"Maintaining Capital in the Presence of Obsolescence"

> Naohiko Wakutsu Institute of Innovation Research Hitotsubashi University

> > August 8th, 2012 University of Tokyo

Objective

- How to maintain a capital asset that is subject to wear and tear and obsolescence
- A dynamic tradeoff:
 - A smaller expenditure on maintenance may raise short-run receipts
 - But it may lead to lower profits due to increased wear and tear in the long run
- The incentive for maintenance is larger, the larger is the forgone profit from reduced maintenance
- How should a maintenance expenditure pattern vary with asset types and market conditions?

U.S. Office Building Data

Kernel estimates of rent and maintenance expenditure

• While the rent steadily declines, the maintenance initially increases and then decreases. Why?

Optimal-Control Literature

• Early contributions

- Naslund (1966), Swedish Journal of Economics
- Thompson (1968), Management Science
- Kamien and Schwartz (1971), Management Science
- Deterministic maintenance
- Probabilistic maintenance
- Subsequent researchers
 - Virtanen (1982), Mehrez and Berman (1994)
 - Dogramaci and Fraiman (2004), Bensoussan and Sethi (2007)

This paper ...

- Studies a deterministic maintenance problem
- Presents a nonlinear extension of the Thompson's model (1968)
 - Our solution is not bang-bang
- Distinguishes between maintenance and partial replacement
 - Simulation
- Applies an optimal-control model to data

The Model: Outline

- Time: continuous, indexed by $t \in (0, Z]$
- An individual capital asset is:
 - owned at t = 0
 - used for productive purposes for a length of time
 - and then sold at $t = T \leq Z$
- An owner receives:
 - a flow of nonnegative production revenue over (0,T)
 - a lump-sum resale profit at t = T
 - these are larger, the more relatively capable is the asset
- Specifically, ...

The Model: Asset

• Asset's relative capability at time t:

$$ar{c}(t) - c(t) = [ar{c}(0) - c(t)] + [ar{c}(t) - ar{c}(0)] \ \equiv a(t) + b(t)$$

- $\overline{c}(t)$: the capability of an asset that embodies the best technology at time t
- c(t): the capability of the owner's asset at time t
- a(t): the state of deterioration due to wear and tear
- b(t): the state of obsolescence due to technical advance

The Model: Receipt

- Production revenue at time t: R(a(t) + b(t))
 - Decreasing: R'(a(t) + b(t)) < 0
 - More than proportionally: R''(a(t) + b(t)) < 0
- Resale price (Salvage value) at time t: S(a(t) + b(t))
 - Decreasing: R'(a(t) + b(t)) < 0
 - More than proportionally: R''(a(t) + b(t)) < 0
- These receipts are larger, the more relatively capable is the asset at the moment

The Model: Maintenance

- Maintenance expenditure at time $t: m(t) \ge 0$
- Maintenance reduces physical wear and tear but has no effect on obsolescence
- Specifically,
 - $\dot{a}(t) = \alpha a(t) z(m(t))$ and $a(t) \ge a_0$ with $\alpha > 0$ • $\dot{b}(t) = \beta > 0$
- z(m(t)): maintenance production function
 - Increasing: z'(m(t)) > 0
 - Concave: z''(m(t)) < 0
 - Vanishes: z(0) = 0

The Model: Some Figures

The Model: Problem

• Owner's discounted profits:

$$J = \int_0^T e^{-rt} [R(a+b) - m] dt + e^{-rT} S(a_T + b(T))$$

- Problem: choose T, m(t) and a_T to maximize J subject to the inequality state constraint
- \bullet An optimal policy: the solution $\{T^*,m^*,a_T^*\}$
- Current-value Hamiltonian (with costate function $\mu(t)$): $H = H(a, m, \mu) = R(a + b) - m + \mu \left[\alpha a - z(m)\right]$
- Maximum Principle

Optimal Policy: Sale Date

Proposition (Necessity)

Suppose that $\{T^*, m^*, a_T^*\}$ exists. Then, necessarily, (i) At an optimal sale date T^* ,

$$egin{array}{ll} R(a_T^*+b)-m^* \geq \ rS(a_T^*+b)-S'(a_T^*+b)(lpha a_T^*-z(m^*)+eta) \end{array}$$

with equality when $T^* < Z$.

- LHS is the marginal benefit from postponing the sale
- RHS is the marginal cost of doing so

Proposition (Necessity, continued)

Suppose that $\{T^*, m^*, a_T^*\}$ exists. Then, necessarily,

(ii) An optimal maintenance policy m^{st} satisfies

$$\left\{ egin{array}{ll} 1=-\mu z'(m^*), & t\in I ext{ and } 1<-\mu z'(0) \ m^*=0, & t\in I ext{ and } 1\geq -\mu z'(0) \ m^*=z^{-1}(lpha a_0), & t\in B. \end{array}
ight.$$

Here μ satisfies the differential equation

$$\dot{\mu} = egin{cases} (r-lpha)\mu - R'(a^*+b), & t\in I\ 0, & t\in B \end{cases}$$

with the terminal condition $\mu = S'(a_T^* + b)$ at $t = T^*$.

