Dev. 16065.86 46.27 0.73
Skewness 7.01a 2.38a 0.58a

Kurtosis (Ex.) 90.51a 10.90a 0.67a

Jarque-Bera 440356.40a 7420.86a 94.14a

St. Dev. and kurtosis (Ex.) denote standard deviation and

excess kurtosis, respectively. a indicates rejection of the

corresponding null hypothesis (no skewness, no excess kurtosis

and normal distribution) at the 1% level.

level, that is, α = 0.001. The difference in the number of days classified as jump-days with
each test is noteworthy. 484 of the 1260 days (38.41%) are classified as jump-days under
the CPR test, but there are only 6 jump-days (0.48%) under the Med. In a moderate
position, the BNS test detects jumps in 214 days (16.98%). Consequently, the largest
standard deviation of the JV component corresponds to the CPR test followed by the
BNS and the Med. As expected, the mean CV under any of the jump tests is lower than
the mean RV.

Table 3: Descriptive statistics of CV and JV

CV JV
BNS CPR Med BNS CPR Med

Minimum 1411.30 1397.26 1496.00 794.78 574.81 1046.39
Maximum 297913.72 297913.72 297913.72 62408.37 88202.70 4622.52

Mean 12590.42 10566.52 13611.46 6098.97 7965.49 3112.90
Median 8612.94 7766.97 9205.58 3699.52 4413.30 3650.04

St. Dev. 14791.38 12026.14 16070.91 7724.16 10546.16 1531.10
Skewness 7.71a 12.11a 7.01a 4.30a 3.87a -0.58

Kurtosis (Ex.) 116.85a 262.55a 90.41a 23.34a 19.64a -1.96
Jarque-Bera 729295.69a 3649823.21a 439477.03a 5513.96a 8986.13a 1.30

Jump days (%) 16.98 38.41 0.48
St. Dev. and kurtosis (Ex.) denote standard deviation and excess kurtosis, respectively.

a indicates rejection of the corresponding null hypothesis (no skewness, no excess kurtosis

and normal distribution) at the 1% level.

As mentioned in Section ??, both BNS and CPR tests are affected by zero returns
leading to a larger number of jumps detected.5 However, the BNS test is upward biased in
the presence of jumps underestimating the jump component, whereas the CPR combines
the estimation of the BV and a threshold and hence the number of jumps is greater
than when using BNS. The Med test is less influenced by zero returns but it has the

5There are 2.89% of zero returns in the sample.
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disadvantage of lower efficiency than CPR in the estimation of IV. Given the difference
in the results of the jump tests we conduct the rest of the analysis considering all three
to check the robustness of the results to the choice of the test.

4 Realised volatility models and estimation results

To start with, we estimate the HAR-RV model, proposed by Corsi (2004), for both the
square root and logarithmic transformations:

√
RVt = β0 + β1

√
RVt−1 + β2

√
RVw,t−1 + β3

√
RVm,t−1 + at,

logRVt = β0 + β1 logRVt−1 + β2 logRVw,t−1 + β3 logRVm,t−1 + at,

where average RV over the previous week, RVw,t =
1

7

7∑
l=1

RVt−l, and over the previous

month, RVm,t =
1

30

30∑
l=1

RVt−l, are considered.6

Once RV is separated into jump and continuous components using the different jump
tests, the HAR-CV-JV model, introduced by Chan et al. (2008), is also considered for
both transformations:

√
RVt = λ0 + λ1

√
CVt−1 + λ2

√
CVw,t−1 + λ3

√
CVm,t−1

+ θ1

√
JVt−1 + θ2

√
JVw,t−1 + θ3

√
JVm,t−1 + at,

logRVt = λ0 + λ1 logCVt−1 + λ2 logCVw,t−1 + λ3 logCVm,t−1

+ θ1 log JVt−1 + θ2 log JVw,t−1 + θ3 log JVm,t−1 + at,

where CVw,t and JVw,t are the average CV and JV , respectively, over the previous week
and CVm,t−1 and JVm,t−1 are the average CV and JV , respectively, over the previous
month7.

The HAR-RV and HAR-CV-JV models are estimated using OLS, where heteroscedas-
ticity and autocorrelation-corrected consistent standard errors are considered. Table ??
shows the estimation results of the HAR-RV model. All the coefficients are positive and
significant at the 5% level, showing a strong degree of volatility persistence for both non-
linear transformations. The estimated coefficients β̂1, β̂2 and β̂3 are quite similar for both

6The correlogram of RV suggests a high autocorrelation up to 30 lags and a considerable reduction
for more lags.

