Retailer's product line choice with manufacturer's multi-channel marketing

Cong Pan

Graduate School of Economics, Osaka University pge042pc@student.econ.osaka-u.ac.jp

June 15, 2016

Outline

(1) Introduction

- Research motivation
- What to study?
- Existing literature
(2) Monopoly retailer case
- Variety balance in the wholesale channel
- Order the more the better?
- Online store always benefits?

3 Duopoly retailer case

- Unbalanced variety distribution in the wholesale channel
- Balanced variety distribution in the wholesale channel
- More varieties always benefit social welfare?

4 Concluding remarks

Motivation

The shifting channel power:

- Manufacturer \rightarrow Retailer (Kadiyali et al., 2000);
- Buyer power: order for product line.

The bloom of internet:

- Upstream manufacturers recaptures channel power by multi-channel marketing (e.g. Tannenbaum, 1995): online channels + traditional wholesale channels;
- Online stores compete with retailers (Emerson, 2010): intrabrand competition.
"Product line decision": a retailer VS an online store (Lieber and Syverson, 2010)
- A physical retailer is disadvantageous in inventory and display The retailer's product line choice is an important issue.

Objective

Retailer's product line choice + Manufacturer's multi-channel marketing

- Manufacturer (M): MPF; Retailer (R): orders variety(ies) from the manufacturer.
- Sale through online channel \equiv "encroachment" (Arya et al., 2007)

Market structure:

Main results

\#: number of varieties.
When M is able to run its online store,
(1) Even if without product line expansion cost, R may order less \# so as to induce M's less encroaching \#;
(2) M may benefit by committing not to open the online store;
(3) social welfare may decrease, even though \# increases.

Real world cases:

- Customized model sold by "JCCU" in main universities; (e.g. Panasonic's notebook PC, Casio's electronic dictionaries, Cannon's laser printers)
- Fashion magazines bundled with CDs, small examples or supplemental materials sold in physical stores.

Existing literature

- Supplier power-manufacturer's encroachment:
(1) Arya et al. (2007, Marketing Sci): initial attempt; single product firms.
(2) Liao (2014, JER): asymmetric information.
(3) Mizuno (2012, JEMS): endogenous encroachment; n retailers.
(4) Li et al. (2015, IJPE): n exclusive supply chains.
- Buyer power-product line choice:
© Dukes et al. (2009, Marketing Sci):
1 MPF manufacturer, duopoly retailers' product line expansion cost.
(2) Moner-Colonques et al. (2011, JEMS):

2 SPF manufacturers, duopoly retailers decide single-sourcing or multi-sourcing.
(3) Inderst and Shaffer (2007, EJ): Single-sourcing and cross-border mergers.

This paper: Manufacturer's encroachment + Retailer's product line choice

Monopoly retailer case

Market structure:

- Product variety $n=X$ or Y;
- M's variety choice, $m=X, Y$, both (B), or nothing (N);
- R's variety choice, $r=X, Y$ or both (B);
- Online retail cost: c ("encroachment" literature).

Demand side:

- Representative consumer's utility:

$$
U\left(Q_{X}, Q_{Y}\right)=a\left(Q_{X}+Q_{Y}\right)-\frac{1}{2}\left(Q_{X}^{2}+2 \gamma Q_{X} Q_{Y}+Q_{Y}^{2}\right)
$$

where Q_{n} is the total quantity of n;

- Inverse demand of $n, P_{n}\left(Q_{n}, Q_{-n}\right)=a-Q_{n}-\gamma Q_{-n}$, where Q_{n}, P_{n} : total quantity and price of n.

Benchmark: one retailer case

Timing:

- Seven cases of product line systems, rm: $X N, X X, X Y, X B, B N, B Y$, BB;
- $q_{n R}$ and $q_{n M}: R$ and M 's quantity of n.

M's profit :

$$
\pi_{M}=\sum_{n^{\prime} \in L}\left[P_{n^{\prime}}\left(Q_{n^{\prime}}, Q_{-n^{\prime}}\right)-c\right] q_{n^{\prime} M}+\sum_{n \in K} q_{n R} w_{n}
$$

R's profit:

$$
\pi_{R}=\sum_{n \in K}\left[P_{n}\left(Q_{n}, Q_{-n}\right)-w_{n}\right] q_{n R}
$$

where $K \subseteq\{X, Y\} \backslash \emptyset, L \subseteq\{X, Y\}$.

