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Abstract

In this paper, we discuss the formation of collaboration networks among
�rms that are located in a circular city. The model is a two-stage game. In
the �rst stage, �rms form collaboration links, and in the second stage the �rms
engage in price competition. The model in the second stage is a generalization
of Salop�s (1979) model. We examine pairwise stability of networks and a sto-
chastic network formation process. In addition, we characterize socially e¢ cient
networks.
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1 Introduction

An important development in the last three decades is the increase in the num-
ber of inter�rm collaboration. This is especially evident in international collab-
oration. Hagedoorn (2002) reports that more than 50% of newly made R&D
collaborations during the period 1960-1998 are international ones. This implies
that, though �rms may incur higher transaction costs in keeping a long-distance
collaboration than that in keeping short-distance one, many �rms prefer long-
distance one.
In this paper, we will theoretically investigate the relationship between �rms�

strategic incentives to form collaborative relations and location of the �rms. To
be more precise, we will discuss collaboration networks among �rms that are
located in a circular city and engage in price competition. Firms can form
collaboration links with other �rms. If two �rms form a link between them,
then the production costs of the �rms are reduced. A set of all �rms and the
existing links between them is said to be a network.
Some previous studies discuss Cournot or Bertrand competition with forma-

tion of collaboration networks. See, for instance, Goyal and Joshi (2003, 2006),
Kawamata (2004), Bloch (2005) and Okumura (2007). Johnson and Gilles
(2000) and Jackson and Rogers (2005) discuss the formation of communication
networks where each player�s location can be di¤erent. Both of them extend
the connections model introduced by Jackson and Wolinsky (1996). However,
there is no previous study analyzing a spatial competition model with formation
of collaboration networks among �rms. The spatial competition model in this
paper is a generalization of Salop�s (1979) model.
A network is represented by a set of nodes and edges. The nodes represent

the �rms and the edges represent the existing bilateral collaboration links be-
tween �rms. We will analyze the stability and market outcomes of networks. In
the previous models of network formation among �rms, some market outcomes
and stability results of a network is same as those of its renamed network. Con-
sider a six-�rm example. Figure 1 depicts two di¤erent networks. In a Cournot
or Bertrand oligopoly model with network formation, discussed by Goyal and
Joshi (2003) for example, stability results of the networks are completely same.
Moreover, some market outcomes, e.g., social surplus, of the two networks are
same. However, this is not the case in our model. This is because, in the right
network, �rm 1 forms the link with an adjacent �rm (�rm 2), but in the left
network, �rm 1 forms the link with a �rm (�rm 4) that is not adjacent to �rm 1.
Thus, stability results of a network may di¤er from those of the other network.
In addition, market outcomes, e.g., social surplus, of a network are di¤erent
from those of the other network.

Figure 1

In this paper, we will discuss pairwise stability of networks. Pairwise stability
is the solution concept introduced by Jackson and Wolinsky (1996). Some of
our stability results are closely related to Goyal and Joshi�s (2003) results. They
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discuss a Cournot oligopoly model with network formation and focus on pairwise
stability of networks. They show that under general market conditions the
complete network is pairwise stable, and with some additional assumption the
complete network is uniquely pairwise stable. Some of our stability results are
similar to theirs. However, note that our model is not in the class discussed
by Goyal and Joshi (2003). They discuss a market in moderate competition;
that is, lower cost �rms make larger pro�ts. On the other hand, our model
does not satisfy the moderate competition condition; that is, lower cost �rms
may make smaller pro�ts. Furthermore, Goyal and Joshi (2003) show that the
complete network is the unique socially e¢ cient network. We also show that the
complete network is uniquely socially e¢ cient. Okumura (2007) also discusses
a Cournot model with network formation and shows that a stochastic network
formation process converges to the complete network with positive probability
if the number of �rms is even. The formation process is introduced by Jackson
and Watts (2001) and Watts (2001). We will also show that the formation
process may converge to the complete network if the number of �rms is even.
In this paper, we attempt to answer why �rms prefer long-distance collabo-