7Regarding non-jump days, when the logarithmic transformation is implemented log 0 is replaced by
0 to maintain the same number of observations.
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transformations and it is observed that the estimated effect of RVm,t−1 on RV is larger
than that of RVw,t−1. This is due to the presence of volatility clusters in periods longer
than a week.

Table 4: HAR-RV model estimation results

HAR-RV√
RV logRV

Intercept β̂0 14.90a 1.15a

RVt−1 β̂1 0.44a 0.45a

RVw,t−1 β̂2 0.13b 0.16a

RVm,t−1 β̂3 0.27a 0.26a

adj-R2 42.03% 47.27%
a and b denote significance at the 1% and 5%

levels, respectively. adj-R2 is the adjusted R2.

Table ?? reports the HAR-CV-JV model estimation results for the three jump tests
considered (BNS, CPR and Med). The most similar estimated coefficients in terms of
significance and magnitude correspond to the cases of the BNS and Med jump tests. In
general, there is high volatility persistence in the CV component, and it is slightly higher
in magnitude in the logarithmic form due to the greater concavity of the transformation.
Again, the estimated effect of the previous month CV on total RV is greater than that of
the previous week in most cases analysed. With regard to the jump component, persis-
tence is much lower and the jumps which are most important in explaining RV come, in
general, from the previous day. This could be due to the fact that jumps are by nature
short-lived, rare occurrences.

Table 5: HAR-CV-JV model estimation results

HAR-CV-JV√
RV logRV

BNS CPR Med BNS CPR Med

Intercept λ̂0 18.77a 24.26a 14.93a 1.45a 1.89a 1.11a

CVt−1 λ̂1 0.43a 0.42a 0.44a 0.44a 0.43a 0.45a

CVw,t−1 λ̂2 0.12b 0.07 0.13b 0.13a 0.12b 0.16a

CVm,t−1 λ̂3 0.22a 0.12 0.27a 0.25a 0.06b 0.27a

JVt−1 θ̂1 0.21a 0.20a 0.47a 0.04a 0.03a 0.06a

JVw,t−1 θ̂2 0.02 0.06 −0.21 4.1x10−3 0.02b 0.01

JVm,t−1 θ̂3 0.18c 0.11b 0.07 0.01c 0.09a 0.01
adj-R2 42.13% 42.52% 41.98% 47.45% 47.27% 47.26%
a, b and c denote significance at the 1%, 5% and 10% levels, respectively. adj-R2

is the adjusted R2.

The goodness of fit depends on the jump test. For the square root form the decompo-
sition of total RV is preferred when the jumps are detected using BNS and CPR tests,
therefore the HAR-CV-JV explains a larger proportion of RV variation. For the loga-
rithmic transformation the explanatory power of the HAR-CV-JV model is greater when
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using the BNS jump test. There is no improvement in the goodness of fit using the Med
test for any transformation. This could be explained by the fact that the number of
jump-days detected with the Med is so small that there is no gain in dividing total RV.

The HAR-type models assume identically and independently distributed Gaussian in-
novations. However, as Corsi et al. (2008) point out, in empirical applications the resid-
uals of these models usually show volatility clustering and their probability distributions
are characterised by skewness and excess kurtosis. If this is the case there is a loss of effi-
ciency when estimating the models and consequently a decrease in the forecast accuracy,
which could be solved by modelling the conditional variance of realised volatility with
GARCH specifications.

The error terms in both HAR models, at, are analysed in order to determine whether
GARCH structures are appropriate for our data. Based on the Ljung-Box statistic, they
are justified for the standard deviation transformation. By contrast, the logarithmic
transformation of RV provides an unconditional distribution closer to the Gaussian and
GARCH models are not justified for modelling the volatility of RV.8 Out of the various
GARCH models analysed in the literature, two different models are specified in this
paper for the error term at = σtεt, where εt are iid random standard normal distributed
variables. The first is the GARCH(1,1) model, which in general accounts for the volatility
clusters and the main features of the distribution of the innovations. Unlike Corsi et al.
(2008), GARCH(1,1) structure is considered here for the errors of both the HAR-RV and
the HAR-CV-JV models. The second is Nelson’s (1991) EGARCH(1,1) model, where
asymmetric effects are considered. This structure is widely used in the relevant literature
because the incorporation of the leverage effect reduces the skewness in the distribution
of the errors and the model fits the characteristics of the data. In particular, Chan et al.
(2008) model daily volatility of price changes using EGARCH(1,1), but it is not included
in the error terms of the HAR model.