Optimal Policy: Interpretation

- RHS is the marginal benefit from an additional dollar expenditure on maintenance
 - μ : the marginal value of the deterioration level a^* at time t
 - So, the maximum forgone profit from a unit increase in a^{\ast} at time t
- LHS is the marginal cost of doing so
- μ: the rate of change in the marginal value of the deterioration level a* at time t
- $r \alpha$: the effective discount rate

Optimal Policy: Sufficiency

Proposition (Sufficiency)

Given T^* , suppose that $\{m^*, a_T^*\}$ is a policy satisfying the above Proposition. Then, $\{m^*, a_T^*\}$ is optimal.

- For proof, use the Mangasarian condition.
- Therefore, the necessary condition is also sufficient.

Optimal Policy: Qualitative Properties

• Asset types:

- high deterioration type if $r < \alpha$
- ${\scriptstyle \bullet }$ low deterioration type if $r > \alpha$

Proposition (High type)

Let $r < \alpha$. Then, m^* is the highest at the initial date, and steadily and strictly decreases with time in an optimal plan. Moreover, a^* is the lowest at the initial date, and steadily and strictly increases with time at an increasing rate.

• For proof, use the phase analysis.

Optimal Policy: Phase Diagram (H)

Phase diagram for $r < \alpha$

Proposition (Low type)

Let $r > \alpha$. Then, m^* either first increases and then decreases, or evolves monotonically. Moreover, if $\dot{m}^* \leq 0$ at some t'in $(0, T^*)$, then m steadily and strictly decreases with time for all t in (t', T^*) .

 An optimal maintenance expenditure is thus either inversed-U shaped (increase and then decrease) or monotonic.

Optimal Policy: Phase Diagram (L)

• Note: the m^* null isocline shifts down with time.

Optimal Policy: More Results

• Some more results:

Proposition (Comparative dynamics)

An increase in β does not raise the maintenance investment for all t in $(0, T^*)$ in an optimal plan.

• Maximized net discounted production profit: $V=V(\alpha,\beta)\equiv\int_0^{T^*}\!\!e^{-rt}\left[R(a^*+b)-m^*\right]\mathrm{d}t$

Proposition (Envelope result)

 $V_{lpha}(lpha,eta) < 0$, $V_{eta}(lpha,eta) < 0$ and $V_{etaeta}(lpha,eta) > 0$.

Estimation: Data

• U.S. office building data (from BOMA International)

- Corrected by Gort, Greenwood, Rupert (1999)
- Dataset consists of two panels:
 - One covers 200 office buildings from 1989 to 1997
 - The other covers 800 office buildings from 1993 to 1997
 - Include the info. on age, size, rent and several expenses

	mean	std. dev.	min	max
size (sq. ft.)	254,670	304, 530	10,656.6	2,860,100
maint./sq. ft.	1.5936	0.97363	0	6.3168
rent/sq. ft.	10.352	5.316	0.06557	43.432
age	26.875	22.614	2	144

Estimation: Kernel Estimate Data

Kernel estimates of rent and maintenance expenditure (with a Gaussian kernel and a MISE-minimizing bandwidth)

Estimation: Parameterization

Parameterization

- Maintenance: $z(m) = \zeta \ln(m+1)$
- Revenue: $R(a+b) = \rho_0 + \rho_1 \ln(\rho_2 a b)$
- Resale: $S(a+b) = \sigma_0 + \sigma_1 R(a+b)$
- Parameters: r, a_0 , lpha, eta, ho_0 , ho_1 , ho_2 , σ_0 , σ_1 and ζ
- Procedure:
 - Fix a sale date T^*
 - Given parameter values, Proposition (Necessity) together with a guess on $m^*(0)$ implies time series of a^* , b, $R(a^* + b)$, m^* and μ .
 - A set of the values is chosen so that the model's prediction fit closely to the data.

Estimation: Result

Kolmogorov-Smirnov test

- Null hypothesis: two datasets (actual and estimated) are from the same distribution
- Not rejected at the 1% significance level

Estimation: Result (Table)

r	a_0	lpha	$oldsymbol{eta}$	$ ho_0$
0.08	1.073	0.045	0.115	4.5

$ ho_1$	$ ho_2$	σ_0	σ_1	$\boldsymbol{\zeta}$
4.25	7.85	-149.85	16.71	0.05

Parameter estimates

	KS -statistics	p-value	
rent	0.1625	0.22014	
maintenance	0.1625	0.22014	
KS test (# observations $= 90$)			

Counterfactual Simulation: α

Optimal rent and maintenance expenditure when α increases by 20% and 40%

Counterfactual Simulation: β

Optimal rent and maintenance expenditure when β increases by 20% and 40%

Counterfactual Simulation: a_0

Optimal rent and maintenance expenditure when a_0 increases by 20% and 40%

Counterfactual Simulation: Maintenance

optimal maintenance when α increases by 20% and 40%

optimal maintenance when β increases by 20% and 40%

Counterfactual Simulation: Rent

optimal maintenance when lpha increases by 20% and 40%

optimal maintenance when β increases by 20% and 40%

50

- How to maintain a capital asset that is subject to wear and tear and obsolescence was examined
- An optimal maintenance pattern interestingly varies with asset types
- Deterioration and obsolescence could have different effects on an optimal maintenance pattern