rations to short distance ones. We will show that a �rm prefers forming a link
with the �rm located far from each other if the cost-reducing e¤ects are same.
Moreover, we will give some speci�c examples indicating that more stable net-
work has longer average distance between linked �rms. Obviously, the distance
between two �rms in di¤erent countries is often much longer than that between
two �rms in a same country. Thus, this result may explain the fact that more
than half of newly established collaborations during the period 1960-1998 are
international ones.
In this paper, we will examine a generalized Salop�s (1979) circular city

model. In the original Salop�s model, he assumes that the cost function of
each �rm is symmetric. Since our model includes the cases that the marginal
costs of �rms are asymmetric, we will derive the solution of the model that is
a generalization of Salop�s (1979) model. Economides (1993) �rstly introduces
the model. However, though his characterization of the solution is su¢ cient
for his analysis, it is insu¢ cient for our analysis. Thus, in this paper, we will
completely derive the equilibrium prices of the model.
In Section 2, we will introduce our model. In Section 3, we will derive

the equilibrium of a spatial competition model. In Section 4, we will examine
stable networks and formation process. Further, the socially e¢ cient network is
discussed in Section 4. In Section 5, we will give speci�c examples of our model
and focus on stability, e¢ ciency and the average distance between linked �rms.
Section 6 concludes.

2 Model

We will discuss a two-stage game. At the �rst stage, bilateral collaboration
links are formed among �rms. At the second stage, the �rms engage in price
competition. Let the �nite set of the �rms be N = f1; 2; � � � ; ng. We assume
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n � 3: Let a set of N and the existing collaboration links between two �rms in
N be a network g. We will write ij 2 g, indicating that �rms i and j are linked
in g, while ij =2 g indicates that i and j are not linked in g. In addition, let
g + (�)ij be the network obtained from g by adding (severing) a link between
i and j to g. The number of links that i forms in g is given by �i(g).
Let c : Z+ �! R+ be a function satisfying c(m) < c(m � 1) for all m � 1.

The marginal cost of a �rm is assumed to be constant and given by ci = c(�i(g))
for i 2 N . That is, �rm i�s marginal cost depends on the number of the �rms
linked with i.
Each �rm i chooses its price pi to maximize its own pro�t. The pro�t of i is

given by (pi � ci)Di where Di is the demand that i faces.
There is a circular city with perimeter 1. In the city, the �rms are equidis-

tanly located from each other. Without loss of generality, let the address of �rm
i be (i� 1)=n. Let the function d : N �N ! Z+ be such that

d(i; j) = d(j; i) = minfj � i; n� j + ig for j � i:

That is, d(i; j) indicates the distance between i and j times n. In addition, let

�dn =

�
n=2 if n is even,

(n� 1)=2 if n is odd.

That is, for any given n; �dn = maxi;j2N d(i; j):
Consumers are uniformly distributed with density 1 around the city. She/He

purchases at most one product from a �rm. When a consumer living in s 2 [0; 1]
purchases a product from �rm i; she/he incurs the transport cost k(i� 1)=n� sk t
where k(i� 1)=n� sk = minfj(i� 1)=n� sj ; 1� j(i� 1)=n� sjg: His/Her util-
ity is given by

v � k(i� 1)=n� sk t� pi if he/she purchases a product from i;

0 if he/she purchases nothing.

In this paper, we will focus on the case where (a) all consumers purchase a
product and (b) each �rm sells for some consumers living in both its left and
right sides. In equilibrium, (a) is satis�ed if v is su¢ ciently large and (b) is
satis�ed if t is su¢ ciently large in any network. Hence we assume that v and t
are su¢ ciently large.

