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Abstract

This paper considers a two-stage game. In the first stage, firms com-

mit to a marketing strategy, represented by a willingness to discount their

preferred price in order to achieve a target sales quantity. The polar cases

are Bertrand strategies in which firms fix a price, and sell the quantity de-

manded at that price, and Cournot strategies in which firms fix a quantity

and sell it at the market-clearing price. In the second stage of the game, a

stochastic demand parameter is realized and observed by the firms, which

then specify their target price and quantity. In equilibrium, these will

clear the market and each will constitute a best response to the strategies

of the other firms. We show that, for the case of constant marginal costs,

for some parameter range, there will exist two symmetric equilibrium so-

lutions. In addition to the Bertrand outcome, for some parameter range,

there exists another symmetric equilibrium where firms behave less com-

petitively than the Bertrand benchmark and earn positive profits. With

an appropriate parametrization, the possible alternative equilibria span

the space from Bertrand to Cournot.

JEL Classification: L1, L2, L4.

Key-words: multiple equilibria, oligopolistic competition.

1 Introduction

Ever since the study of oligopoly began in the 19th century, the choice of equilib-

rium concept has been debated. The terms of the debate were set by Bertrand’s
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(1883) critical review of Cournot’s (1838) analysis, which had been largely ig-

nored in the intervening decades. Nearly 150 years after Bertrand’s paper, most

studies of oligopolistic markets use one or other of these equilibrium concepts.

There have, however, been numerous attempts at a more general treatment

of the problem. Two strands of literature are of particular interest.

The first strand of literature model price determination in oligopolistic mar-

kets as a two-stage game. One approach (Kreps and Scheinkman, 1983, Grant

and Quiggin, 1996) has focused on precommitment to the choice of capital. In

the seminal paper by Kreps and Scheinkman (1983), the determination of capital

stocks in the first stage results in Cournot-like outcomes which are considerably

less competitive than Bertrand competition, even when price is the second-stage

strategic variable.1 In Grant and Quiggin (1996), firms compete in supply func-

tion schedules in the second stage. They show that the equilibrium outcome

becomes more competitive as the share of capital in the production function

decreases.2 An alternative approach, based on the idea of delegation (Fersht-

man and Judd (1987), Fumas (1992), Miller and Pazgal, (2001), Sklivas (1987),

Vickers (1985)) involves a separation of ownership and control between owners

and managers. In the first-stage game, owners determine a remuneration rule

for managers. In the second stage, managers play an oligopoly game, with price

or quantity as the strategic variable. By manipulating the incentive contract

for managers, the owners can commit to strategies in the product market which

are not profit-maximising and gain strategic advantages over the rivals. Most

papers include the firm’s own profit, revenue, and/or output in the incentive

contract (Fershtman and Judd (1987), Sklivas (1987), Vickers, (1985)). They

find that with strategic choice of incentive contracts before quantity competition

in the product market competition, the equilibrium is more competitive than

the benchmark one stage Cournot game. On the other hand, if prices are the

strategic variable, the owners set the incentive weighting such that the market

is less competitive than the one stage Bertrand outcome.3 Fumas (1992) and

Miller and Pazgal (2001) on the other hand, include the rivals’ profit in the

construction of the incentive scheme. With this relative performance incentive

contract,4 Fumas (1992) analyses the trade-off between risk sharing and strate-

1See also extension by Boccard and Wauthy (2000).
2Also see Dixon (1985, 1986) and Vives (1986).
3Vickers (1985) does not consider price competition.
4The term ’relative performance incentive’is most naturally applied to a scheme where the

manager is rewarded (punished) for a profit exceeding (falling short of) that of other firms in
the industry. This would imply a negative weight on rivals’profit. As shown by Fumas and
by Miller and Pazgal, however, the equilibrium weight may be negative, implying an element
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gic competition. Miller and Pazgal (2001) show that the same equilibrium is

obtained regardless of the strategic variable in the product market.

The second strand of literature are models which expand the space of po-

tential strategies to include a large set of supply schedules. See, for exam-

ple, Grossman (1981), Robson (1981), Klemperer and Meyer (1989) and Kao,

Menezes, and Quiggin (2014). Klemperer and Meyer (1989) prove the negative

result that, if the strategy space consists of all possible supply curves, any indi-

vidually rational market equilibrium may be sustained as a Nash equilibrium.

However, a unique Nash equilibrium may be obtained by introducing demand

uncertainty. Klemperer and Meyer (1989), following Robson (1981) show that

a unique equilibrium may be obtained if uncertainty is resolved after the choice

of supply schedules. As shown by Robson, this approach yields the Bertrand

zero-profit as the unique equilibrium in the case of constant cost. Kao, Menezes,

and Quiggin (2014) consider the case where uncertainty is resolved before the

choice of supply schedules, and obtain a unique equilibrium by assuming that

the slope of the supply schedule is considered as a measure of the competitive-

ness of the market and determined exogenously. The resulting class of models

range from Cournot (vertically sloped supply curves) to Bertrand (horizontal

supply curves). This approach allows for positive oligopoly profits even in the

case of zero costs. However, the question of how the slope of the supply curve

is determined, that is, how competitive is the market, is left unresolved.

