## Customer Learning and Revenue Maximizing Trial Provision

#### Takeaki Sunada

#### Department of Economics: University of Pennsylvania

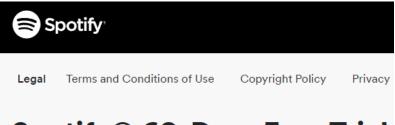
#### December 27, 2017

- Trial (demo) product: common practice in selling experience-durable goods.
  - Information goods: Software, Music, Drama series
  - Subscription service: Amazon Prime, Fitness gym membership
- Wide variety of product design:

"Time-locked" (Limited-time): Matlab, Microsoft Office "Functionality-limited": Dropbox, Adobe Photoshop

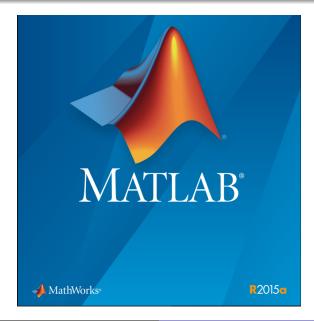


Takeaki Sunada Trial product design



# Spotify<sup>®</sup> 60-Days Free Trial

This offer (the "Offer"), which is made to you by Spotify (as defined in the Service (as defined in the Spotify Terms and Conditions of Use) for a perior submitting your payment details (the "Free Trial Period"). By submitting you details in accordance with our Privacy Policy, (iii) acknowledge and agree



Takeaki Sunada Trial product design



## Free MATLAB Trial

# Get Started Now with Your Free 30-Day Trial



Takeaki Sunada Trial product design

# 10 hour trial for Madden NFL 18 now available through EA Access on Xbox One



by pastapadre

Posted August 16th, 2017 at 11:15 am





Takeaki Sunada

Trial product design

#### **Research question**

- What is the optimal trial design (duration of free usage, accessible functionalities) to maximize firm revenue?
- What are the determining factors?

#### **Research question**

- What is the optimal trial design (duration of free usage, accessible functionalities) to maximize firm revenue?
- What are the determining factors?

Why care?

- A firm manager: lack of guideline for trial product design
- A researcher: a particular environment to evaluate the impact of product information provision on the demand

• Literature agrees that trial provision impacts the customer willingness-to-pay through learning-by-using.

but,

- "Whether" and "how" to provide a trial: no unique prediction.
- Optimal trial depends on the nature of customer learning-by-using.
  - Speed of learning, size of initial uncertainty, etc
  - Need for empirical investigation

- Build and estimate a model of customer learning.
   First empirical analysis of customer learning-by-using.
- Identify the learning mechanism: how trial provision impacts the demand.
- Ounterfactual: find the revenue maximizing trial design.

A major sport game software released annually:

- 3D real-time play in the match
  - requires game-specific play skill.
- 4 game modes are available: "functionality" in this setup
   Creating a dream team, Simulating a player career, etc
- Largest sales in the category by a large margin: assuming monopolist throughout

- Consumer learning Erdem and Keane (1996), Goettler and Clay (2011), Che, Erdem and Öncü (2015), etc.
- Trial product and product demonstration Lewis and Sappington (1994), Heiman and Muller (1996), Cheng, Li and Liu (2015), etc.
- Software industry Lee (2013), Gil and Warzynski (2015), Engelstatter and Ward (2016), etc.

- Customers are risk aversed and face uncertainty: room for firm intervention.
- 2 Provision of time-locked trial with 5-7 free sessions can be profitable in some cases ( $\sim$  10% revenue increase).

- However, in vast majority of cases opportunity cost of lost sales domiantes. No trial is optimal.

- Key data moments to support the hypothesis: customer learning
- Illustration of firm strategy and relevant trade-offs
- Model formulation: how the mechanism maps into the model.

Session record data provided through Wharton Customer Analytics Initiative (WCAI).

- Randomly sampled 4,956 registered users, no trial experience
- Activation date and history of play (how long and which gamemode) from the date of purchase till the end
- "Session": unit of observation. One session consists of a continuous play of a game mode (may contain multiple matches).

