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Abstract

We often see people procrastinate what should be done as soon as pos-
sible. Procrastination is often occurred in collective decision making. The
stakeholders in collective decision making tend to waste time while trying
to avoid responsibility and shifting blame to others. What should the so-
cial planner do for preventing the procrastination? In the nonperforming
loans (NPLs) problem of Japan, the financial authorities did various poli-
cies. We focus on the three different types of policies: change the cost of
having NPLs, change the cost of eliminating NPLs and set the deadline of
final disposal of NPLs. We show that the procrastination is repressed by
the taxation of having NPLs and the subsidy of eliminating NPLs. But,
we reveal that the setup of deadline is insignificant whether the deadline
has the punishment or not.

1 Introduction

Many persons have the experience to procrastinate what should be done as
soon as possible. Procrastination generates the loss and the loss depresses the
efficiency of society. In ‘lost decade’ of Japan, many reforms in politics, economy
and society were delayed.
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Why did (or do) we procrastinate? Nowadays, some psychologists and be-
havioral economists find that human beings have the innate propensity to pro-
crastinate even if they do not have the over-optimistic expectation. It is consid-
ered that the real identity of their propensity is hyperbolic discounting. 1 The
persons with hyperbolic discounting plays down the gain and the loss in the
future and plays up the gain and the loss in the present. Therefore, they prefer
larger loss to smaller loss when the smaller loss comes sooner in time than the
larger. Needless to say, this pattern of discounting is dynamically inconsistent.

But, most of decision-making is taken not by one person but by several
persons. Are the stakeholders in the collective decision-making hyperbolic dis-
counters? The previous researches show that the procrastination happens if the
stakeholders are not hyperbolic discounting. It is reason why they tend to waste
time trying to avoid responsibility and shifting blame to others.

Maynard Smith (1974) writes the situation as the game in the biological
context. Two animals face each other across the dish. If they deter, they share
the profit fifty-fifty but rack up a large cost in the battle. If one compromises
and the other deters, deterring animal gets all of the dish. If they compromise,
they share the profit fifty-fifty amicably. We call the game of this type as war
of attrition.

Alesina and Drazen(1991) applies the war of attrition to fiscal policy. 2 In
the timing game, they assume that the game continues till any player com-
promises and that the value of dish is depreciated. In terms of game theory,
corresponding payoff structure is known as the game of chicken. This game
has pure strategy efficient equilibria and mixed strategy inefficient equilibrium.
It is popular that mixed strategy inefficient equilibrium is only stable under
best-response dynamics. In this game, it is social optimal that any player com-
promises at t = 0. However, the probability that the game does not end at t = 0
is positive in a stable equilibrium. Therefore, the expected time of stabilization
is ‘rational’ delay.

In Japan, the bad-debt disposal was delayed. Many economists think that
the economy in the last decade in Japan could have been recovered earlier if
the problem could have been tackled earlier. 3 What is behind the delay is
that the bank with an impaired balance sheet might attempt to “gamble for
resurrection” and increase risky lending to “zombie” firms.

Fukuda et al(2005) cited the five factors behind this banking corporation’s
action as follows:
(1) over-optimistic expectation
(2) the regulatory of capital ratio (discretionary zone in the accounting rule)
(3) moral hazard in the banking corporations
(4) reconciliation of interests (war of attrition)

1Laibson(1997), O’Donoghue and Rabin(2006) and Benabou and Tirole(2002) give the
explanation to this discounting.

2Fudenberg and Tirole(1991) investigated the theory of this game.
3Many high income OECD countries have faced this problem. The term most of them settle

this problem was three or five years. So, the term of Japan is exceptionally long. [Caprio and
Klingebiel(2003)]
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(5) too-big-to-fail
In this paper, we view the base of NPL problem as the reconciliation of

interests. We focus on the three different types of policies: change the cost of
having NPLs, change the cost of eliminating NPLs and set the deadline of final
disposal of NPLs. We categorize the policies which was done and we reveal what
should be done in the lost decade and estimate the policies used by the war of
attrition.

The model in this paper is in the literature of finance. But, the model can
be applied in the other literature. We can apply the model to the problem
of greenhouse warming. The exitence of greenhouse gas causes the damage
as global warming. The reduction of the gas causes the damage in the world
economy. Even if any government makes an effort for reducing greenhouse gas
emission in the country, the problem can not be solved. The above problem has
the following properties:
(1)The existence of the problems itself produces the cost.
(2)The final disposal of the problems produces the cost.
(3)These costs increase as time goes on.
(4)Collective decision-making.
We can see these properties in many cases of joint ventures and politics. This
paper will also provide the solution of these problems other than finance.

The remainder of this paper is organized as follows. Section 2 presents a
benchmark model and equilibrium. Section 3 investigates the change of having
or eliminating NPLs. Section 4 introduces the deadline. Section 5 concludes
the paper. Formal proofs are collected in the Appendix.

2 Benchmark

2.1 Model

At first, we present the model describing the reconciliation of interests. There
are nonperforming loans at t = 0. If the elimination of the loans is postponed,
the loans increase exponentially.

We assume that the amount of bad dept is D(t) and that the cost of final
disposal of bad debt is bD(t). For simplicity, we assume D(t) increases at the
rate of γ − 1(≥ 0). So, we set D(t) = D0γ

t(D0 > 0).
There is a ceiling on the total amount of loaned money defined by the net

asset. If a collection of doubtful receivables is done, the bank can lend the other
good company in the scope of bad debts write-off recovery. In fact, the existence
of bad debts causes opportunity cost. We assume that the cost is aD(t) at t.