The aim of this paper is to develop a delegation model with second-stage

oligopolistic competition in supply schedules. We show that competition in sup-

ply schedules can be rationalised by a delegation game, with costly monitoring,

between the owner and the retailer. In this framework, owners are assumed to

set incentives that define a space of marketing strategies. These incentives de-

termine the intensity of competition, represented by a willingness to discount

their preferred price in order to achieve a target sales quantity.

The polar cases are Bertrand strategies in which firms fix a price, and sell

the quantity demanded at that price, and Cournot strategies in which firms fix

a quantity and sell it at the market-clearing price. Between these two polar

extremes are a range of possible marketing strategies, specified by a ‘willingness

to discount’parameter, β, ranging from zero (Cournot) to infinity (Bertrand).

We assume that firms act as wholesalers giving instructions to dealers who

undertake the sales and return the associated revenue to the firm. In the case of

a Bertrand strategy, the wholesalers’instructions are self-enforcing. The dealer

must pay to the firm an amount equal to the value of the goods sold at the

of co-operation rather than rivalry.
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specified price. In the Cournot case, by contrast, revenue depends on the state

of demand, which determines the price at which the specified quantity may be

sold. Hence, the firm must engage in costly monitoring to ensure that the dealer

is repaying the full revenue. More generally, we assume that the associated

monitoring cost is inversely related to β. The smaller β is, the greater the

benefit to the dealer from cheating, and the greater the associated monitoring

cost.

In the second stage of the game, a stochastic demand parameter is real-

ized and observed by the dealers. The dealers report the demand state to the

owners, who then specify their target price and quantity. In equilibrium, with

costly monitoring, the dealers report the true demand state, and the specified

target quantities and prices will clear the market and each will constitute a best

response to the strategies of the other firms.

We first show that, for the case of constant marginal costs, there will, in gen-

eral, exist two symmetric equilibrium solutions. As in Grossman (1981), Robson

(1981), Klemperer-Meyer (1989), and Grant and Quiggin (1996), the Bertrand

outcome remains an equilibrium. However, we show that there exists another

symmetric equilibrium where firms behave less competitively than the Bertrand

benchmark and earn positive profits. With an appropriate parametrization, the

possible alternative equilibria span the space from Bertrand to Cournot.

2 The Model

The market demand is represented by D (P, ε) with D1 < 0, D11 ≤ 0, and

ε ∈ R a stochastic shock with E [ε] = 0 and V ar [ε] = σ2
ε. We model an n

firm oligopoly game where each firm is characterised by a pair of wholesaler and

dealer. Depending on the price quantity target and the permissable discount,

the owner incurs some monitoring cost. We show that such price quantity tar-

get, together with the willingness to discount variable, give rise to competition

in supply function with the price slope chosen in the first stage, followed by

the second stage quantity competition.5 The strategy space for firm i consists

of vectors
(
βi, P̃i (ε) , q̃i (ε)

)
where

(
P̃i (ε) , q̃i (ε)

)
is the ‘target’price-quantity

pair, and βi is a variable which may be referred to as ‘competitiveness’or will-

ingness to discount. The vector
(
βi, P̃i (ε) , q̃i (ε)

)
represents the instructions

given by the firm, as the wholesaler, to its dealers. The firm incurs a monitoring

5With competiton in supply function, given the chosen slopes of other firms, the firm
maximises profit by choosing one point on its residual demand curve. Choosing quantity and
choosing price give the same outcome.
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cost Mi. Taking account of production costs, we assume the total cost to be

TCi (βi, qi) = Mi (βi) + Ci (qi) with βi ≥ 0, qi > 0, M
′

i < 0, M
′′

i ≥ 0, C ′i ≥ 0,

and C ′′i ≥ 0. Hence, profit for firm i, conditional on the choice of βi and the

demand shock ε is

πi (qi;βi, ε) = Pqi − TCi (βi, qi) .

The introduction of monitoring costs is novel. The tighter the sales target,

and, therefore, the higher the permissible discount, the greater the incentive

the dealer has to cheat, by falsely reporting negative values of ε, and hence

the greater the monitoring cost to the firm. The monitoring cost decreases in

β. We present the game between the owner and the dealer in Appendix A and

show that in order to induce truth telling of the demand state, the monitoring

cost decreases in β. For β = 0, the firm wants the retailer to sell exactly the

target output. This corresponds to Cournot competition with a fixed output,

independent of the market price. For β →∞, the firm allows any deviation from
the target output and thus does not incur monitoring cost. For any P ≥ P̃i (ε),

the firm is willing to supply any quantity. This corresponds to Bertrand type

behavior.

In the Bertrand case, the dealers have no opportunity for cheating, since

their incentives are aligned with those of the firm - each sale at a fixed price

yields the dealer a known margin over the wholesale price.6 By contrast, in the

Cournot case, the dealer’s instructions are to sell the exact target quantity at

whatever price they can get.

The timing is as follows: in the first stage, firms simultaneously choose a

βi, representing the desired willingness of dealers to discount price in order to

achieve a target sales quantity. The choice of βi commits firms to a particular

degree of competitiveness. The demand shock ε is then realised and observed

by the retailers. The retailers than report the demand state to the owners. In

the second stage of the game, knowing βj∀j, and given the reported demand
condition ε, firms simultaneously choose

(
P̃i (ε) , q̃i (ε)

)
. In equilibrium, the

common price is P (ε) = P̃i (ε), ∀i, firms sell their selected output q̃i (ε) , and

the market clears with D (P (ε) , ε) =
∑
i q̃i (ε).