From online price comparison website, history of weekly prices.

## Data pattern

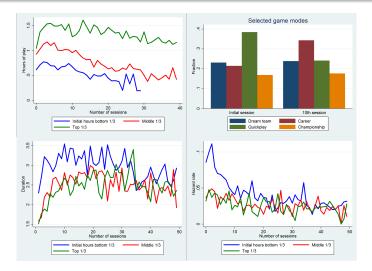
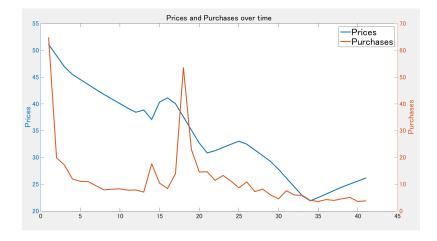
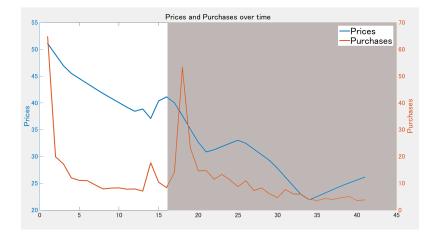


Figure: (Clockwise) Hours per session; Game mode selection; Dropout rate, Duration between sessions

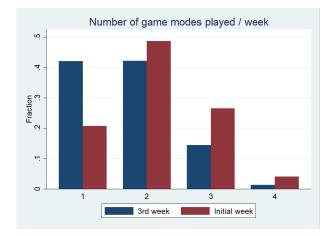




In general, customer learning is not separately identified from nonparametric form of preference heterogeneity. But,

- 42% of users start from "practice mode".
- 2 7% initial drop-out rate.

## Customer experimenting



Tendency to play more gamemodes at the beginning - experiment behavior.

### Key data moments to support the modeling

- Illustration of firm strategy and relevant trade-offs
- Model formulation: how the mechanism maps into the model.

Consider customers facing uncertainty about their "match value".

- Preference, skill, etc

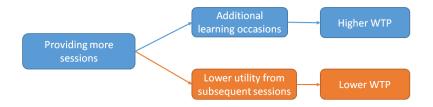
If they are risk aversed, eliminating the uncertainty increases their WTP on average.

The trial design impacts "how" learning occurs: allows firm to manipulate the WTP distribution at purchase.

- Time-locked vs Functionality-limited

## Different trade-offs: Time-locked trial

Limiting time essentially limits the number of sessions playable for free.



- When initial learning is quick relative to initial utilility decay, an optimal time-limit exists (WTP inverse-U shaped).
- Higher learning speed/utility decay ratio improves the profitability of limited time trial.

## Different trade-offs: Limited functionality trial

- Learning spill-over: How much a customer can learn about functionality X when she consumes functionality Y.
- When spill-over is large, providing few functionalities is sufficiently informative about the whole product.
- Otherwise, need for providing many functionalities to facilitate learning - smaller incremental value from the full product.

The best practice hence depends on the nature of learning process.

|               | Large Spillover                              | Small Spillover     |
|---------------|----------------------------------------------|---------------------|
| Fast Learning | Limited time and/or<br>Limited functionality | Limited time        |
| Slow Learning | Limited functionality                        | Not providing trial |

The model has to identify these factors, as well as the customer's risk aversion.

- Key data moments to support the modeling
- Illustration of firm strategy and relevant trade-offs
- Model formulation: how the mechanism maps into the model.

Two dynamic programming: purchase decision, then usage decision

Usage decision: Bayesian learning model with forward-looking customers

- They know they learn. Trade-off between flow payoff vs future return

Purchase decision: forward-looking customers' purchase timing choice.

- The value function from usage decision problem used as an input

- Finite horizon dynamic programming with terminal period T.
- True preference for each functionalities
   θ<sub>i</sub> = {θ<sub>i1</sub>, ..., θ<sub>im</sub>, ..., θ<sub>iM</sub>} ~ N(μ, Σ), unknown to the
   customer.
- At t = 0, She starts from an initial belief  $b_{\theta i0} = \{\mu_{i0}, \Sigma_0\}$ .