3 Spatial Competition

In this section, we will characterize the equilibrium in the second stage of the
game. Thus, we will derive the price equilibrium in a given network g:
A consumer who is indi¤erent between purchasing from i and i+ 1 lives in

si 2 [(i� 1)=n; i=n] satisfying

v � (si � (i� 1)=n) t� pi = v � (i=n� si) t� pi+1;

si =
pi+1 � pi

2t
+
2i� 1
2n
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Thus,

Di =
pi+1 � pi

2t
+
pi�1 � pi

2t
+
1

n

where p0 = pn. The �rst order conditions are, for all i 2 N;

pi � p
i�1

4
� p

i+1

4
= zi � 1

2

�
ci +

t

n

�
> 0: (1)

A solution of this problem p� = (p1�; p2�; � � � ; pn�) will be characterized as
follows. For i = 1; � � � ; n;

pi� =
X
j2N

�nd(i;j)z
j (2)

=

�
�n0 z

i +
P(n�2)=2

k=1 �nk (z
i+k + zi�k) + �nn=2 z

i�n=2 if n is even,

�n0 z
i +
P(n�1)=2

k=1 �nk (z
i+k + zi�k) if n is odd,

where zn+k = zk and z�k = zn�k for k = 0; 1; � � � ; n=2: Thus, the equilibrium
price of each �rm is linearly dependent on zj for all j = 1; � � � ; n and the e¤ect
of zj on the equilibrium price of i is dependent on the distance between i and
j. The e¤ect of zj on i�s price is represented by �nd(i;j):
Note that Economides (1993, pp.246) has already stated this fact. That is,

(2) corresponds to the equation (13) of his paper. However, he does not derive
�nd(i;j) for all i; j 2 N . Since it is necessary to derive �nd(i;j) for all i; j 2 N for
our analysis below, we will derive

�n = (�n0 ; �
n
1 ; � � � ; �ndn)

=

�
(�n0 ; �

n
1 ; � � � ; �nn=2) if n is even,

(�n0 ; �
n
1 ; � � � ; �n(n�1)=2) if n is odd.

At �rst, suppose that n is even. Then, by (1) and (2), �n satis�es

�n0 �
1

2
�n1 = 1; (3)

�1
4
�nk + �

n
k+1 �

1

4
�nk+2 = 0 for k = 0; � � � ; n=2� 2; (4)

�nn=2 �
1

2
�nn=2�1 = 0: (5)

The general solution of (4) is, for l = 2; � � � ; n=2;

�nn=2�l =
(�nn=2�1 � y�nn=2)xl

x� y �
(�nn=2�1 � x�nn=2)yl

x� y (6)

where x; y are the solutions of � 1
4
�2 + �� 1

4
= 0:
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By (5) and (6),

�nn=2�l =
(2 +

p
3)l + (2�

p
3)l

2
�nn=2 for l = 1; 2; � � � ; n=2: (7)

By (3) and (7), �nn=2 satis�es 
(2 +

p
3)n=2 + (2�

p
3)n=2

2
� (2 +

p
3)n=2�1 + (2�

p
3)n=2�1

4

!
�nn=2 = 1

(8)
Therefore, �n is characterized by (7) and (8) if n is even. Note that, since �n

satis�es (3), (4) and (5), we have

�n0 + 2
X(n�2)=2

k=1
�nk + �

n
n=2 = 2: (9)

Similarly, if n is odd, then

�n0 �
1

2
�n1 = 1; (10)

�1
4
�nk + �

n
k+1 �

1

4
�nk+2 = 0 for k = 0; � � � ; (n� 1)=2� 2; (11)

3

4
�n(n�1)=2�1 �

1

4
�n(n�1)=2 = 0: (12)

By (10), (11) and (12), for l = 1; 2; � � � ; (n� 1)=2

�n(n�1)=2�l = A(l)�
n
(n�1)=2; (13)�

A((n+ 1)=2)� A((n+ 1)=2� 1)
2

�
�n(n�1)=2 = 1; (14)

where A(l) =
(
p
3 + 1)(2 +

p
3)l + (

p
3� 1)(2�

p
3)l

2
p
3

;

are satis�ed. Note also that

�n0 + 2
X(n�1)=2

k=1
�nk = 2: (15)

Thus, we have the following solution;

Proposition 1 The equilibrium price vector p� is, for each n � 3 and i =
1; � � � ; n;

pi� =
t

n
+
1

2

X
j2N

�nd(i;j)c
j (16)

where �n is characterized by (7), (8), (13) and (14).