The GARCH(1,1) is given by:

σ2
t = α0 + α1a

2
t−1 + α2σ

2
t−1,

where α0 > 0, α1 ≥ 0, α2 ≥ 0 and α1 + α2 < 1 ensure that the variance is positive and
the process is stationary.

The asymmetric EGARCH(1,1) is given by:

log σ2
t = δ0 + δ1

|at−1|
σt−1

+ δ2 log σ2
t−1 + δ3

at−1

σt−1

,

where the coefficients are not required to be positive, since even if log σ2
t < 0, the volatility

will always be positive. The asymmetric response of the volatility due to shocks of different

8The Ljung-Box test shows evidence of uncorrelated at and a2t series for the logarithmic transformation,
while there is evidence of uncorrelated errors but correlated squared errors for the standard deviation
transformation. Results are available upon request.
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signs is captured by δ3. A positive (negative) coefficient implies an inverse (direct) leverage
effect.

The resulting models are called HAR-GARCH-RV, HAR-EGARCH-RV, HAR-GARCH-
CV-JV and HAR-EGARCH-CV-JV and are estimated by maximum likelihood.

Tables ?? and ?? show the estimation results for the models considering total RV
and decomposition of RV for each jump test considered. The estimated coefficients of
GARCH(1,1) ensure that the variance is positive and the time series is stationary. The
estimated coefficients of the HAR-EGARCH models show evidence of an inverse leverage
effect, meaning that positive shocks have more effect on RV than negative shocks. In
general, the magnitude and significance of the coefficients estimated are similar between
the models with GARCH and EGARCH innovations although some differences appear
in the estimated effect of the JV component depending on the jump test. In terms of
log-likelihood the HAR-EGARCH is preferred for both total RV and its decomposition.
This means that the leverage effect is important in modelling the standard deviation of
RV.

Table 6: HAR-GARCH-RV and HAR-EGARCH-RV models estimation results (
√
RV )

HAR-GARCH-RV HAR-EGARCH-RV

Intercept β̂0 14.42a Intercept β̂0 15.91a

RVt−1 β̂1 0.45a RVt−1 β̂1 0.48a

RVw,t−1 β̂2 0.19a RVw,t−1 β̂2 0.16a

RVm,t−1 β̂3 0.20a RVm,t−1 β̂3 0.19a

Intercept α̂0 41.67a Intercept δ̂0 0.21a

a2
t−1 α̂1 0.09a |at−1|/σt−1 δ̂1 0.07a

σ2
t−1 α̂2 0.88a log σ2

t−1 δ̂2 0.96a

at−1/σt−1 δ̂3 0.14a

Log-likelihood -5961.84 Log-likelihood -5936.62
a denotes significance at the 1% level.
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Table 7: HAR-GARCH-CV-JV and HAR-EGARCH-CV-JV models estimation results
(
√
RV )

HAR-GARCH-CV-JV HAR-EGARCH-CV-JV
BNS CPR Med BNS CPR Med

Intercept λ̂0 19.24a 22.91a 14.22a Intercept λ̂0 18.13a 19.10a 14.55a

CVt−1 λ̂1 0.43a 0.41a 0.44a CVt−1 λ̂1 0.47a 0.48a 0.48a

CVw,t−1 λ̂2 0.16a 0.13b 0.20a CVw,t−1 λ̂2 0.13a 0.16a 0.15a

CVm,t−1 λ̂3 0.16a 0.09 0.20a CVm,t−1 λ̂3 0.19a 0.08 0.21a

JVt−1 θ̂1 0.20a 0.21a 0.47a JVt−1 θ̂1 0.22a 0.19a 0.44b

JVw,t−1 θ̂2 0.18a 0.14b −0.26 JVw,t−1 θ̂2 0.07 0.03 −0.26

JVm,t−1 θ̂3 0.07 0.19b 0.17 JVm,t−1 θ̂3 0.08 0.22a 0.38b

Intercept α̂0 61.54a 54.08a 44.08a Intercept δ̂0 0.21a 0.19a 0.19b

a2
t−1 α̂1 0.13a 0.10a 0.09a |at−1|/σt−1 δ̂1 0.08a 0.06a 0.05a

σ2
t−1 α̂2 0.83a 0.85a 0.87a log σ2

t−1 δ̂2 0.96a 0.97a 0.97a

at−1/σt−1 δ̂3 0.13a 0.13a 0.14a

Log-likelihood -5954.98 -5956.23 -5959.46 Log-likelihood -5934.41 -5934.07 -5933.14
a and b denote significance at the 1% and 5% levels, respectively.