We set discount factor δ. And we define V (t) as the net present value from
eliminating bad loans at t. So, this value is

V (t) = −δtbD(t)− a[D(0) + δD(1) + · · ·+ δt−1D(t− 1)]

= −(γδ)tbD0 −
1− (γδ)t

1− γδ
aD0.
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When should the final disposal of bad debt be done? We set the period when
the disposal should be done T ∗. T ∗ is the solution of maxt≥0 V (t).

i) γδ ≥ 1 The cost of final disposal and social cost increases progressively. So,
V(t) is decreasing function. Therefore, T ∗ = 0.

ii) γδ < 1 The present value of cost of final disposal decreases and social cost
increases. T ∗ is decided by the balance of the both sides.

V (t+ 1)− V (t)

= −[(γδ)t+1 − (γδ)t]bD0

− [(1 + · · ·+ (γδ)t−1 + (γδ)t)− (1 + · · ·+ (γδ)t−1)]aD0

= [b(1− γδ)(γδ)t − a(γδ)t]D0.

So, V (t+ 1)− V (t) > 0⇔ (1− γδ)b > a.

Therefore,

(a) if 1− γδ > a
b
, T ∗ =∞.

(b) if 1− γδ < a
b
, T ∗ = 0.

We assume that the best timing of final disposal is 0 (T ∗ = 0). Hence,

Assumption .1 1− γδ < a
b
.

There are two players (A,B). They have a nonperforming loan. One player
has the half of the loan and the other has the other half. The cost which they
eliminate bad debt is bD(t) = bD0γ

t. They negotiate how much they share
the cost. We define the player i’s share of the cost as Ci. The actions which
they can take are compromising(C) and deterring(D) at each period. If player
A compromises and player B deters, CA = bD(t), CB = 0. If player A deters
and player B compromises, CA = 0, CB = bD(t). If player A and player B
compromise, the final disposal is taken by act. So, CA = CB = 1

2 bD(t).
If player A and player B deter, the final disposal is procrastinated. In this

case, the existence of bad debts generates the opportunity cost, aD(t). They
split the cost between A and B (because each player has the same amount of
the loan). And they will negotiate in the next term again.

Now, we permit mixed strategy. So, we defined pi(t) as the probability that
player i deters at t. pi(t) = 0 means Compromise and pi(t) = 1 means Deter.
Hence, the strategy of player i is (pi(0), pi(1), · · ·).

Under the situation that the final disposal has not done at t, we calculate
the value estimated at 0 from eliminating bad loans at t. The player’s payoff
estimated at 0 is F (t), L(t) or B(t) if any player compromises at t.

When both players compromise, we define B(t) as the payoff of each player.
When player i compromises and player j (i �= j) deters, we define L(t) as the
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payoff of player i and F (t) as one of player j. These payoffs include the sunk
cost at t. So, we can represent these payoff as follows:

F (t) = −1− (γδ)t

1− γδ

a

2
D0,

L(t) = −1− (γδ)t

1− γδ

a

2
D0 − (γδ)tbD0

= F (t)− (γδ)tbD0,

B(t) = −1− (γδ)t

1− γδ

a

2
D0 −

1

2
(γδ)tbD0

= F (t)− 1

2
(γδ)tbD0.

Now, we assume that the subgame is war of attrition. Hence,

Assumption .2 L(n) > B(n+ 1)⇔ 2− γδ < a
b
.

If this assumption is violated, the subgames become prisoner’s dilemma.

2.2 Equilibrium

Now, we investigate Subgame Perfect Nash Equilibrium in the infinite war of
attrition. For the simplicity, we set the assumption as follows:

Assumption .3 No player takes the strategy that he/she takes a stochastic ac-
tion at any t and a nonstochastic action at the other t.

At first, we investigate Pure Strategy Equilibrium. In the infinite war of attri-
tion, the two stationary equilibrium are

(1) pA(t) = 1 and pB(t) = 0, ∀t ≥ 0,

(2) pA(t) = 0 and pB(t) = 1, ∀t ≥ 0.

In the former equilibrium, player B compromises at t = 0. So, player A
does not bear at any cost. Even if player B does not compromise, player A
deters infinitely. Therefore, the deposit is procrastinated and player B bear the
loss, a

2D0 > 0 at each period. For the minimization of these cost, player B
compromises as soon as possible. And the game is finished at t = 0. If that
helps, we can find some nonstationary equilibrium. In these equilibrium, either
player compromises at t = 0 and the game is finished at t = 0.

At second, we investigate Mixed Strategy Equilibrium. There is a symmet-
ric equilibrium where each player choices the same strategy because this game
is symmetric. We write the mixed strategy in this symmetric equilibrium as
(p̂(0), p̂(1), · · · , p̂(t), · · ·). We can calculate p̂(t) used by the property that the
profit of player i is not changed whether he/she compromises or deters in the
mixed strategy equilibrium.
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(a) When the player i compromises, If player j compromises, the player
i’s profit is B(t) = F (t)− 1

2 (γδ)
tbD0.

If player j deters, the player i’s profit is L(t) = F (t)− (γδ)tbD0.

Because the probability player j compromises is 1 − p̂(t), The expected
profit of player i is

E[V (t)|ai(t) = C] = [1− p̂(t)][F (t)− 1

2
(γδ)tbD0] + p̂(t)[F (t)− (γδ)tbD0]

= F (t)− 1

2
[1 + p̂(t)](γδ)tbD0.

(we write the action of player i at t as ai(t).)

(b) When the player i deters, If player j compromises, the player i’s profit
is F (t).

If player j deters, the final deposit is procrastinated.

From the property of the mixed strategy equilibrium,

E[V (t+ 1)|ai(t+ 1) = D] = E[V (t+ 1)|ai(t+ 1) = C]

= F (t+ 1)− 1

2
[1 + p̂(t+ 1)](γδ)t+1bD0.

E[V (t)|ai(t) = D] = [1− p̂(t)]F (t) + p̂(t)E[V (t+ 1)|ai(t+ 1) = D]

= [1− p̂(t)]F (t) + p̂(t)[F (t+ 1)− 1

2
[1 + p̂(t+ 1)](γδ)t+1bD0].