The timing of the game differs from that of Klemperer and Meyer (1989),

where firms must specify a supply schedule before learning the value of ε, and

where it is assumed that the range of values of ε is suffi cient to determine a

complete supply schedule. In our case, the pair
(
P̃i (ε) , q̃i (ε)

)
depends on the

reported state of demand. Since firms are not price-takers, their desired price

6The fixed profit margin is not modelled explicitly here and is included in Ci (qi).
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and quantity will, in general, increase with demand. The resulting locus of

equilibrium prices and quantities has many of the properties of a supply curve,

but must be interpreted differently. This point is developed further below.

3 The main result

We solve the game backwards to get the subgame perfect Nash equilibrium.

That is, we first derive the market equilibrium (P (ε,β) ,q (ε,β)) where ε is

the observed shock, β = (β1, ..., βn) is the vector of first round strategy choices

and q = (q1, ..., qn) is the vector of equilibrium output quantities. We derive

first-order conditions for the general case, and then a closed-form solution for

the case where firms with zero marginal production cost compete in an industry

with linear inverse demand curve, subject to an additive demand shock:

3.1 The second stage equilibrium

We first describe the second stage game in more detail. The marketing strategy

of firm i is specified by
(
βi ,̃ P i (ε) , q̃i (ε)

)
where

(
P̃i (ε) , q̃i (ε)

)
represents the

desired price-quantity pair for demand state ε, and βi represents the willingness

of firm i to discount the preferred price P̃i (ε) in order to achieve the desired

quantity q̃i (ε). That is, for given ε, the firm instructs the retailer to offer a

locus of price-quantity pairs (P, q) passing through
(
P̃i (ε) , q̃i (ε)

)
, and such

that, evaluated at
(
P̃i (ε) , q̃i (ε)

)
,

∂P̃i (ε)

∂q̃i (ε)
=

1

βi
. (1)

Without loss of generality,7 we can confine attention to the linear locus given

by the equation

βi

(
P̂ − P̃i (ε)

)
= (qi − q̃i (ε)) ,

or

qi

(
P̂ , γ, ε

)
= q̃i (ε) + βi

(
P̂ − P̃i (ε)

)
, (2)

7As shown by Kao, Menezes and Quiggin (2014), if
(
P̃ (ε) , q̃i (ε)

)
, i = 1, ..., n, is an

equilibrium loci of the form (2), conditional on demand D (P, ε) , it is an equilibrium for any
game in which, for all i, the strategy space is given by loci q̂i (P, β, ε) satisfying 1 for each(
P̃i (ε) , q̃i (ε)

)
. All such strategies may be summarized by the pair (γi, q̃i (ε)) such that 2

holds in a neighborhood of P̃i.
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where qi
(
P̂ ;βi, ε

)
is the quantity sold by the dealer and P̂ is the market clearing

price with D
(
P̂ ; ε

)
=
∑n
i=1 qi

(
P̂ ;βi, ε

)
. The case βi = 0 ∀i gives a family of

vertical supply schedules. This corresponds to Cournot competition with a fixed

output and thus requires high monitoring cost. The case β →∞ gives horizontal

supply schedules. This permits any deviation from the target output and thus

corresponds to Bertrand type behavior. This does not incur any monitoring

cost.

For known ε and βj , and given choices of
(
P̃j (ε) , q̃j (ε)

)
,∀j 6= i , the residual

demand facing firm i is given by

Di

(
P̂ ; ε

)
= D

(
P̂ ; ε

)
−Q−i

(
P̂ ;β−i, ε

)
where

Q−i

(
P̂ ;β, ε

)
=
∑
j 6=i

qj

(
P̂ ;β−i, ε

)
is the aggregate output of competitors. Firms choose a set of pairs

(
P̃i (ε) , q̃i (ε)

)
such that for each firm, the choice maximizes net profit

(
P̃i (ε) , q̃i (ε)

)
∈ arg max P̃iDi

(
P̂
(
P̃i

)
, ε
)
− Ci

(
Di

(
P̂
(
P̃i

)
, ε
))

.

In equilibrium, P̂ (ε) = P̃i (ε), ∀i, and that the market clears withD
(
P̂ (ε) , ε

)
=∑

i q̃i (ε).

Each firm takes its residual demand curve as given, and acts as a profit-

maximizing monopolist. The observation of a Delta airlines exexutive, cited by

Klemperer and Meyer (1989, footnote 5) that

’We don’t have to know if a balloon race in Albuquerque or a rodeo

in Lubbock is causing an increase in demand for a flight’

is apposite here. Note that the observation remains true if the increased

demand for Delta services is caused by a reduction in the number of flights

offered by, say, Southwest.

Market clearing gives

D
(
P̂ ; ε

)
=

N∑
j=1

qj

(
P̂ ;βi, ε

)
= qi

(
P̂ ;βi, ε

)
+Q−i

(
P̂ ;β, ε

)
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Differentiate with respect to qi:8

D′
(
P̂ ; ε

) ∂P̂
qi

= 1 +Q′−i

(
P̂ ;β, ε

) ∂P̂
∂qi

.