The standardised error terms and their squares follow a white noise process in all four
models.9 Therefore, the GARCH(1,1) and EGARCH(1,1) correctly fit the data working
with the standardised deviation form of RV.

5 Forecast

The predictive power of the different models is measured using various out-of-sample cri-
teria. To that end, observations from November 18, 2012 to December 31, 2015, covering
1109 days, are considered as in-sample data, while observations in 2016, covering 121
days, are considered as out-of-sample data. The forecasts for 2016 are obtained from a
recursive estimation of the models starting with the first 1109 observations and expanding
the estimation period by adding one new observation each time. Comparisons between
observed and predicted values are made using MAE (mean absolute error), RMSE (root
mean square error) and MAPE (mean absolute percentage error) criteria10:

MAE =
1

N

N∑
t=1

|RVt − R̂Vt|

RMSE =

√√√√ 1

N

N∑
t=1

(RVt − R̂Vt)2

9The Ljung-Box test is applied to the standardised error terms and their squares. Results are available
upon request.

10The best model in terms of prediction is the one with the lowest value of any criterion implying that
the forecast error is the smallest.
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MAPE =
1

N

N∑
t=1

|RVt − R̂Vt|
RVt

,

where N is the number of forecast observations and R̂Vt is the predicted value of RV using
the models described in Section ??.

Table ?? reports the results of the MAE, RMSE and MAPE criteria for both trans-
formations of RV and each jump test. For both transformations, models that decompose
RV into JV and CV components clearly provide better forecasts than those using total
RV. For the standard deviation form, the selection of the best model depends on the
jump test. Specifically, the HAR-GARCH-CV-JV model consistently outperforms the
other models in terms of forecasting ability for all three criteria under the BNS jump test,
followed by the HAR-CV-JV model. By contrast, GARCH structures do not improve
forecasts under CPR and Med tests, which select the HAR-CV-JV model. Contrary to
the results of the in-sample forecast, there is no gain in adding EGARCH innovations in
terms of out-of-sample forecast performance. In the logarithmic transformation, the use
of GARCH structures is not justified, so forecasting ability is assessed in the HAR-RV
and the HAR-CV-JV models. All three criteria show higher predictive power for the
HAR-CV-JV model; specifically, the best results are obtained using BNS jump detection.

Table 8: MAE, RMSE and MAPE criteria.

√
RV MAE RMSE MAPE

HAR-RV 15.0767 19.5739 0.1784
HAR-CV-JV (BNS) 14.7714 19.2089 0.1752
HAR-CV-JV (CPR) 14.8110 19.4492 0.1756
HAR-CV-JV (Med) 15.0610 19.3712 0.1785
HAR-GARCH-RV 15.0827 19.5883 0.1780
HAR-GARCH-CV-JV (BNS) 14.6218 19.0844 0.1733
HAR-GARCH-CV-JV (CPR) 14.8349 19.5145 0.1757
HAR-GARCH-CV-JV (Med) 15.1113 19.4293 0.1785
HAR-EGARCH-RV 15.2375 19.8298 0.1814
HAR-EGARCH-CV-JV (BNS) 15.0213 19.5349 0.1789
HAR-EGARCH-CV-JV (CPR) 14.9806 19.4672 0.1761
HAR-EGARCH-CV-JV (Med) 15.2884 19.6601 0.1820
logRV MAE RMSE MAPE
HAR-RV 0.3382 0.4189 0.0381
HAR-CV-JV (BNS) 0.3330 0.4127 0.0375
HAR-CV-JV (CPR) 0.3351 0.4179 0.0377
HAR-CV-JV (Med) 0.3370 0.4159 0.0380
Numbers in bold show the lowest value for each criterion and

RV transformation.

As shown, in both transformations the models obtained using the BNS jump test
provide more accurate forecasts than the corresponding models using the CPR and Med
tests. This could be due to the fact that the CPR test is too greatly affected by zero
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returns and detects too many jumps, whereas the difference between MedRV and RV is
very small, so too few jumps are detected with the Med test.