From (a) and (b),

F (t)− 1

2
[1 + p̂(t)](γδ)tbD0 = [1− p̂(t)]F (t) + p̂(t)[F (t+ 1)− 1

2
[1 + p̂(t+ 1)](γδ)t+1bD0]

⇔
F (t)− 1

2
[1 + p̂(t)](γδ)tbD0 = [1− p̂(t)]F (t) + p̂(t)[F (t)− (γδ)t

a

2
D0 −

1

2
[1 + p̂(t+ 1)](γδ)t+1bD0]

⇔
−1

2
[1 + p̂(t)](γδ)tbD0 = p̂(t)[−(γδ)t a

2
D0 −

1

2
[1 + p̂(t+ 1)](γδ)t+1bD0]

⇔
−[1 + p̂(t)](γδ)t = p̂(t)[−(γδ)t a

b
− [1 + p̂(t+ 1)](γδ)t+1]

⇔
−[1 + p̂(t)] = p̂(t)[−a

b
− [1 + p̂(t+ 1)](γδ)]

⇔
γδp̂(t)p̂(t+ 1)− [1− γδ − a

b
]p̂(t)− 1 = 0

This suggests the following proposition.
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Proposition .1 In the infinite war of attrition, there are stationary mixed
strategy equilibrium and pure strategy equilibrium. That is to say, nonstationary
mixed strategy equilibrium does not exist.

Proof: see Appendix.

From Proposition.1, we can write a stationary mixed strategy equilibrium is
(p∗, p∗, · · ·). And p∗ satisfied γδp∗2 − [1− γδ − a

b
]p∗ − 1 = 0. From assumption

2, the quadratic equation γδp2− [1−γδ− a
b
]p−1 = 0 has the real solution from

0 to 1.

Therefore, p∗ =
1−γδ− a

b
+
√
(1−γδ− a

b
)2+4γδ

2γδ .
Needless to say, the socially best period to deposit is t = 0. But the proba-

bility to deposit at t = 0 is 1 − (p∗)2. So, we do not always acheive the social
optimality. And the expected period to deposit (EPD) is

(1− p∗
2)× 0 + p∗

2(1− p∗
2)× 1 + · · ·+ p∗

2t(1− p∗
2)× t+ · · · = p∗2

1− p∗2
.

3 Comparative Statics -Change the Cost of hav-

ing or eliminating NPLs-

In this section, we show the effect that the financial authority taxes or subsidizes
the cost of having or eliminating NPLs. In the model, we assume that the cost
of having NPLs is aD(t) and that the cost of eliminating NPLs is bD(t). From
the above, we can think that the period to deposit, the probability of deterring
and the other outcome in this game are affected by the ratio between the cost
of existing bad loans and the cost of eliminating them : a

b
.

We define function f(p) ≡ γδp2−[1−γδ− a
b
]p−1. From the previous section,

f(p∗) = 0. Now, 0 < p < 1 ⇒ ∂f(p)
∂ a
b

= p > 0. So,
∂p∗( a

b
,γδ)

∂ a
b

< 0. To rein in

the procrastination, the financial authority must make a
b
be higher. Thus, the

authority must tax the existence of NPLs and subsidize the disposal of NPLs.
In Japan, the government strengthened the legal structure on the bankruptcy,

debt forgiveness and the liquidation of real estate and loans. We think these
policies become the subsidy for the disposal of NPLs and promote the final
disposal.

The taxation of the existence of NPLs was not done in Japan. But some
countries adopt this policy. For example, the deposit insurance rate in Canada
is decided by the asset quality. So, the rate of the bank which has large impaired
assets is higher than one of the bank which has a little impaired assets. Deposit
Insurance Corporation of Japan studied the variable deposit insurance rate. But
the deposit insurance rate has been uniformly in Japan.
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4 Setup of the Deadline

Is the policy to force the final disposal by the deadline decided by the finan-
cial authority effective? The government in Japan came out with the urgent
economic package in April 2001. Many economists think that this package pro-
moted the final disposal and recovered Japanese economy. Some of them believe
that the setup of deadline is effective because the setup of deadline of the final
disposal is a part of the package.

4.1 Simple Deadline

We investigate the policy to set the deadline. At first, we define deadline is
at n as that the final deposit is taken by act when n + 1 if neither player
has compromised till n. That is to say, the payoff profile at t = n + 1 is
(B(n+ 1), B(n+ 1)) when each player has deterred till n.

We show that there are two pure strategy equilibria as follows:

(1) pA(t) = 1 and pB(t) = 0, ∀t ≥ 0,

(2) pA(t) = 0 and pB(t) = 1, ∀t ≥ 0.

We investigate mixed strategy equilibrium. We focus on a symmetric equi-
librium where each player choices the same strategy. Now, we write p̂s(t, n) as
the probability the player deters at t in the case that the deadline is n. As in
the infinite war of attrition, we show that

γδp̂s(t, n)p̂s(t+ 1, n)− [1− γδ − a

b
]p̂s(t, n)− 1 = 0 if t < n.

Next, we calcurate p̂s(n, n).

(a) When the player i compromises, If player j compromises, the player
i’s profit is B(n) = F (n)− 1

2 (γδ)
nbD0.

If player j deters, the player i’s profit is L(n) = F (n)− (γδ)nbD0.

Because the probability player j compromises is 1− p̂s(n, n), the expected
profit of player i is

E[V (n)|ai(n) = C] = [1− p̂s(n, n)][F (n)−
1

2
(γδ)nbD0] + p̂s(n, n)[F (n)− (γδ)nbD0]

= F (n)− 1

2
[1 + p̂s(n, n)](γδ)

nbD0.

(b) When the player i deters, If player j compromises, the player i’s profit
is F (n).

If player j deters, the final deposit is taken by act at t = n+ 1.