A parameter �nd(i;j) represents the e¤ect on the equilibrium price of �rm i
of the marginal cost of �rm j. We immediately have the following result on �n.
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Remark 1 Parameters of the equilibrium price (16) satisfy 2 > �n0 > 1 > �
n
1 >

� � � > �n
dn
> 0 for all n:

(Proof) By (7), (8), (13) and (14), we have �n0 > �
n
1 > � � � > �ndn > 0. By

(3) and (10), and �n1 > 0, we have �
n
0 > 1: Next, by (9), (15) and �

n
l > 0 for

all l; we have 2 > �n0 . Finally, by (9) and (15), �
n
0 > 1 and �

n
l > 0 for all l; we

have 1 > �n1 . (Q.E.D.)
This indicates that the marginal production costs of all �rms a¤ect the price

of each �rm. In addition, the e¤ect on the price of i 2 N of the marginal cost
of j 2 N is larger than that of the marginal cost of k 2 N if and only if i is
located nearer to j than to k.

4 Networks

4.1 Stability and Formation Process

We will analyze the �rst stage of our model. That is, we will discuss the forma-
tion of collaboration networks. Since the price of each �rm is dependent on the
marginal costs of all �rms, the prices depend on the network g: Thus, we will
write the equilibrium price vector as p�(g) = (p1�(g); p2�(g); � � � ; pn�(g)): The
pro�t of a �rm is also dependent on g: Let the pro�t function of �rm i be

�i(g) = D(pi�1�(g); pi�(g); pi+1�(g))(pi�(g)� c(�i(g)):

Since (1) holds, the demand of �rm i in g is

D(pi�1�(g); pi�(g); pi+1�(g)) =
1

t
(pi�(g)� c(�i(g)):

Therefore,

�i(g) =
1

t
(pi�(g)� c(�i(g)))2;

and

sign[�i(g + ij)��i(g)] =
sign[pi�(g + ij)� c(�i(g) + 1)� fpi�(g)� c(�i(g))g]: (17)

By Proposition 1, we have

pi�(g + ij)� c(�i(g) + 1)� [pi�(g)� c(�i(g))] =�
1� 1

2
�n0

��
c(�i(g))� c(�i(g) + 1)

�
� 1
2
�nd(i;j)

�
c(�j(g))� c(�j(g) + 1)

�
(18)

� f(n; �i(g); �j(g); d(i; j)):

By (17), we have

sign[f(n; �i(g); �j(g); d(i; j))] = sign[�i(g + ij)��i(g)]:
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That is, i wants to add the link with j if and only if f(n; �i(g); �j(g); d(i; j)) > 0.
In addition, i wants to sever the link with j if and only if f(n; �i(g� ij); �j(g�
ij); d(i; j)) < 0: Thus, �rm i�s incentive to add/sever the link between i and j is
identi�ed by the number of �rms in the market, the numbers of the links that
i and j have already formed and the distance between the two �rms.
We have the following two results.

Proposition 2 If c(m0)�c(m0+1) = c(m00)�c(m00+1) form0;m00 = 0; 1; � � � ; dn;
then f(n;m;m0; �) > f(n;m;m00; � � 1) for all m = 0; 1; � � � ; n � 2 and � =
2; 3; � � � ; dn:

This result is obvious from (18) and Remark 1. Consider three �rms i; l
and m. Suppose that d(i; l) < d(i;m); that is, the distance between i and l is
shorter than the distance between i and m, and cost-reducing e¤ects of il and
im are same. Suppose that il; im =2 g: Proposition 2 implies that, if �rm i wants
to add il; then i also wants to add im. In addition, suppose that il; im 2 g:
If i wants to sever im; then i also wants to sever il. This is because the e¤ect
on the equilibrium price of i of cost-reduction of �rm m is smaller than that
of cost-reduction of �rm l: Thus, Proposition 2 means that a �rm prefers a
long-distance collaboration to short-distance one if the cost-reducing e¤ects are
same.