Thus, firm i’s output qi (ε) affects the market clearing price by:

∂P̂

∂qi
=

1

D′
(
P̂ ; ε

)
−Q′−i

(
P̂ ;β, ε

) . (3)

The residual demand facing firm i in the second stage is

Di

(
P̂ ; ε

)
= D

(
P̂ ; ε

)
−

N∑
j 6=i

qj

(
P̂ ;βj , ε

)
.

Firm i solves

max
qi

πi (qi;βi, ε) = Di

(
P̂ ; ε

)
P̂ − Ci (qi) .

The FOC gives

P̂
(
D′
(
P̂ ; ε

)
−Q′−i

(
P̂ ;β, ε

)) ∂P
∂qi

+Di

(
P̂ ; ε

) ∂P̂
∂qi
≤ C ′i (qi)

with equality for interior solutions.

After substituting in Equation 3, in an interior solution, the optimal q∗i in

the second stage is implicitly defined by

(
D′
(
P̂
)
−Q′−i

(
P̂ ;β, ε

))
D′
(
P̂
)
−Q′−i

(
P̂ ;β, ε

) (
P̂ − C ′i (qi)

)
+

q∗i

D′
(
P̂
)
−Q′−i

(
P̂ ;β, ε

) = 0 (4)

Note that this is just the familiar inverse elasticity pricing rule with the

residual demand facing firm i adjusted by the supply function. At P̂ , the residual

demand elasticity, ξ, is

ξ =

∂Dqi
q∗i
∂P
P̂

=
∂Di

∂P

P̂

q∗i
=
(
D′
(
P̂ ; ε

)
−Q′−i

(
P̂ ;β, ε

)) P̂
q∗i
.

Simple re-arrangement of Equation 4 gives

P̂ − C ′i (qi)

P̂
= − q∗i(

D′
(
P̂
)
−Q′−i

(
P̂ ;β, ε

))
P̂

= −1

ξ
. (5)

8Choosing
(
P̃i (ε) , q̃i (ε)

)
, combined with the constraint P̂ = P̃i (ε) in equilibrium, gives

us the same solution as choosing the supply schedule qi
(
P̂ ;β, ε

)
.
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3.2 First stage equilibrium

We now consider the determination of β in the first stage of the game. In the

first stage, firm i chooses βi to maximise

max
γi

E
[
q∗i (βi) P̂

(
q∗i (βi) , q

∗
−i
)
− TCi (βi, q

∗
i )
]
.

The FOC gives

E

[
∂q∗i (βi)

∂βi

(
P̂
(
q∗i (βi) , q

∗
−i
)
−Q′−i

(
P̂ ;β, ε

))
+ q∗i

∂P̂
(
q∗i (βi) , Q

∗
−i
)

∂βi
− ∂Mi (βi)

∂βi

] <

=

>

0,

(6)

with < for β∗i = 0, = for β∗i ∈ (0,∞), and > for β∗i →∞.
We have

Proposition 1 Assume that TCi (0, qi) ≡ cqi for all i and qi. Then βi →∞,∀i
is a first stage equilibrium, with the corresponding second stage solution P̂ (ε) =

c, Q (ε) ≡ D (c, ε).

Proof. Given βj → ∞, ∀j 6= i, from Equation 5, we have P̂ = ∂TCi
∂qi

= c and
∂P̂
∂βi

= 0. Hence, With ∂Mi(βi)
∂βi

< 0, β∗i →∞.

Proposition 2 For some range of marginal monitoring cost, there exists a pos-
itive profit symmetric equilibrium.

Proof. Let ∂Ci(βi,qi)
∂qi

= c∀i. In an interior solution, the FOC in Equation 6

gives

E

[
∂q∗i (βi)

∂βi

(
P̂
(
q∗i (βi) , q

∗
−i
)
− c
)

+ q∗i
∂P̂
(
q∗i (βi) , q

∗
−i
)

∂βi

]
= E

[
∂Mi (βi)

∂βi

]
.

(7)

As shown in the proof of Proposition 1, the LHS goes to 0 when β →∞.
At β = 0, the LHS becomes

E

 −2D′
(
P̂
)

(n− 1)
(
P̂ − c

)2

(1 + n)D′
(
P̂
)

+ nD′′
(
P̂
)(

P̂ − c
)
 < 0.

Given that the LHS is continuous in β, for E
[
∂Mi(βi)
∂βi

]
∈
(
E

[
−2D′(P̂)(n−1)(P̂−c)

2

((1+n)D′(P̂)+nD′′(P̂)(P̂−c))

]
, 0

)
,

there exists a symmetric positive profit equilibrium such that β∗ ∈ (0,∞), and

the FOC at β∗ is satisfied for all firm i.
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3.3 Existence of positive profit equilibrium

Proposition 1 establishes that Bertrand behavior is supported in equilibrium

in the two-stage game with constant marginal costs. This replicates the results

in Grossman (1981), Robson (1981), Klemperer-Meyer (1989), and Grant and

Quiggin (1996). The question remains whether this game structure supports

any other type of oligopolistic behaviour.

The purpose of this section is to demonstrate, by example, the existence of

positive profit equilibria. To this end, we will focus on the simple case where

n firms with zero marginal production cost compete in an industry with linear

inverse demand curve, subject to an additive demand shock. We assume that

the monitoring cost, Mi = θ
βi
, where θ is a common parameter for all firm.