So, the player i’s profit is B(n+ 1) = F (n+ 1)− 1
2 (γδ)

n+1bD0

Because the probability player j compromises is 1− p̂s(n, n),

E[V (n)|ai(n) = D] = [1−p̂s(n, n)]F (n)+p̂s(n, n)[F (n+1)−1

2
(γδ)n+1bD0].
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From (a) and (b),

F (n)− 1

2
[1 + p̂s(n, n)](γδ)

nbD0 = [1− p̂s(n, n)]F (n) + p̂s(n, n)[F (n+ 1)− 1

2
(γδ)n+1bD0]

⇔
F (n)− 1

2
[1 + p̂s(n, n)](γδ)

nbD0 = [1− p̂s(n, n)]F (n) + p̂s(n, n)[F (n)− (γδ)n
a

2
D0 −

1

2
(γδ)n+1bD0]

⇔
−1

2
[1 + p̂s(n, n)](γδ)

nbD0 = p̂s(n, n)[−(γδ)n
a

2
D0 −

1

2
(γδ)n+1bD0]

⇔
−[1 + p̂s(n, n)](γδ)

nb = p̂s(n, n)[−(γδ)na− (γδ)n+1b]

⇔
−[1 + p̂s(n, n)] = p̂s(n, n)[−

a

b
− (γδ)]

⇔
p̂s(n, n) =

−1
1− γδ − a

b

.

Because we solve the game with deadline by backward induction,

p̂s(t, n) = p̂s(t− 1, n− 1) = · · · = p̂s(0, n− t).

For the convenience, we define x as γδ and y as −1 + γδ + a
b
. We have that

xp̂s(t, n)p̂s(t+ 1, n) + yp̂s(t, n)− 1 = 0.

Then, we can represent p̂s(t, n) =
cn−t
cn−t+1

as ck = αkX + βkY . We can show

that α =
y+
√
y2+4x

2 ,β =
y−
√
y2+4x

2 , X = α
α−β

, Y = −β
α−β

. So,

p̂s(n−t, n) =
αtX + βtY

αt+1X + βt+1Y
=

1
α
+ 1

α
( β
α
)t Y
X

1 + (β
α
)t+1 Y

X

=
1

α

1− ( β
α
)t+1

1− ( β
α
)t+2

= p∗
1− ( β

α
)t+1

1− ( β
α
)t+2

.

This equation suggests the following results.

Proposition .2 If k is odd, p̂s(n−k, n) < p∗. If k is even or 0, p̂s(n−k, n) > p∗.

Proof: see Appendix.

Proposition .3 lim
n→∞

p̂s(t, n) = p∗ for all t < n.

Proof: see Appendix.

We can represent the expected period to deposit in the game with simple
deadline whose terminal node is n as EPDs(n).

Proposition .4 lim
n→∞

EPDs(n) =
p∗2

1− p∗2
.
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Proof: see Appendix.
p∗2

1− p∗2
is the expected period to deposit (EPD) in the infinite game. So,

we show that the case in the simple deadline is closed to the infinite case if
n is close to the infinity by Proposition.3 and .4. This phenomenon may be
consistent with the intuition which many persons have.

However, p̂s(t, n) vibrates around p∗. Many persons may feel that setting
the deadline enlarges the probability of compromising. This vibration shows
that the intuition is wrong. We explain this vibration and conversion in the
next subsection.

4.2 Why does the sequence of p̂s(t, n) vibrate?

We feel that setting the deadline enlarges the probability of compromising in-
tuitively. However, Proposition 2 shows that this intuition is wrong.

We try the intuitive explanation of this phenomenon.
We focus on the payoff matrixes.

Compromise Deter
Compromise F (t)− 1

2bD0(γδ)
t F (t)

F (t)− 1
2bD0(γδ)

t F (t)− bD0(γδ)
t

Deter F (t)− bD0(γδ)
t F (t+ 1)− 1

2bD0(1 + p̂(t+ 1))(γδ)t+1

F (t) F (t+ 1)− 1
2bD0(1 + p̂(t+ 1))(γδ)t+1

Table 1: the payoff matrix in the infinite war of attrition

Compromise Deter
Compromise F (n)− 1

2bD0(γδ)
n F (n)

F (n)− 1
2bD0(γδ)

n F (n)− bD0(γδ)
n

Deter F (n)− bD0(γδ)
n F (n+ 1)− 1

2bD0(γδ)
n+1

F (n) F (n+ 1)− 1
2bD0(γδ)

n+1

Table 2: the payoff matrix in the war of attrition with deadline (t = n)

Two matrixes have the property of chicken game. They are the same ma-
trixes except (D,D). And the payoff of (D,D) at t = n in the game with deadline
is larger than one at steady state in the infinite game.

Because the expected payoff taking C must be the same as the payoff taking
D, the probability of deterring at t = n in the game with deadline: p̂s(n, n)
must become larger than the probability at steady state in the infinite game p∗

(see Figure 1).
To put it another way, bacause compulsory disposal is done at t = n + 1,

each player has the incentive not to bear all of the disposal cost at t = n but to
shift blame the half of the disposal cost to each other.
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Figure 1: Expected payoff and probability that counter player deters

Compromise Deter
Compromise F (t)− 1

2
bD0(γδ)

t F (t)
F (t)− 1

2
bD0(γδ)

t F (t)− bD0(γδ)
t

Deter F (t)− bD0(γδ)
t F (t+ 1)− 1

2bD0(1 + p̂s(t+ 1, n))(γδ)t+1

F (t) F (t+ 1)− 1
2bD0(1 + p̂s(t+ 1, n))(γδ)t+1

Table 3: the payoff matrix in the war of attrition with deadline (t < n)
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Next, the payoff matrix at t < n is Table 3. Table 1 and Table 3 are the
same matrixes excepted the probability at (D,D). When p̂s(t + 1, n) > p∗, the
payoff in the game with deadline is lower than one at steady state in the infinite
game if the player deters. Therefore, the probability of deterring p̂s(t, n) must
drop than p∗.