Result: wholesale price and online variety

Games in period 2:

$$
\begin{gathered}
\max _{w_{n}, w_{-n}} \sum_{n^{\prime} \in L}\left[P_{n^{\prime}}\left(Q_{n^{\prime}}\left(w_{n}, w_{-n}\right), Q_{-n^{\prime}}\left(w_{n}, w_{-n}\right)\right)-c\right] q_{n^{\prime} M}\left(w_{n}, w_{-n}\right) \\
+\sum_{n \in K} q_{n R}\left(w_{n}, w_{-n}\right) w_{n} .
\end{gathered}
$$

Proposition 1

Given the retailer's variety order r, the wholesale prices decrease with more product varieties sold online ($w_{n}^{r B}<w_{n}^{r Y}<w_{n}^{r N}$).

$$
\begin{aligned}
& \#_{M} \uparrow \\
& \Rightarrow \pi^{\text {online }} \uparrow ; \\
& \Rightarrow q_{n R} \downarrow \Rightarrow \pi^{\text {wholesale }} \downarrow \text { (Business stealing effect) } \Rightarrow w_{n} \downarrow
\end{aligned}
$$

Because the wholesale channel is more efficient than the online channel, M decreases w to alleviate the intrabrand competition (Arya et al., 2007).

* w reflects the intensity of intrabrand competition.

M's variety choice

Lemma 1

(1) When $r=X$, (i) $m=B$ if $c / a \leq \underline{\theta}^{X}(\gamma)$, (ii) $m=Y$ if $\underline{\theta}^{X}(\gamma)<c / a \leq \bar{\theta}^{X}(\gamma)$, (iii) $m=N$ if $c / a>\bar{\theta}^{X}(\gamma)$;
(2) When $r=B$, (i) $m=B$ if $c / a \leq \theta^{B}(\gamma)$, (ii) $m=N$ if $c / a>\theta^{B}(\gamma)$.

Some remarks:
(1) When $r=X, M$ does not sell X online (avoid direct encroachment).

- Online sale of X is small;
- Overly intensive intrabrand competition.
(2) When $r=X, M$ may sell Y online.

When $r=B, M$ does not sell only one variety online.

- M intends to make variety distribution balanced (main logic).

Wholesale pricing effect when $r=X$

When $r=X$, variety distribution in wholesale channel is unbalanced.
$\#_{M}(0 \rightarrow 1)$ (selling Y) VS $\#_{M}(1 \rightarrow 2)$ (additionally sell $\left.X\right)$,

$$
0<w_{X}^{X N}-w_{X}^{X Y}<w_{X}^{X Y}-w_{X}^{X B}
$$

Intuition: when $m=Y$, because the intrabrand competition is indirect and mild, M lowers w only a little; when $m=B$, because the intrabrand competition is direct and intensive, M largely lowers w.

* M is less likely to sell both varieties online, when R 's order is unbalanced.

Unbalanced variety distribution in wholesale channel

Wholesale pricing effect when $r=B$

When $r=B$, variety distribution in wholesale channel is balanced.
$\#_{M}(0 \rightarrow 1)$ (selling $\left.Y\right)$ VS $\#_{M}(1 \rightarrow 2)$ (additionally sell X),
$w_{Y}^{B N}-w_{Y}^{B Y}>w_{X}^{B Y}-w_{X}^{B B}>0$ (direct encroachment),
$w_{X}^{B N}-w_{X}^{B Y}>w_{Y}^{B Y}-w_{Y}^{B B}>0$ (indirect encroachment).

* $\#_{M}(0 \rightarrow 1)$ causes more intrarand competition than $\#_{M}(1 \rightarrow 2)$.

Intuition: when $\#_{M}(1 \rightarrow 2)$ (additionally sell X), business stealing effect $\Rightarrow q_{r R} \downarrow$, cannibalization effect $\Rightarrow q_{X M} \downarrow \Rightarrow q_{r R} \uparrow$.