Lemma 1 Consider two �rms i; j 2 N . If c(�i(g))� c(�i(g) + 1) = c(�j(g))�
c(�j(g)+1); then f(n; �i(g); �j(g); d(i; j)) > 0 and f(n; �j(g); �i(g); d(i; j)) > 0:

(Proof) Suppose that c(�i(g))� c(�i(g) + 1) = c(�j(g))� c(�j(g) + 1) = �.
Then, by (18),

f(n; �i(g); �j(g); d(i; j)) > 0,�
1� 1

2
�n0 �

1

2
�nd(i;j)

�
� > 0:

By (3), (10) and Remark 1,

1� 1
2
�n0 �

1

2
�nd(i;j) > 0 for all d(i; j) = 1; 2; � � � ; dn:

Thus, we have Lemma 1. (Q.E.D.)

This result implies that, in the case that the e¤ects of the link between i
and j on the marginal costs of i and j are same, i and j want to add ij if ij =2 g
and neither i nor j wants to sever ij if ij 2 g.
We will discuss stability of networks and a stochastic network formation

process. We will consider the following two concepts.
The network g is said to be pairwise stable, if the following two condi-

tions are satis�ed: (a) for all �rms i; j (i > j) such that ij 2 g, f(n; �i(g �
ij); �j(g � ij); d(i; j)) � 0 and f(n; �j(g � ij); �i(g � ij); d(i; j)) � 0 and, (b)

8



for all �rms i; j (i > j) such that ij =2 g, if f(n; �i(g); �j(g); d(i; j)) > 0, then
f(n; �j(g); �i(g); d(i; j)) < 0.
Next, we will present the stochastic network formation process introduced by

Jackson and Watts (2001) and Watts (2001). We consider a discrete set of points
in time f1; 2; � � � ; t; � � � g: The network formation starts from the empty network,
that is, g1 is the network with no link. At each time a pair of �rms is randomly
identi�ed with positive probability. The network at the end of period t is given
by gt: Suppose that �rms i and j are identi�ed at t + 1 and ij 2 gt. If either
f(n; �i(gt� ij); �j(gt� ij); d(i; j)) < 0 or f(n; �j(gt� ij); �i(gt� ij); d(i; j)) < 0,
then gt+1 = gt � ij: If otherwise, gt+1 = gt. Suppose that �rms l and m are
identi�ed at t + 1 and lm =2 gt: If both f(n; �l(gt); �m(gt); d(l;m)) > 0 and
f(n; �m(gt); �

l(gt); d(l;m)) > 0, then gt+1 = gt + lm: If otherwise, gt+1 = gt. If
in gT = �g no pair of �rms will add or sever the link, that is, �g = gT = gT+1 =
gT+2 = � � � ; then this process converges to �g.
It is obvious that the stochastic formation process converges to only a pair-

wise stable network.1 However, there may exist some pairwise stable network
to which the formation process converges with probability zero. Jackson and
Watts (2001), Kawamata (2004) and Okumura (2007) give some examples.
By Proposition 2 and Lemma 1, we will provide a characterization of pairwise

stable networks. Let N�(g) be a set of the �rms that have � links in g. In
addition, we denote that

�dlm = maxfd(i; j) ji 2 Nl(g); j 2 Nm(g) and ij =2 g g;
dlm = minfd(i; j) ji 2 Nl(g); j 2 Nm(g) and ij 2 g g:

Then, a pairwise stable network is characterized as follows.

Theorem 1 A network g is pairwise stable if and only if (1) for each � � n�1
and i; j 2 N�(g) such that i 6= j; ij 2 g; (2) for each l;m � n � 1 such that
l 6= m; if there exist some i 2 Nl(g) and j 2 Nm(g) such that ij =2 g and
f(n; l;m; �dlm) > 0; then f(n;m; l; �dlm) < 0, (3) for each l;m � n� 1 such that
l 6= m; if there exist some i 2 Nl(g) and j 2 Nm(g) such that ij 2 g; then
f(n; l � 1;m� 1; dlm) � 0 and f(n;m� 1; l � 1; dlm) � 0.