In fact, each player has more incentive to dispose at this period because the
probability of deterring at the next period is up.

Vice versa, when p̂s(t + 1, n) < p∗, the payoff in the game with deadline
is higher than one at steady state in the infinite game if the player deters.
Therefore, the probability of deterring p̂s(t, n) must come up than p∗ (see Figure
2).

In fact, each player has less incentive to dispose at this period because the
probability of deterring at the next period is down.

This is the intuition of Proposition 2.

Figure 2: Expected payoff and probability that counter player deters

4.3 Is EPDs(n) larger or smaller than p∗2

1−p∗2
?

It is hard to answer this question analytically because EPDs(n) is complex.
(Please see the Proof of Proposition .4 in Appendix.)

12



Now, we try a simulation. We set δ = 0.2, γ = 3 and a
b
= 1.41. We have that

x = 0.6, y = 1.01 and p∗ ≈ 0.69946. So,α ≈ 1.43, β ≈ −0.42, X ≈ 0.77, Y ≈
0.23.

We have that p∗2

1−p∗2 ≈ 0.957879752, EPDs(0) ≈ 0.980296049, EPDs(1) ≈
0.769642824, EPDs(2) ≈ 0.923807412, EPDs(3) ≈ 0.923255652, EPDs(4) ≈
0.946256876, · · · .

We show this as Figure.3.

Figure 3: Expected period to deposit in simple deadline and infinite game

The above example shows that the regulation that the compulsory disposal
will be done at the next period if the final disposal is not done at this period can

be counterproductive. p∗2

1−p∗2
< EPDs(0) means that the setup of the deadline

encourage the procrastination.
The setting the deadline has two effects. The one is that the deadline pro-

hibits the continued existence of the game. The other is that the deadline
changes the incentive for the final disposal.

The latter effect at the odd period before the deadline is to encourage the
procrastination. So, at the one period before the deadline, the extense of the
deadline encourages the procrastination.

Now, we focus on the magnitude correlation between EPDs(0) and
p∗2

1−p∗2 .

13



EPDs(0) >
p∗2

1− p∗2

⇔
−y2 + 2x+ y

√
y2 + 4x

2
− 1 > 0

⇔
−(−1 + γδ + a

b
)2 + 2γδ − 1 + γδ + a

b

√
(−1 + γδ + a

b
)2 + 4γδ

2
− 1 > 0 (1)

We show this area as Figure 4.

Figure 4: Expected payoff and probability that counter player deters

From Equation (1), When γδ > 1, the setting of the deadline always encour-
ages the procrastination. However, the setting of the deadline always inhibits
the procrastination when γδ ≤ 0.5.

Now, we investigate the reason why the increases of γδ has the propensity
that the setting of the deadline encourages the procrastination. Plainly speak-
ing, γδ is the real growth rate of debt. The increase of the real growth rate of
debt blocks the procrastination. But, the effect without deadline is more than
one with deadline. Therefore, the increases of γδ has the propensity that the
setting of the deadline encourages the procrastination.
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Now, we calcurate the case of n = 1.
F (0) = 0, B(0) = −1

2bD0, B(1) − 1
2bD0p

∗γδ = −a
2D0 − 1

2bD0γδ(1 + p∗),
L(0) = −bD0.

If γδ enlarges, p∗ becomes small but p̂(0, 0) does not change. So, the expected
period to deposit at the infinite game becomes small. But the expected period
to deposit at the finite game does not change. Therefore, the increases of γδ has
the propensity that the setting of the deadline encourages the procrastination.

4.4 Punitive deadline

In the above, we assume that the eliminating cost is split when the financial
authority forces the final disposal. We show that the setup of deadline does not
necessarily imply that the procrastination is prevented in this situation. But, it
is ordinary that the authority will punish the bank if the bank has done nothing
by the deadline which the authority set. So, we assume that the authority
punish all the bank that have deterred by the deadline.

We set b as follows:

b =

{
b0 if t < n+ 1
b0 + bp if t = n+ 1

(b0 > 0, bp > 0)

We consider bp as the punishment from the authority. Needless to say, if
bp = 0, b is the same as the simple deadline.

Now, we replace Assumption .1 and .2. We set the assumption as follow.

Assumption .4 2− γδ < a
b0
.

This assumption is the same as Assumption .1 and .2.
We write p̂p(t, n) as the probability the player deters at t in the case that

the punitive deadline is n. We show that

γδp̂p(t, n)p̂p(t+ 1, n)− [1− γδ − a
b0
]p̂p(t, n)− 1 = 0 if t < n.

We calculate p̂p(n, n) as follows by using the property that the expected
payoff when the player compromises is the same as one when the player deters
at n:

(a) When the player i compromises, If player j compromises, the player
i’s profit is B(n) = F (n)− 1

2 (γδ)
nb0D0.

If player j deters, the player i’s profit is L(n) = F (n)− (γδ)nb0D0.

Because the probability player j compromises is 1− p̂p(n, n), the expected
profit of player i is

E[V (n)|ai(n) = C] = [1− p̂p(n, n)][F (n)−
1

2
(γδ)nb0D0] + p̂p(n, n)[F (n)− (γδ)nb0D0]

= F (n)− 1

2
[1 + p̂p(n, n)](γδ)

nb0D0.
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(b) When the player i deters, If player j compromises, the player i’s profit
is F (n).

If player j deters, the final deposit is taken by act at t = n+ 1.