* M tends to avoid unbalanced variety distribution when R 's order is already balanced.

Balanced variety distribution in wholesale channel

R's variety order

Proposition 2

The equilibrium variety outcome is
(i) $r=B$ and $m=B$ (BB) if $c / a \leq \underline{\theta}^{X}(\gamma)$ (the $B B$ variety outcome);
(ii) $r=X$ and $m=Y(X Y)$ if $\underline{\theta}^{X}(\gamma) \leq c / a \leq \theta^{B}(\gamma)$ (the $X Y$ variety outcome);
(iii) $r=B$ and $m=N(B N)$ if $c / a \geq \theta^{B}(\gamma)$ (the $B N$ variety outcome).

* From (ii), R and M act as if they make an tacit commitment to balance the variety distribution.

Although R can order both varieties, it orders only one. Intuition: when c is relatively low, encroachment is inevitable,

- $r=B \Rightarrow$ larger product range $(+)$
$\Rightarrow m=B \Rightarrow$ direct encroachment (-);
- $r=X \Rightarrow$ smaller product range (-)
$\Rightarrow m=Y \Rightarrow$ indirect encroachment $(+)$.

Equilibrium profits

$$
\gamma=0.4
$$

$R: ~ \subset \downarrow \Rightarrow$ encroachment $\uparrow \Rightarrow \pi_{R} \downarrow$
M at $\bar{\theta}^{X}(\gamma)$: intrabrand competition $(\uparrow)+$ channel efficiency \downarrow

$$
\Rightarrow \pi^{\text {online }} \uparrow, \pi^{\text {wholesale }} \downarrow \stackrel{\text { large } c}{\Rightarrow} \pi_{M} \downarrow
$$

* "loss-loss" consequence (in contrary to Arya et al., 2007)

Proposition 3
M may benefit by committing not to open online store.

Consumer surplus (CS) and total surplus (TS)

CS: c $\downarrow \Rightarrow$ competitiveness $\uparrow \Rightarrow C S \uparrow$

$$
T S=U\left(Q_{X}, Q_{Y}\right)-c \sum_{n \in L} q_{n M}
$$

$T S$ at $\theta^{B}(\gamma)$: competitiveness $\uparrow(+), c \sum_{n} q_{n M} \uparrow(-) \Rightarrow T S \downarrow$
Proposition 4
Running an online store may harm the social welfare.

Extension: duopoly retailer case

Market structure:

Remark:

- Fourteen cases of product line system, $r_{1} r_{2} m: ~ X X N, X X X, X X Y, X X B$, $X Y N, X Y Y, X Y B, X B N, X B X, X B Y, X B B, B B N, B B X B B B ;$
Timing:

Unbalanced variety distribution in wholesale channel

$r_{1} r_{2}=X X$ or $X B:$

- X is over distributed, but Y is less distributed ($r=X$ in monopoly case);
- M does not sell only X online.
* Selling only Y enables M to alleviate the intrabrand competition.
$\Rightarrow M$ is less likely to sell both varieties online, when variety distribution in wholesale channel is unbalanced.

Lemma 2
(1) When $r_{1} r_{2}=X X$, (i) $m=B$ if $c / a \leq \underline{\theta}^{X X}(\gamma)$, (ii) $m=Y$ if $\underline{\theta}^{X X}(\gamma)<c / a \leq \bar{\theta}^{X X}(\gamma)$, (iii) $m=N$ if $c / a>\bar{\theta}^{X X}(\gamma)$;
(2) When $r_{1} r_{2}=X B$, (i) $m=B$ if $c / a \leq \underline{\theta}^{X B}(\gamma)$, (ii) $m=Y$ if
$\underline{\theta}^{X B}(\gamma)<c / a \leq \bar{\theta}^{X B}(\gamma)$, (iii) $m=N$ if $c / a>\bar{\theta}^{X B}(\gamma)$.

Unbalanced variety distribution in wholesale channel

$$
\underline{\theta}^{X X}(\gamma)<\underline{\theta}^{X B}(\gamma)<\bar{\theta}^{X B}(\gamma)<\bar{\theta}^{X X}
$$

* $m=Y$ is less profitable when $r_{1} r_{2}=X B$ than $r_{1} r_{2}=X X$.