- At each session t, a user chooses the functionality *m* and the hours of usage
  - Sequential order: functionality (dynamic), and then hours (static).
- After the session, receive an an informative signal for the chosen functionality, update the belief  $b_{\theta it}$ .
- Two random variables determine whether she stays active or terminates, and the duration till next session if active.
  - Interpretable as a reduced form policy.

## Choice of the hours

Static expected utility maximization;

$$egin{aligned} &\max_{x_{imt}} E(u(x_{imt}, heta_{im},
u_{imt},h_t)|b_{ heta it}) \ &= f(b_{ heta it})x_{imt} - rac{(\gamma_1
u_{imt}+\gamma_2
u_{imt}^2+x_{imt})^2}{2(1+lpha_1h_t)}, \end{aligned}$$

where 
$$f(b_{\theta it}) = (E(\theta_{im}^{\rho}|\theta_{im} > 0, b_{\theta it})P(\theta_{im} > 0|b_{\theta it}))^{\frac{1}{\rho}}, \ \rho > 0.$$

 $x_{imt}$ : the hours of usage of functionality m at session t  $\nu_{imt}$ : the number that functionality m was chosen in the past t-1 sessions

ht: holiday indicator

 If risk aversed, then smaller variance → higher utility, longer play hours.

$$\begin{aligned} \mathbf{v}_{imt}(b_{\theta it},\nu_{imt},h_t) \\ &= \max\left\{\frac{f(b_{\theta it})^2(1+\alpha_1h_t)}{2} - f(b_{\theta it})(\gamma_1\nu_{imt}+\gamma_2\nu_{imt}^2),\mathbf{0}\right\}. \end{aligned}$$

$$x_{imt}^*(b_{\theta it},\nu_{imt},h_t) = \max\left\{f(b_{\theta it})(1+\alpha_1h_t) - (\gamma_1\nu_{imt}+\gamma_2\nu_{imt}^2),0\right\}.$$

 $\nu_{imt}$ : the number that functionality m was chosen in the past t-1 sessions  $h_t$ : holiday indicator

## The choice of functionality

Let 
$$\Omega_{it} = (\{b_{\theta it}\}_{m=1}^{M}, \{\nu_{imt}\}_{m=1}^{M}, h_t)$$
 be the state.  
 $V_{it}(\Omega_{it}) = E(\max_{m_{it}} v_{imt}(b_{\theta it}, \nu_{imt}, h_t) + \epsilon_{imt}\sigma_{\epsilon 1} + E(\beta(\Omega_{i,t+1})V_{i,t+1}(\Omega_{i,t+1})|\Omega_{it}, m_{it})))$ 

$$= \sigma_{\epsilon 1} \log \left(\sum_{m} \exp\left(\frac{1}{\sigma_{\epsilon 1}}(v_{imt}(b_{\theta it}, \nu_{imt}, h_t) + E(\beta(\Omega_{i,t+1})V_{i,t+1}(\Omega_{i,t+1})|\Omega_{it}, m_{it}))\right)\right).$$

Discount factor  $\beta(\Omega_{i,t+1})$ : including the probability of drop-out and future frequency of play.

 $v_{imt}$  already level-scale normalized: no need to normalize  $\sigma_{\epsilon 1}$ .

Initial belief:  $b_{\theta i0} = \{\mu_{i0}, \Sigma_0\}$ . After each session *t*, she receives an unbiased signal  $s_{imt}|\theta_{im} \sim N(\theta_{im}, \sigma_s^2)$  for the chosen *m*.

$$\mu_{i,t+1} = \mu_{it} + \sum_{it} Z'_{it} (Z_{it} \sum_{it} Z'_{it} + \sigma_s^2 * I)^{-1} * (s_{imt} - \mu_{imt}),$$
  
$$\sum_{i,t+1} = \sum_{it} - \sum_{it} Z'_{it} (Z_{it} \sum_{it} Z'_{it} + \sigma_s^2 * I)^{-1} Z_{it} \sum_{it},$$

where  $Z_{it}$  represents the functionality chosen at t by i. Learning spill-over exists: preference correlation.