So, the player i’s profit is F (n+ 1)− 1
2 (γδ)

n+1(b0 + bp)D0

Because the probability player j compromises is 1− p̂p(n, n),

E[V (n)|ai(n) = D]

= [1− p̂p(n, n)]F (n) + p̂p(n, n)[F (n+ 1)− 1

2
(γδ)n+1(b0 + bp)D0]

= [1− p̂p(n, n)]F (n) + p̂p(n, n)[F (n)− (γδ)n
a

2
D0 −

1

2
(γδ)n+1(b0 + bp)D0]

= F (n) + p̂p(n, n)[−(γδ)n
a

2
D0 −

1

2
(γδ)n+1(b0 + bp)D0].

From (a) and (b),

F (n)− 1

2
[1 + p̂p(n, n)](γδ)

nb0D0 = F (n) + p̂p(n, n)[−(γδ)n
a

2
D0 −

1

2
(γδ)n+1(b0 + bp)D0]

⇔
−1

2
[1 + p̂p(n, n)](γδ)

nb0D0 = p̂p(n, n)[−(γδ)n
a

2
D0 −

1

2
(γδ)n+1(b0 + bp)D0]

⇔
−[1 + p̂p(n, n)](γδ)

nb0 = p̂p(n, n)[−(γδ)na− (γδ)n+1(b0 + bp)]

⇔
−[1 + p̂p(n, n)]b0 = p̂p(n, n)[−a− (γδ)(b0 + bp)]

⇔
p̂p(n, n) =

−b0
b0 − γδ(b0 + bp)− a

.

The recurrence formula in “punitive deadline” is the same as one in “simple
deadline.” However, p̂s(n, n) �= p̂p(n, n) if bp > 0.

Then, we can represent p̂p(t, n) =
dn−t
dn−t+1

as dk = αkZ+βkW . We can show

that Z =
α+x

bp

b0

α−β
, W =

β−x
bp

b0

α−β
. So,

p̂p(n−t, n) =
αtZ + βtW

αt+1Z + βt+1W
=

1
α
Z + 1

α
( β
α
)tW

Z + ( β
α
)t+1W

=
1

α

Z + ( β
α
)tW

Z + ( β
α
)t+1W

= p∗
Z + (β

α
)tW

Z + (β
α
)t+1W

.

This equation suggests the following propositions.

Proposition .5 (a) When bp > −β b0x
If k is odd, p̂p(n− k, n) > p∗. If k is even or 0, p̂p(n− k, n) < p∗.
(b) When bp < −β b0x
If k is odd, p̂p(n− k, n) < p∗. If k is even or 0, p̂p(n− k, n) > p∗.
(c) When bp = −β b0x
p̂p(n− k, n) = p∗.
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Proof: see Appendix.

Proposition .6 lim
n→∞

p̂p(t, n) = p∗ for all t < n.

Proof: see Appendix.
We can represent the expected period to deposit in the game with punitive

deadline whose terminal node is n as EPDp(n).

Proposition .7 lim
n→∞

EPDp(n) =
p∗2

1− p∗2
.

Proof: see Appendix.

Proposition .8 If k is odd, p̂s(n − k + 1, n) > p̂p(n − k, n). If k is even,
p̂s(n− k + 1, n) < p̂p(n− k, n).

Proof: see Appendix.

Proposition .9

lim
bp→∞

p̂p(t, n) =

{
p̂s(t, n+ 1) if t �= n

0 if t = n

Proof: see Appendix.
From Proposition .6 and .7, there is little point in punishment when n is

large. From Proposition .5, the difference between the case in simple deadline
and one in punitive deadline is little when bp is small. These results may be
consistent with your intuition.

But, the possibility of deterring does not become small uniformly if bp be-
comes large. Even if bp becomes larger than the threshold (−β b0

x
), the magni-

tude relation between p̂p(n− k, n) and p∗ becomes reversed only.
Each player has more incentive to dispose at t = n because the player receives

the large punishment if the game has not ended since t = n. The possibility of
deterring is vibrated as the simple deadline because the recurrence formula in
simple deadline is the same as one in punitive deadline. Therefore, the possibility
of deterring does not become small uniformly.

From Proposition .9, however serious the punishment be, it move up the
players’ action only one period.

5 Concluding Remarks

In this paper, we investigate the policy of preventing the procrastination. We
show that the taxation of having the NPLs and the subsidy of eliminating NPLs
is the effective methods of keeping off the procrastination. And we show that the
setup of deadline makes the probability of deterring be up and down every one
period even if the financial authority implements the punishment. Therefore,
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we conclude that the setup of deadline is not the effective methods of keeping
off the procrastination.

Finally, we must admit that our model is restrictive. For example, we as-
sume that the game is symmetric. We think this assumption is moderate in
nonperforming loan problems not in main-bank system. However, this assump-
tion may not be moderate in labor strikes or main-bank system. The change of
the act (or custom) may affect the result of this paper. 4

Extending our model to these directions remains for future research.

A Appendix

A.1 Proof of Proposition .1

We assume that non stationary mixed strategy equilibrium exists. This equi-
librium can be represented by (p(0), p(1), · · · , p(t), · · ·) (for each t and s, p(t) �=
p(s)). For any p(t), γδp(t)2 − [1− γδ − a]p(t)− 1 = 0.

Then, there is T which p(T ) > 1. This is contradiction. So, non stationary
mixed strategy equilibrium does not exist.

A.2 Proof of Proposition .2

Now, β < 0,α > 0. −y −
√
y2 + 4x < −y +

√
y2 + 4x⇒ −α < β < 0.

Therefore, −1 < β
α
< 0.

a) k is odd

−(β
α
)k+1 < 0 < −(β

α
)k+2

0 < 1− (
β

α
)k+1 < 1− (

β

α
)k+2

1− (β
α
)k+1

1− (β
α
)k+2

< 1

p̂s(n− k, n) = p∗
1− ( β

α
)k+1

1− ( β
α
)k+2

< p∗.

b) k is even

−(β
α
)k+2 < 0 < −(β

α
)k+1

0 < 1− (
β

α
)k+2 < 1− (

β

α
)k+1

1− (β
α
)k+1

1− (β
α
)k+2

> 1

4Okuno-Fujiwara and Kouno(2007) shows that the role-contingent strategy can be used in
the main-bank system and that this strategy makes pure strategy efficient equilibria stable.
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p̂s(n− k, n) = p∗
1− ( β

α
)k+1

1− ( β
α
)k+2

> p∗.