P = 1− b
n∑
i=1

qi + ε. (8)

With these simplifications, we derive the closed form solution to the second

stage game and characterise the first stage β choices. We have

Proposition 3 For 0 < θ <
2(σ2ε+1)
b2n3(n−1) , there exists, in addition to the Bertrand

equilibrium, a unique symmetric equilibrium β = β (θ) ∈ (0,∞), with second

stage equilibrium

q∗i =
(1 + ε)

(
1
b + (n− 1)β

)
n+ 1 + b (n− 1)nβ

,Q =
(1 + ε)

(
n
b + n (n− 1)β

)
n+ 1 + b (n− 1)nβ

, P =
(1 + ε)

n+ 1 + b (n− 1)nβ
.

In equilibrium,

π∗ =

(
1 + σ2

ε

) (
1
b + (n− 1)β

)
(n+ 1 + b (n− 1)nβ)

2 −
θ

β
.

Given the FOC condition (Equation 12)on β and the implied relationship between

β and θ, π∗ > 0.

Proof. See Appendix.
The polar cases of the second-stage solution span the range of (weakly pos-

itively sloped) supply-schedule equilbria. As β → ∞, P and πi → 0, qi → 1+ε
bn

, Q → 1+ε
b . This is the Bertrand solution. As β → 0, P → 1+ε

n+1 , qi →
1+ε

b(n+1) ,

Q→ n(1+ε)
b(n+1) and the gross profit πi+

θ
β →

1+σ2ε
b(n+1)2

. This is the Cournot solution.

To show that these polar cases arise as equilibria for the full game, we require

Proposition 4 As θ → 2(σ2ε+1)
b2n3(n−1) from below, β → ∞, and the equilibrium

outcome converges to the Bertrand solution. As θ → 0, β → 0 and the equilib-

rium outcome converges to the Cournot solution. More generally, For 0 < θ <

2
2(σ2ε+1)
b2n3(n−1) , as θ increases, the interior symmetric equilibrium value β increases.
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In general, in oligopoly problems, consumer surplus and producer surplus

move in opposite directions. However, welfare analysis in this model is compli-

cated by the cost θγ incurred by firms in the first stage. Expected consumer

surplus in a interior symmetric equilibrium is

ECS = E

[
1

2
(1 + ε− P )Q

]
=
b
(
1 + σ2

ε

)
2

( (
n
b + n (n− 1)β

)
n+ 1 + b (n− 1)nβ

)2

.

The expected total surplus is defined to be the sum of firms’expected profits

and expected consumer surplus.Thus

ETS = n

((
1 + σ2

ε

) (
1
b + (n− 1)β

)
(n+ 1 + b (n− 1)nβ)

2 −
θ

β

)
+
b
(
1 + σ2

ε

)
2

( (
n
b + n (n− 1)β

)
n+ 1 + b (n− 1)nβ

)2

.

We now present some numerical examples.

Example 1 For b = 1, n = 2, θ = 0.03, σ2
ε = 0.01 the symmetric equilibrlim

gives β ≈ 0.952, Eq ≈ 0.398, EP ≈ 0.20, Eπ ≈ 5.047×10−2, and ETS ≈ 0.421.

For b = 1, n = 2, θ = 0.1 and , σ2
ε = 0.01, the symmetric equilibrium gives

β ≈ 3.050 , Eq ≈ 0.445, EP ≈ 0.11, Eπ ≈ 1.661× 10−2, and ETS = 0.433.

We futher explore the relationship between the optimal symmetric β, the

firm’s profit, the market price, the the total surplus and θ in the diagram below.

The diagram below is plotted with σ2
ε = 0.01.

3.4 Stability and strategic complementarity

In the presence of multiple equilibria, questions of stability arise. We have

Proposition 5 When there exists another symmetric equilibrium other than

Bertrand, this equilibrium with positive profit is a stable equilibrium.

Proof. See Appendix.

Remark 1 Firms’second stage quantity choices are strategic substitutes.

Remark 2 Firms’first stage γ choices are strategic complements for when firms
choose close enough γ.

For any given j 6= i:

∂2Eπi
∂βi∂βj

= −
2
(
1 + σ2

ε

)
b (n− 1)(

1 + n+ b (n− 1)
∑N
i=1 βi

)3 +
6
(
1 + σ2

ε

)
b
(

1 + b
∑N
j 6=i βj

)
(n− 1)

2(
1 + n+ b (n− 1)

∑N
i=1 βi

)4

(9)
∂2Eπi
∂βi∂βj

> 0 for close enough βi and βj and n > 1.
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Figure 1: Symmetric Equilibrium β, π, EP , ETS. Plotted with b = 1, n = 2,

σ2
ε = 0.01.

4 Implications

The existence of multiple equilibria for a non-cooperative oligopoly game, one of

which is the Bertrand equilibrium, has significant implications for competition

policy.

4.1 More competitors or more competition

An important question in competition policy is whether it is more important

to increase the number of competitors in an industry or to promote more com-

petitive behavior. An increase in the number of competitors may be promoted

through structural remedies such as divestiture, while interventions aimed at

promoting more competitive behavior may be described as behavioral remedies.