## The model for purchase decision

- Forward looking consumer with rational expectation for tomorrow's price: an optimal stopping problem
- Buy when the value from buying > the value from waiting.
   Value from buying: V(Ω<sub>0</sub>) (value function derived from the model of usage)
  - Value from waiting: future price reduction

$$V_{\rho}(\Omega_{i0}, p_{\tau}) = E(\max\{V(\Omega_{i0}) - \alpha_{\rho}p_{\tau} + \epsilon_{1\tau}\sigma_{\epsilon2}, \beta E(V_{\rho}(\Omega_{i0}, p_{\tau+1})) + \epsilon_{0\tau}\sigma_{\epsilon2}\}),$$

where  $\tau$  is a calendar week.

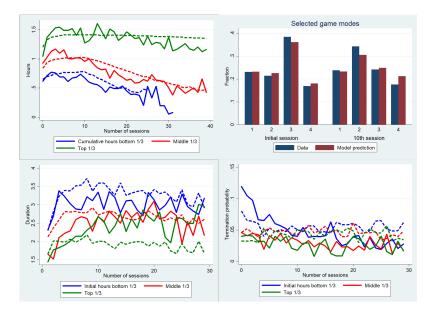
Model and trial product provision:

- If risk aversed, value function *increases* after a few sessions.
  - Rationale for providing trials
- Two dimensions of learning: over time and across functionalities. Limiting either one impacts learning.
- Firm trade-off easily attributable to model parameters:
  - Speed of learning: signal precision ( $\sigma_s$ )
  - Boredom: utility decay ( $\gamma$ ) and dropout probability
  - Learning spill-over: preference correlation ( $\Sigma$ )

Simulated maximum likelihood:

- Likelihood of usage = probability of game mode choice × hours of play × duration between sessions × termination probability. Multiply over sessions.
- Likelihood of purchase = probability of observing the purchase pattern in the data.
   Customer arrival process: A peak at the week of product launch, then uniform arrival afterward.
- Combine both likelihood and integrate over unobservables.

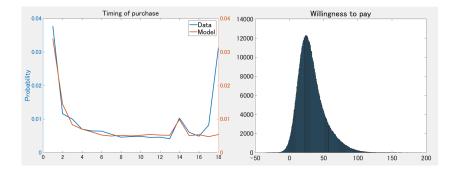
## Model fit - usage



Takeaki Sunada Trial pr

#### Trial product design

## Model fit - purchase

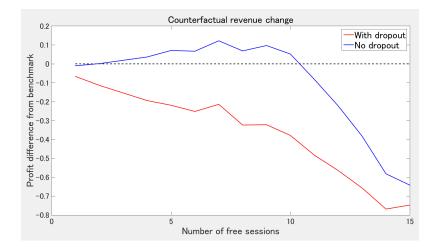


- Customers are risk aversed:  $\rho = 0.5802 < 1$ .
- Large initial uncertainty: 95% confidence interval of someone with \$40 initial mean WTP = [30.8271, 49.1729].
- Learning is quick:
   "s.d. of signal : s.d. of initial belief = 1 : 4".

- Suppose that  $\tilde{\mathcal{T}} < \mathcal{T}$  free sessions is provided, along with the full product.
- At period 0, customers can pick either to take trial or to buy the full product.
- While using a trial, they can decide on whether to make a purchase or not at the end of each calendar day.
- Value functions for play and purchase are solved jointly.
- The solution of the dynamic programming yields an aggregated demand function.
- The firm maximizes the revenue (price × aggregated demand, summed over periods) by choosing T̃.

Provision of time-locked trial is similar, except  $\tilde{M} < M$  rather than  $\tilde{T} < T$ .

## Counterfactual - time-locked trial



WTP of those who survive does increase. However, high initial drop-out rate offsets all the gains.

- This paper has addressed a question of optimal trial provision.
- Customers are indeed risk-aversed and face uncertainty at purchase. Provision of trial increases WTP.
- However, initial high drop-out rate makes the provision of time-locked trial suboptimal in majority of the parameter range.