(Proof) First, we will consider the necessity part. By Lemma 1, if i; j 2
N�(g) and ij =2 g; then both i and j agree to add ij because c(�i(g))� c(�i(g)+
1) = c(�j(g))� c(�j(g) + 1): Thus, the �rst condition is necessary. The second
and third conditions are obviously necessary.
Second we will consider the su¢ ciency part. By Lemma 1, for each i; j 2

N�(g); ij 2 g is not severed. By Proposition 2, if either f(n; l;m; �dlm) � 0 or
f(n;m; l; �dlm) < 0 is satis�ed, then for any two �rms i 2 Nl(g) and j 2 Nm(g)
such that ij =2 g, either i or j disagrees to form ij: Moreover, by Proposition 2,
if f(n; l � 1;m � 1; dlm) � 0 and f(n;m � 1; l � 1; dlm) � 0, then for any two
�rms i 2 Nl(g) and j 2 Nm(g) such that ij 2 g, neither i nor j wants to sever
ij:(Q.E.D)

1The fomation process may converge to no network. In that case, the formation process
will be in a closed cycle. See Jackson and Watts (2002) with regard to this point.
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By Theorem 1, we have the following result.

Corollary 1 The complete network is pairwise stable.

This result is direct from Theorem 1. Since �i(g) = n� 1 for all i 2 N if g
is the complete network, then no link will be severed.
Goyal and Joshi (2003, Theorem 3.1) have a similar result, but our model is

not in the class of their model.

Remark 2 In this model, Assumption MC (Goyal and Joshi (2003, p.69))
is not satis�ed. That is, �i(g) 6= �j(g) may be satis�ed even if ci(�i(g)) =
cj(�j(g)); and �i(g) � �j(g) may also be satis�ed even if ci(�i(g)) < cj(�j(g)):

Consider the model where the �rms are equidistantly located on the circle;
that is, ai = (i� 1)=n for all i 2 N: Suppose that n = 6; t = 50 and c(0) = 10;
c(1) = 9; c(2) = 1: If (�1(g); �2(g); �3(g); �4(g); �5(g); �6(g)) = (1; 2; 1; 0; 2; 2);
then

(�1(g);�2(g);�3(g);�4(g);�5(g);�6(g)) � (0:61; 2:52; 0:9; 0:71; 2:18; 2:06):

Hence our model does not satisfy Assumption MC.
In addition, the following result is straightforward from Lemma 1.

Corollary 2 If c(�i(g)) = 0 � �i(g) where 0 > (n � 1) > 0; then the
complete network is uniquely pairwise stable.

In this case, c(m)� c(m+1) =  for all 0 � m < n� 1: Thus, by Lemma 1,
we have the result. Goyal and Joshi (2003, Proposition 3.1) also show that, in
a Cournot oligopoly model, the complete network is uniquely stable if marginal
costs are linearly declining in the number of links.
Finally, we will focus on the stochastic dynamic process de�ned above. The

following result is direct from Lemma 1 and a result of Okumura (2007, Theorem
1).

Corollary 3 If n is even, then the dynamic network formation process con-
verges to the complete network with positive probability.

The proof is due to that of Okumura (2007, Theorem 1). On the other hand,
the formation process may converge to the complete network with probability
zero if n is odd. Suppose c(m) � c(m + 1) =  > 0 for all 1 � m < n �
1 and c(0) � c(1) > �n

dn
=(2 � �n0 ): This cost function means that the cost

reduction e¤ect of adding the �rst link is very high but subsequent links are
not so important. In this case, the formation process converges to the complete
network with probability zero if n is odd. See Okumura (2007, p.138) with
regard to this point in detail.

10



4.2 Socially E¢ cient Network

Next, we will analyze the socially e¢ cient network, in which the social surplus
is higher than that in any other networks. We have the following result.

Proposition 3 If the �rms are located geographically equidistant from one an-
other, then the complete network is the uniquely socially e¢ cient network.