Using this terminology, the European Commission, for example, states a pref-

erence for behavioral remedies. See, for example, the discussion in van Koten

and Ortmann (2013).

A large literature has developed from the proposition of Allaz and Vila (1993)

that, in the presence of forward markets, firms engaged in Cournot competition

may increase total output, thereby reducing prices and profits and enhancing

consumer welfare. Van Koten and Ortmann (2013) summarize this literature

12



and provide experimental evidence supporting the claims of Allaz and Vila for

the case of convex production costs and competition in quantities.

Menezes and Quiggin (2012) consider the case where firms are constrained to

compete in supply schedules with exogenously determined slopes, and provide

conditions under which the benefits of a flatter (more elastic) supply schedule

will outweigh those of a larger number of firms.

The present paper takes this point further by making the slope of the sup-

ply schedule endogenous. The existence of two equilibria, one competitive (or

Bertrand) and one oligopolistic implies that any behavioral remedy that ensures

the selection of the competitive equilibrium (for example, by allowing firms to

revise prices downwards, but not upwards, after observing their competitors’

initial offers) will yield benefits greater than those of a structural remedy that

increases the number of firms in the oligopolistic equilibrium.

4.2 The equilibrium locus

The equilibrium locus (Busse (2012), Menezes and Quiggin (2013a)) consists of

the set of pairs {(P (ε) , Q (ε)) : ε ∈ R} where

Q (ε) = D (P (ε) , ε) =
∑
i

q̃i (ε)

The key idea is that, in equilibrium, each firm acts as a monopolist, choos-

ing the optimal price-quantity combination from a residual demand curve deter-

mined by a given observation of market demand and the (equilibrium) strategies

of the other firms. Aggregating across firms, we can determine an equilibrium

relationship between price and quantity for any particular realization of the

demand shock.

For the symmetric zero cost case, we have as above

q1 = q2 =
(1 + ε) (β + 1)

2β + 3

P =
1 + ε

2β + 3

or

q1 = q2 = (1 + β)P

Q = 2 (1 + β)P.

This provides a useful way to characterize equilibrium behavior as a function

of the competitiveness parameter γ.

13



4.3 Mavericks

Maverick firms play a prominent role in the examination of coordinated effects in

merger analysis. In particular, competition authorities are often concerned with

the elevated risk of tacit collusion if a merger eliminates a maverick firm. The

U.S. Merger guidelines, for example, defines a maverick as a firm that constitutes

an unusually disruptive force in the market place. This is not particularly

illuminating definition, which is not helped by the lack of a substantive body of

theory and empirical evidence identifying maverick firms.9

This paper provides a possible way of modelling a maverick firm by assuming

that it has a high first-stage cost θ. That is, for reasons of organizational struc-

ture, or firm culture, the firm finds it diffi cult to commit to a strategy involving

a low value of β, which entails a stable market share. The presence of such a

firm will reduce the profitability of the non-Bertrand equilibrium for all others,

and may therefore reduce the likelihood that this equilibrium will emerge.

4.4 Mergers

Mergers are common in oligopolistic industries, and would be more common if

it were not for anti-trust policies that prohibit anti-competitive mergers. Yet,

ever since the analysis of losses from horizontal merger put forward by Salant,

Switzer and Reynolds (1983), it has been known that a merger between two

firms in a Cournot—Nash oligopoly with constant returns to scale will reduce

the profitability of both firms. Only under stringent conditions (four out of five

firms merging) will such mergers be profitable.

On this basis, Salant, Switzer and Reynolds conclude that when mergers

are endogenous, socially injurious mergers (those that do not give rise to scale

economies suffi cient to offset the reduction in competition) will not take place

and therefore ‘need not be guarded against’. Indeed, since some socially bene-

ficial mergers will not take place, the policy problem is one of too few mergers

rather than too many.

Noting the counterintuitive nature of their results, Salant, Switzer and Reynolds

consider and reject the idea that the solution is to replace the Cournot—Nash

solution concept. They observe their result is robust to various modifications of

the simple Nash equilibrium.

In all the cases considered by Salant, Switzer and Reynolds, the equilibrium

is unique. By contrast the present model is characterized by multiple equilibria.

9Breunig and Menezes (2008) and Engle and Ocknefls (2014) provide a review of the
existing literature on mavericks.
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There are several reasons why we might expect a reduction in the number of

firms to increase the likelihood that the positive-profit equilibrium would replace

Bertrand.

First, as discussed in more detail below, if a single firm credibly commits to

Bertrand behavior, then only the Bertrand equilibrium is feasible.

Second, the smaller the number of firms, the easier it is for firms to commu-

nicate a commitment to an upward sloping supply schedule, and therefore the

more sustainable is the positive profit equilibrium.

Menezes and Quiggin (2013b) provide conditions under which a merger lead-

ing to a higher equilibrium value of γ will be profitable. In particular, a merger

will always be profitable in the limiting case where the post-merger equilibrium

is a Cournot duopoly.

5 Appendix A: Monitoring game

We assume that the owner of firm i can observe the quantity sold qi and the

strategic choice of the of the other firm γj but (in the absence of costly mon-

itoring) not the demand shock ε or the price P. Hence, the manager has an

incentive to report a low price P̌ and retain the surplus
(
P̌ − P̌

)
qi.