A.3 Proof of Proposition .3

lim
n→∞

p̂s(t, n) = lim
n→∞

p∗
1 + ( β

α
)n−t+1

1 + ( β
α
)n−t+2

= p∗

A.4 Proof of Proposition .4

EPDs(n) = (1− p̂s(0, n)
2
)× 0

+ p̂s(0, n)
2
(1− p̂s(1, n)

2
)× 1

+ p̂s(0, n)
2
p̂s(1, n)

2
(1− p̂s(2, n)

2
)× 2

+ · · ·
+ p̂s(0, n)

2
p̂s(1, n)

2 · · · p̂s(n− 1, n)
2
(1− p̂s(n, n)

2
)× n

+ p̂s(0, n)
2
p̂s(1, n)

2 · · · p̂s(n− 1, n)
2
p̂s(n, n)

2 × (n+ 1)

= (1− cn
2

cn+12
)× 0

+
cn
2

cn+12
(1− cn−1

2

cn2
)× 1

+
cn
2

cn+12
cn−1

2

cn2
(1− cn−2

2

cn−12
)× 2

+ · · ·

+
cn
2

cn+12
cn−1

2

cn2
· · · c1

2

c22
(1− c0

2

c12
)× n

+
cn
2

cn+12
cn−1

2

cn2
· · · c1

2

c22
c0
2

c12
× (n+ 1)

=
cn+1

2 − cn
2

cn+12
× 0

+
cn
2 − cn−1

2

cn+12
× 1

+
cn−1

2 − cn−2
2

cn+12
× 2

+ · · ·

+
c1
2 − c0

2

cn+12
× n

+
c0
2

cn+12
× (n+ 1)

=
cn
2 + cn−1

2 + · · ·+ c1
2 + c0

2

cn+12
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Now,

cn
2 + cn−1

2 + · · ·+ c1
2 + c0

2 = (X + Y )2 + (αX + βY )2 + · · ·+ (αnX + βnY )2

=
1− α2n+2

1− α2
X2 +

1− (αβ)n+1

1− αβ
2XY +

1− β2n+2

1− β2
Y 2

cn+1
2 = α2n+2X2 + 2(αβ)n+1XY + β2n+2Y 2

So,

EPDs(n) =

1−α2n+2

1−α2
X2 + 1−(αβ)n+1

1−αβ
2XY + 1−β2n+2

1−β2
Y 2

α2n+2X2 + 2(αβ)n+1XY + β2n+2Y 2

=

1

α2n+2
−1

1−α2 X2 +
1

α2n+2
−( β

α
)n+1

1−αβ 2XY +
1

α2n+2
−( β

α
)2n+2

1−β2 Y 2

X2 + 2(β
α
)n+1XY + (β

α
)2n+2Y 2

lim
n→∞

EPDs(n) =
−1
1−α2X

2

X2
=

−1
1− α2

=
p∗2

1− p∗2
.

A.5 Proof of Proposition .5

At first, we must show 1 + (β
α
)k W

Z
> 0.

If ( β
α
)k W

Z
≥ 0, 1 + ( β

α
)k W

Z
≥ 1 > 0.

Otherwise, (1)k is even and W
Z
< 0 or (2)k is odd and W

Z
> 0.

(1)k is even and
W

Z
< 0

1 +
W

Z
< 1 + (

β

α
)k
W

Z

From 1 +
W

Z
=
W + Z

Z
=

1

Z
> 0, 1 + (

β

α
)k
W

Z
> 0.

(2)k is odd and
W

Z
> 0

1 +
β

α

W

Z
≤ 1 + (

β

α
)k
W

Z

From 1 +
β

α

W

Z
=
αZ + βW

Z
=
y + x

bp
b0

Z
> 0, 1 + (

β

α
)k
W

Z
> 0.

So, we show 1 + (
β

α
)k
W

Z
> 0.
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(a)W < 0 (bp > −β b0x ) i)k is odd

0 < 1 + (
β

α
)k+1

W

Z
< 1 + (

β

α
)k
W

Z

1 + ( β
α
)k W

Z

1 + ( β
α
)k+1W

Z

> 1

p̂p(n− k, n) = p∗
1 + (β

α
)k W

Z

1 + (β
α
)k+1W

Z

> p∗

ii)k is even

0 < 1 + (
β

α
)k
W

Z
< 1 + (

β

α
)k+1

W

Z

1 + ( β
α
)k W

Z

1 + ( β
α
)k+1W

Z

< 1

p̂p(n− k, n) = p∗
1 + (β

α
)k W

Z

1 + (β
α
)k+1W

Z

< p∗

(b)W > 0 (bp < −β b0x ) i)k is odd

0 < 1 + (
β

α
)k
W

Z
< 1 + (

β

α
)k+1

W

Z

1 + (β
α
)k W

Z

1 + (β
α
)k+1W

Z

< 1

p̂p(n− k, n) = p∗
1 + ( β

α
)k W

Z

1 + ( β
α
)k+1W

Z

< p∗

ii)k is even

0 < 1 + (
β

α
)k+1

W

Z
< 1 + (

β

α
)k
W

Z

1 + ( β
α
)k W

Z

1 + ( β
α
)k+1W

Z

> 1

p̂p(n− k, n) = p∗
1 + (β

α
)k W

Z

1 + (β
α
)k+1W

Z

> p∗

(c)W=0 (bp = −β b0x )

p̂p(n− k.n) = p∗
1 + (β

α
)k × 0

1 + (β
α
)k+1 × 0

= p∗
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A.6 Proof of Proposition .6

lim
n→∞

p̂p(t, n) = lim
n→∞

p∗
1 + ( β

α
)n−t W

Z

1 + ( β
α
)n−t+1W

Z

= p∗

A.7 Proof of Proposition .7

EPDp(n) = (1− p̂p(0, n)
2
)× 0

+ p̂p(0, n)
2
(1− p̂p(1, n)