(Proof) In the second stage of this model, we focus on the case where each
consumer purchases a product in any network. Thus, in the socially e¢ cient
network, the sum of the total production cost and the total transport cost is
lower than that in any other networks.
In the complete network, the marginal production cost of all �rms is c(n�1):

Thus, the total production cost in the complete network is smaller than that
in any other network. Further, by Proposition 1, in the complete network, the
prices of all �rms are equal to t=n+ c(n�1): Thus, in the complete network, all
consumers purchase from the nearest �rm. Therefore, the total transportation
cost in the complete network is smaller than or equal to that in any other
network. Hence the complete network is uniquely socially e¢ cient. (Q.E.D)
By Proposition 3 and Corollaries 1 and 3, the uniquely socially e¢ cient

network is pairwise stable and the formation process converges to the e¢ cient
network with positive probability if n is even. Moreover, if marginal costs are
linearly declining in the number of links, the complete network is the uniquely
socially e¢ cient network and the uniquely pairwise stable network. This fact is
straightforward from Proposition 3 and Corollary 2.

5 Six-�rm Example

In this section, we will discuss our model in the case of n = 6. Stability con-
ditions and social surpluses of some speci�c networks will be examined. In
addition, we will focus on the average distance between linked �rms. The aver-
age distance in g is de�ned as L(g). Since the �rms are assumed to be located
geographically equidistant from one another, the average geographic distance is
in direct proportion to the average distance of our de�nition.
Note that the sentence that g is more (less) stable than g0 implies that the

stability condition on g is weaker (harder) than that on g0: Likewise, the sentence
that g is more (less) e¢ cient than g0 means that the social surplus in g is larger
(smaller) than that in g0:
First, we focus on a network with two complete groups: one is of four �rms

and the other is of two �rms. See, the networks in Figure 2, for example. The
networks can be categorized into three kinds. That is, the stability condition,
the social surplus and the average distance between linked �rms of a network
are equal to those of either gA, gB or gC in Figure 2.

Figure 2
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By using Theorem 1, let us derive the stability condition of each network in
Figure 2. At �rst, consider gA. The network gA is pairwise stable if and only if
either (a) �rm 1 (or 4) has no incentive to add the link with 2 (or 3 or 4 or 5);
namely f(6; 1; 3; 2) < 0; or (b) �rm 2 (or 3 or 4 or 5) has no incentive to add
the link with 1 (or 4); namely f(6; 3; 1; 2) < 0: Since

�60 =
52

45
; �61 =

14

45
; �62 =

4

45
; �63 =

2

45
;

by (7) and (8), the condition is

f(6; 1; 3; 2) =
19

45
(c(1)� c(2))� 2

45
(c(3)� c(4)) < 0 or

f(6; 3; 1; 2) =
19

45
(c(3)� c(4))� 2

45
(c(1)� c(2)) < 0;

, 19

2
<
c(3)� c(4)
c(1)� c(2) or

2

19
>
c(3)� c(4)
c(1)� c(2) : (19)

On the other hand, the stability condition of gB is that the link between 1
and 4 (or 3 and 6) will not be added. That is, the condition is

f(6; 1; 3; 3) =
19

45
(c(1)� c(2))� 1

45
(c(3)� c(4)) < 0 or

f(6; 3; 1; 3) =
19

45
(c(3)� c(4))� 1

45
(c(1)� c(2)) < 0;

, 19 <
c(3)� c(4)
c(1)� c(2) or

1

19
>
c(3)� c(4)
c(1)� c(2) : (20)

Similarly, the stability condition of gC is that (20) is satis�ed. As a result, gA

is more stable than gB and gC .
Next, we will derive the social surplus in each network: gA; gB and gC . Let

the social surplus of a network g be W (g). Then, we have

W (gA) > W (gB) > W (gC):

The social surplus in gA is the largest of the three networks. This is because
the quantity of the �rms that have c(1) in gA is smaller than those in other
networks. That is, since the adjacent �rms of a �rm with c(1) have c(3) in gA;
many consumers will purchase from the �rms with c(3).2 Similarly, we have the
intuition on W (gB) > W (gC):
Finally, the average distance of the linked �rms in each network is the fol-

lowing order:
L(gA) > L(gB) > L(gC):

Thus, gA is the most stable and the most e¢ cient network among the net-
works such that one complete group consists of two �rms and the other complete

2Of course, there is a loss of the transportation costs of the consumers in each network.
The loss of the transportation costs are largest in gA: But, we can ignore the loss, because
the loss is quite small compared with the loss from high production costs.