Assume the owner of the firm prescribes a supply curve with slope β. The

truthful equilibrium for given ε, is as described here
(
P̃ (ε) , qi

(
P̃ , β, ε

)
, ε;βi, βj

)
.

Hence, the equilibrium locus for firm i (Busse (2012), Menezes and Quiggin

(2013a)) consists of the set of pairs
{
P̃
(
ε, βi, βj

)
, qi

(
P̃ , β, ε

)
: ε ∈ R

}
. The

equilibrium locus is not the second-stage equilibrium supply schedule for some

given ε. Rather it is the locus of price-quantity pairs traced out as ε varies.

In particular, for the case of Cournot, the equilibrium locus is upward-sloping

rather than vertical, reflecting the fact that as demand increases so do the

equilibrium prices and quantities.

In the absence of monitoring, the agent can report ε̌ (ε) < ε, and choose a

point
(
P̌ , q̌i

)
on the residual demand curve with

qi = qi

(
P̃
(
ε̌, βi, βj

)
, β, ε̌

)
P̌ (ε̌) < P̃ (ε)

The market-clearing price P ∗ in the presence of cheating will depend on the

response of the other player,but will satisfy P ∗ ≥ P̌ .
The agent chooses ε̌ (ε) to maximize the illicit surplus

S (ε, ε̌, γ) =
(
P ∗ − P̌ (ε)

)
q̌i

(
P̃ (ε̌) , βi, βj , ε̌

)
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Thus, in the absence of monitoring, the agent receives an expected payoff from

cheating

S̄
(
γi, γj

)
= EεS

(
ε, ε̌, βi, βj

)
We observe

Lemma 1 S̄
(
βi, βj

)
is decreasing in βi

Suppose the owner can monitor the agent with probability π at a cost θ (π)

and can levy a penalty Π if the agent is caught cheating. The monitoring

cost increases with the probability of investigation, π. Then incentive com-

patibility requires πΠ ≥ S̄
(
βi, βj

)
. Assuming equality, the monitoring cost is

θi

(
S̄(βi,βj)

Π

)
which is decreasing in βi.

6 Appendix B

Proof. Proof of Proposition 3
Assuming zero production costs, the first-order condition 4 becomes1

b
+
∑
j 6=i

βj

1− b
n∑
j=1

qj + ε

− qi = 0 (10)

yielding the best response

qi =

(
1
b +

∑
j 6=i βj

)(
1− b

∑n
j 6=i qj + ε

)
(

2 + b
∑
j 6=i βj

) .

From FOC ??, we have

qi =

1

b
+

N∑
j 6=i

βj

 (1 + ε− bQ) .

Summing up the n, n = 1, ..., n, FOCs we have

Q =

(
n

b
+ (n− 1)

N∑
i=1

βi

)
(1− bQ+ ε) .

This gives

Q =
(1 + ε)

(
n
b + (n− 1)

∑N
i=1 βi

)
(

1 + n+ b (n− 1)
∑N
i=1 βi

)
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and

P =
(1 + ε)

n+ 1 + b (n− 1)
∑N
i=1 βi

.

q∗i =
(1 + ε)

(
1
b +

∑N
j 6=i βj

)
1 + n+ b (n− 1)

∑N
i=1 βi

.

Remark 3 In a symmetric equilibrium, we have we have β1 = β2 = ... = βn =

β and

q∗i =
(1 + ε)

(
1
b + (n− 1)β

)
1 + n+ b (n− 1)nβ

Q =
(1 + ε)

(
n
b + n (n− 1)β

)
1 + n+ b (n− 1)nβ

P =
(1 + ε)

1 + n+ b (n− 1)nβ
.

We now consider the choice of βi in the first stage. Given the second stage

outcome, firm i soloves

max
βi

E
[
πi
(
βi,β−i, ε

)]
=

 (1 + ε)
(

1
b +

∑N
j 6=i βj

)
1 + n+ b (n− 1)

∑N
i=1 βi

( (1 + ε)

n+ 1 + b (n− 1)
∑N
i=1 βi

)
− θ

βi
.

The FOC gives

∂E
[
πi
(
βi,β−i, ε

)]
∂βi

= −
2
(
1 + σ2

ε

) (
1 + b

∑N
j 6=i βj

)
(n− 1)(

1 + n+ b (n− 1)
∑N
i=1 βi

)3 +
θ

β2
i

≤ 0 (11)

with equality for an interior solution.

In a symmetric interior solution

θ =
2
(
1 + σ2

ε

)
(1 + b (n− 1)β) (n− 1)β2

(1 + n+ b (n− 1)nβ)
3 . (12)

The RHS is equal to 0 if β = 0 and is equal to
2(σ2ε+1)
b2n3(n−1) as β → ∞.

Furthermore, the RHS increases in β for n ≥ 1. Given this monotonicity, for

each given θ ∈
(

0,
2(σ2ε+1)
b2n3(n−1)

)
, there is a unique symmetric β solution.

Remark 4 The second order condition is always satisfied for symmetric equi-
librium with finite positive β.
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Substititue the θ value for an interior β solution from Equation 11,

∂2Eπi
[
πi
(
βi,β

∗
−i
)]

∂β2
i

= 2
(
1 + σ2

ε

)
(n− 1)

1 + b

N∑
j 6=i

βj


b (n− 1)βi − 2 (1 + n)− 2b (n− 1)

∑N
j 6=i βi

βi

(
1 + n+ b (n− 1)

∑N
i=1 βi

)4

 .