The criteria used are calculated for the forecast errors of the whole out-of-sample period,
but it is also possible to assess the behaviour of errors during that period by computing
a rolling ratio of any of the criteria as the ratio of the criterion value for each model and
that of the benchmark (HAR-RV) for a moving window of 30 forecasts. A ratio greater
than one means that the predictive power of the HAR-RV model is better than that of
the other model with which it is compared.

Figures ?? and ?? show the rolling RMSE ratio for the logarithmic and square root
transformations of RV, respectively, for the BNS jump test11. The former shows that,
according to the RMSE criterion, the HAR-CV-JV model in its logarithmic form outper-
forms the HAR-RV model throughout the forecast period, except in a few observations at
the beginning and end of the period. In the case of the standard deviation form, the HAR-
CV-JV model is preferred to the HAR-RV model throughout the forecast period. The
predictive power of the HAR-GARCH-CV-JV model is higher than that of the benchmark
in most of the period, especially at the beginning and end. This result is in line with the
selection of the HAR-GACH-CV-JV model according to the forecast criteria (see Table
??). It is important to underline that the forecasting accuracy of the HAR-GARCH-
RV and the HAR-EGARCH-RV models is lower than that of the HAR-RV model in the
whole sample. This fact indicates that forecasts are not improved by including GARCH
structures when total RV is considered.

Figure 1: Rolling RMSE ratio (log RV)
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Haugom et al. (2011) also find that the forecast accuracy is improved when jumps are

11Rolling ratios when using the CPR and the Med jump tests have also been calculated. The former
provides a pattern similar to that found when using the BNS test while the latter moves around the value
of one due to the poor performance in the jump detection. There are no significant differences when
rolling ratios for MAE and MAPE criteria are considered. Results are available upon request.
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Figure 2: Rolling RMSE ratio (
√
RV )
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considered for the Nord Pool forward electricity market and Chan et al. (2008) show a
slight improvement in volatility forecasts for the NEMMCO decomposing the total RV.

The approach of Andersen et al. (2003) is also applied to compare the forecasting
performance of different pairs of models. This is an out-of-sample approach based on
the regression of the observed RV on the estimated value of RV for the two models to
be compared. In the case of the logarithmic transformation of RV there are only two
models to be compared: HAR-RV and HAR-CV-JV. For the standard deviation form six
different models for each jump test are compared in pairs. However, no conclusive results
are obtained12.

6 Conclusions

The formation of electricity prices has become more complex with the liberalisation of
the market. Balancing markets have proved useful in managing real demand and have
become more sophisticated as agents have learnt how to trade optimally in this new
environment. Thus, there is growing interest in forecasting volatility in electricity prices
in these close-to-real-time delivery markets.

In this paper we take realised volatility as a measure of the unobserved volatility process
of high-frequency data such as the continuous intraday auction for 15-minute contracts in
Germany and Austria. The variation in electricity prices is decomposed into continuous
and jump components using three different jump tests. This approach enables us to
analyse and compare the forecasting performances of two different models: one for total
realised volatility and the other with the aforementioned decomposition. Furthermore,

12Results are available from the authors upon request.
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GARCH structures are included in the error terms of the models whenever appropriate.
The estimation and forecasting power are analysed for the square root and logarithmic
transformations of realised volatility.

Out-of-sample forecast criteria support the HAR-CV-JV model for the logarithmic
transformation under all three jump tests and for the standardised RV under the CPR
and Med jump tests, while the HAR-GARCH-CV-JV model improves the accuracy of
volatility forecasting under the BNS jump test and the standard deviation form. A com-
parison of the different jump tests revels that models using the BNS provide the best
results in terms of forecasting ability. These results highlight several conclusions: first,
under both transformations the decomposition of total realised volatility is important for
forecasting purposes. Second, the choice of the transformation is also important because
more complex models including GARCH innovations might be selected for the standard-
ised RV, while the distribution of the innovations in the logarithmic transformation is
closer to the normal and simpler models would suffice. Moreover, although EGARCH in-
novations outperform GARCH innovations in terms of explanatory power in estimation,
they are not selected in terms of forecast accuracy. Three, the results are sensitive to
which jump test is used at least in the standardised form of RV.

The forecast results obtained are of interest to market participants in the German-
Austrian market as they can fit their spot positions close to delivery. Within EPEX,
the conclusions can be expected to hold in the Swiss new intraday 15 minute continuous
market with similar rules.
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