2
)× 1

+ p̂p(0, n)
2
p̂p(1, n)

2
(1− p̂p(2, n)

2
)× 2

+ · · ·
+ p̂p(0, n)

2
p̂p(1, n)

2 · · · p̂p(n− 1, n)
2
(1− p̂p(n, n)

2
)× n

+ p̂p(0, n)
2
p̂p(1, n)

2 · · · p̂p(n− 1, n)
2
p̂p(n, n)

2 × (n+ 1)

= (1− dn
2

dn+1
2 )× 0

+
dn

2

dn+1
2 (1−

dn−1
2

dn
2 )× 1

+
dn

2

dn+1
2

dn−1
2

dn
2 (1− dn−2

2

dn−1
2 )× 2

+ · · ·

+
dn

2

dn+1
2

dn−1
2

dn
2 · · · d1

2

d2
2 (1−

d0
2

d1
2 )× n

+
dn

2

dn+1
2

dn−1
2

dn
2 · · · d1

2

d2
2

d0
2

d1
2 × (n+ 1)

=
dn+1

2 − dn
2

dn+1
2 × 0

+
dn

2 − dn−1
2

dn+1
2 × 1

+
dn−1

2 − dn−2
2

dn+1
2 × 2

+ · · ·

+
d1
2 − d0

2

dn+1
2 × n

+
d0
2

dn+1
2 × (n+ 1)

=
dn

2 + dn−1
2 + · · ·+ d1

2 + d0
2

dn+1
2
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Now,

dn
2 + dn−1

2 + · · ·+ d1
2 + d0

2 = (Z +W )2 + (αZ + βW )2 + · · ·+ (αnZ + βnW )2

=
1− α2n+2

1− α2
Z2 +

1− (αβ)n+1

1− αβ
2ZW +

1− β2n+2

1− β2
W 2

dn+1
2 = α2n+2Z2 + 2(αβ)n+1ZW + β2n+2W 2

So,

EPDp(n) =

1−α2n+2

1−α2 Z2 + 1−(αβ)n+1

1−αβ 2ZW + 1−β2n+2

1−β2 W 2

α2n+2Z2 + 2(αβ)n+1ZW + β2n+2W 2

=

1

α2n+2
−1

1−α2 Z2 +
1

α2n+2
−( β

α
)n+1

1−αβ 2ZW +
1

α2n+2
−( β

α
)2n+2

1−β2 W 2

Z2 + 2(β
α
)n+1ZW + (β

α
)2n+2W 2

lim
n→∞

EPDp(n) =
−1
1−α2

Z2

Z2
=

−1
1− α2

=
p∗2

1− p∗2
.

A.8 Proof of Proposition .8

−Z −W =
−α− x

bp
b0

+ β + x
bp
b0

α− β

=
−α+ β

α− β
= −1 < 0

From this, Z > 0 and β
α
< 0 < 1,

β

α
(−1− W

Z
) > −1− W

Z

−β
α
+
W

Z
> −1 + β

α

W

Z
.

a)k is odd

1− (
β

α
)2k+1

W

Z
− (

β

α
)k+1 + (

β

α
)k
W

Z
< 1− (

β

α
)2k+1

W

Z
− (

β

α
)k + (

β

α
)k+1

W

Z

(1 + (
β

α
)k
W

Z
)(1− (

β

α
)k+1) < (1− (

β

α
)k)(1 + (

β

α
)k+1

W

Z
)

From 1 + ( β
α
)k+1W

Z
> 0 and 1− (β

α
)k+1 > 0,

1 + (β
α
)k W

Z

1 + (β
α
)k+1W

Z

<
1− ( β

α
)k

1− (β
α
)k+1

.

Therefore, p̂s(n− k + 1, n) = p∗
1−( β

α
)k

1−( β
α
)k+1

> p∗
1+( β

α
)k W

Z

1+( β
α
)k+1W

Z

= p̂p(n− k, n)
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b)k is even

1− (
β

α
)2k+1

W

Z
− (

β

α
)k+1 + (

β

α
)k
W

Z
> 1− (

β

α
)2k+1

W

Z
− (

β

α
)k + (

β

α
)k+1

W

Z

(1 + (
β

α
)k
W

Z
)(1− (

β

α
)k+1) > (1− (

β

α
)k)(1 + (

β

α
)k+1

W

Z
)

From 1 + ( β
α
)k+1W

Z
> 0 and 1− (β

α
)k+1 > 0,

1 + (β
α
)k W

Z

1 + (β
α
)k+1W

Z

>
1− ( β

α
)k

1− (β
α
)k+1

.

Therefore, p̂s(n− k + 1, n) = p∗
1−( β

α
)k

1−( β
α
)k+1

< p∗
1+( β

α
)k W

Z

1+( β
α
)k+1W

Z

= p̂p(n− k, n)

A.9 Proof of Proposition .9

lim
bp→∞

W

Z
= lim

bp→∞

−β − x
bp
b0

α+ x
bp
b0

= lim
bp→∞

− β
bp
− x

b0
α
bp

+ x
b0

=
− x
b0
x
b0

= −1

Therefore,

lim
bp→∞

p̂p(t, n) = lim
bp→∞

p∗
1 + ( β

α
)n−t W

Z

1 + ( β
α
)n−t+1W

Z

= p∗
1− ( β

α
)n−t

1− ( β
α
)n−t+1

=

{
p̂s(t, n+ 1) if t �= n

0 if t = n
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