(13)
∂2Eπi[πi(γi,γ−i,ε)]

∂β2i
< 0 for close enough βi and β−i.

Proof. Proof of Proposition 5
This proof follows Dixit (1986), Martin (2002, p. 30), and Seade (1980),

adapted to our setup. Let
(
β∗i ,β

∗
−i
)
be an equilibrium of the first stage game.

Suppose that if firms choose
(
βi,β

∗
−i
)
in the neighbourhood of

(
β∗i ,β

∗
−i
)
, firm

i changes βi over time at a rate proportional to its marginal profitability,

dβi
dt

= ki
∂Eπi

(
βi,β

∗
−i
)

∂βi
, (14)

for ki > 0. That is, if it is profitable to increase βi, firm i increases βi at a

rate which is proportional to marginal profitability.

Take a local linear approximation to Equation 14 around
(
β∗i , β

∗
−i
)
:

dβi
dt

= ki
∂Eπi

(
β∗i ,β

∗
−i
)

∂βi
+ki

∂2Eπi
(
β∗i ,β

∗
−i
)

∂β2
i

(βi − β∗i ) +
∑
j 6=i

∂2Eπi
(
β∗i ,β

∗
−i
)

∂βi∂βj

(
β−i − β∗j

) .
At an interior

(
β∗i ,β

∗
−i
)
,
∂Eπi(βi,β∗−i)

∂βi
= 0. Repeat the analysis for each firm

j, j 6= i, the system of adjustment equations can be written as
dβ1
dt
dβ2
dt
dβn
dt

 =

 k1 0...0 0

0 k2 0

0 0...0 kn




∂2Eπ1(β∗i ,β
∗
−i)

∂β21

∂2Eπ1(β∗i ,β
∗
−i)

∂β1∂β2
...

∂2Eπ1(β∗i ,β
∗
−i)

∂β1∂βn
∂2Eπ2(β∗i ,β

∗
−i)

∂β2∂β1

∂2Eπ2(β∗i ,β
∗
−i)

∂β22
...

∂2Eπ2(β∗i ,β
∗
−i)

∂β2∂βn
∂2Eπn(β∗i ,β

∗
−i)

∂βn∂β1

∂2Eπn(γ∗i ,γ
∗
−i)

∂βn∂β2
...

∂2Eπn(β∗i ,β
∗
−i)

∂β2n


 β1 − β∗1

β2 − β∗2
βn − β∗n

 .

Note that the matrix in the LHS is a n × 1 matrix. The RHS are n × n,
n× n, and n× 1 matrices respectively. One necessary condition for stability is

for the Jacobian matrix to have a negative trace. This is true given that the

second order condition is satisfied in equilibrium. Another necessary condition

is that the determinant of the Jacobian matrix should have the same sign as

(−1)
n. The determinant of the matrix can be computed as (see Dixit, 1986,

and Seade, 1980):

n∏
i=1,j 6=1

(
∂2Eπi

(
β∗i ,β

∗
−i
)

∂β2
i

−
∂2Eπi

(
β∗i ,β

∗
−i
)

∂βi∂βj

)1 +

n∑
i=1,j 6=i

∂2Eπi(β∗i ,β
∗
−i)

∂βi∂βj

∂2Eπi(β∗i ,β∗−i)
∂β2i

− ∂2Eπi(β∗i ,β∗−i)
∂βi∂βj

 ,
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the necessary condition is thus

(−1)
n

 n∏
i=1,j 6=1

(
∂2Eπi

(
β∗i ,β

∗
−i
)

∂β2
i

−
∂2Eπi

(
β∗i ,β

∗
−i
)

∂βi∂βj

)1 +

n∑
i=1,j 6=i

∂2Eπi(β∗i ,β
∗
−i)

∂βi∂βj

∂2Eπi(β∗i ,β∗−i)
∂β2i

− ∂2Eπi(β∗i ,β∗−i)
∂βi∂βj


 > 0.

(15)

The simplest set of suffi cient condition is obtained by requiring diagonal domi-

nance in the matrix:∣∣∣∣∣∂2Eπi
(
β∗i ,β

∗
−i
)

∂β2
i

∣∣∣∣∣ > (n− 1)

∣∣∣∣∣∂2Eπi
(
β∗i ,β

∗
−i
)

∂βi∂βj

∣∣∣∣∣ . (16)

With symmetry, Equations 13 and 9 become

∂2Eπi
(
β∗i ,β

∗
−i
)

∂β2
i

= 2
(
1 + σ2

ε

)
(n− 1) (1 + b (n− 1)β)

(
b (n− 1)β − 2 (1 + n)− 2b (n− 1)

2
β

β (1 + n+ b (n− 1)nβ)
4

)
.

∂2Eπi
(
β∗i ,β

∗
−i
)

∂βi∂βj
= −

2
(
1 + σ2

ε

)
b (n− 1)

(1 + n+ b (n− 1)nβ)
3 +

6
(
1 + σ2

ε

)
b (1 + b (n− 1)β) (n− 1)

2

(1 + n+ b (n− 1)nβ)
4 .

Condition 16 is satisfied for n > 1.
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