12



group consists of four �rms. On the other hand, the stability conditions of gB

and gC are same, but social surpluses are di¤erent; that is, gB is more e¢ cient
than gC . Thus, there may exist some con�ict between stability and e¢ ciency of
networks; that is, more e¢ cient network may not be more stable. In this exam-
ple, more stable network (more e¢ cient network) has longer average distance
between linked �rms.
Next, we will discuss stability of some more complicated networks. For

example, the networks in Figure 3.

Figure 3

By using Theorem 1, we will derive the necessary and su¢ cient condition
that a network in Figure 3 is pairwise stable. First, gD is pairwise stable if
and only if (D1) f(6; 3; 4; 1) � 0; (D2) f(6; 4; 3; 1) � 0; (D3) f(6; 0; 4; 3) � 0,
(D4) f(6; 4; 0; 3) � 0 and (D5) f(6; 1; 4; 2) < 0 or f(6; 4; 1; 2) < 0: Second,
gE is pairwise stable if and only if (E1) f(6; 3; 4; 1) � 0; (E2) f(6; 4; 3; 1) �
0; (E3) f(6; 0; 4; 2) � 0, (E4) f(6; 4; 0; 2) � 0 and (E5) f(6; 1; 4; 3) < 0 or
f(6; 4; 1; 3) < 0: Finally, gF is pairwise stable if and only if (F1) f(6; 3; 4; 1) � 0;
(F2) f(6; 4; 3; 1) � 0; (F3) f(6; 0; 4; 2) � 0, (F4) f(6; 4; 0; 2) � 0 and (F5)
f(6; 1; 4; 3) < 0 or f(6; 4; 1; 3) < 0: By comparing these conditions, gD is more
stable than gE and gF ; and gE is more stable than gF .3 In addition, we obviously
have

L(gD) > L(gE) > L(gF ):

Thus, in these networks, more stable network has longer average distance be-
tween linked �rms.

6 Extension

In the previous sections, the transport cost of consumers assumed to be linear.
In this section, we will consider quadratic transport costs and show that some
results in the previous sections continue to hold. That is, the transport cost is
given by (k(i� 1)=n� sk)2 t.
Then, the �rst order conditions will be, for all i 2 N;

pi � p
i�1

4
� p

i+1

4
= zi0 � 1

2

�
ci + t

�
:

Proposition 10 The equilibrium price vector p� is, for each n � 3 and i =
1; � � � ; n;

pi� = t+
1

2

X
j2N

�nd(i;j)c
j

where �n is characterized by (7), (8), (13) and (14).

3The conditions (D1) to (F1) are same. (D2) to (F1) are also same conditions. By Lemma
1, (D3) is weaker than (E3) and (F3), and (E3) is weaker than (F3). Also, (D4) is weaker
than (E4) and (F4), and (E4) is weaker than (F4). Finally, (E5) and (F5) are same, and by
Lemma 1, (D5) is weaker than (E5) and (F5).
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Thus, Propositions 2 and 3, Lemma 1, Theorem 1, and Corollaries 1 to 3
are continue to hold if the transport cost incurred by consumers are quadratic.

7 Concluding Remarks

We discuss collaboration networks among �rms located on Salop�s (1979) circu-
lar city. In our model, each �rm noncooperatively decides its price, but �rms
may form cooperation links in order to reduce their production costs. In pre-
vious studies such as Goyal and Joshi (2003) and Okumura (2007), they also
discuss similar models. Though our model is not in the class of their model, some
results are similar to theirs (see Remark 2 and Corollaries 1 to 3). Moreover,
we show that the complete network is socially e¢ cient network.
Moreover, we attempt to answer a question: why �rms prefer long-distance

collaborations to short-distance ones. In our model, we show that �rms prefer
long-distance collaborations to short-distance ones if the cost-reducing e¤ects
are same (see Proposition 2). In addition, we focus on stable networks and
analyze some examples in Section 5. In the examples, we show that more stable
network has longer average distance between linked �rms. This implies that
long-distance collaboration links are likely to form.
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