Balanced variety distribution in wholesale channel

 $r_{1} r_{2}=X Y$ or $B B:$- Both varieties are evenly distributed ($r=B$ in monopoly case);
- $\#_{M}(0 \rightarrow 1)$ VS $\#_{M}(1 \rightarrow 2)$ (additionally sell $\left.X\right)$,
$w_{Y}^{r_{1} r_{2} N}-w_{Y}^{r_{1} r_{2} Y}>w_{X}^{r_{1} r_{2} Y}-w_{X}^{r_{1} r_{2} B}>0$ (direct encroachment),
$w_{X}^{r_{1} r_{2} N}-w_{X}^{r_{1} r_{2} Y}>w_{Y}^{r_{1} r_{2} Y}-w_{Y}^{r_{1} r_{2} B}>0$ (indirect encroachment).
- $\#_{M}(0 \rightarrow 1)$ causes more intrarand competition than $\#_{M}(1 \rightarrow 2)$.
* If $m=Y$ is more profitable than $m=N$, so is $m=B$.
$\Rightarrow M$ tends to keep balance of variety distribution when that in wholesale channel is already balanced.

Lemma 2
(3) When $r_{1} r_{2}=X Y$, (i) $m=B$ if $c / a \leq \theta^{X Y}(\gamma)$, (ii) $m=N$ if $c / a>\theta^{X Y}(\gamma)$;
(4) When $r_{1} r_{2}=B B$, (i) $m=B$ if $c / a \leq \theta^{B B}(\gamma)$, (ii) $m=N$ if $c / a>\theta^{B B}(\gamma)$.

Balanced variety distribution in wholesale channel

$r_{1} r_{2}=B B$

$$
\theta^{B B}(\gamma)<\theta^{X Y}(\gamma)
$$

* $m=B$ is less profitable when $r_{1} r_{2}=B B$ than when $r_{1} r_{2}=X Y$ (ex-ante competitiveness).

R's variety order

Proposition 5

The equilibrium variety outcome is
(i) $r=B B$ and $m=B$ (BBB) if $c / a \leq \underline{\theta}^{X B}(\gamma)$;
(ii) $r_{1} r_{2}=X X$ and $m=Y(X X Y)$ if $\underline{\theta}^{X X \overline{(}}(\gamma)<c / a \leq \underline{\theta}^{X B}(\gamma)$, or if $\underline{\theta}^{X B}(\gamma)<c / a \leq \min \left\{\bar{\theta}^{X B}(\gamma), \theta^{X B}(\gamma)\right\}$;
(iii) $r_{1} r_{2}=X B$ and $m=Y(X B Y)$ if ${ }^{-} \max \left\{\underline{\theta}^{X B}(\gamma), \theta^{X B}(\gamma)\right\}<c / a \leq \theta^{B B}(\gamma)$;
(iv) $r_{1} r_{2}=X Y$ and $m=N(X B Y)$ if $\theta^{X Y}(\gamma)<c / a \leq \bar{\theta}^{X B}(\gamma)$;
(v) $r_{1} r_{2}=B B$ and $m=N(B B N)$ if $c / a>\theta^{B B}(\gamma)$.

* (i) and (v) are extreme cases (c is too large or too small): $\#_{R 1}$ and $\#_{R 2}$ do not affect $\#_{M} \Rightarrow r_{i}=B$.
(ii), (iii), (iv):
$r_{i} \neq B \Rightarrow \#_{M} \downarrow \Rightarrow$ alleviate encroachment.
* Enlarging product line VS Alleviating encroachment
(ii) $X X Y, \underline{\theta}^{X X}(\gamma)<c / a \leq \underline{\theta}^{X B}(\gamma)$

Intuition: when c is relatively low, encroachment is inevitable,

- $r_{i}=B \Rightarrow$ larger product range $(+)$
$\Rightarrow m=B \Rightarrow$ direct encroachment (-);
- $r_{i}=X \Rightarrow$ smaller product range (-)
$\Rightarrow m=Y \Rightarrow$ indirect encroachment $(+)$.
(ii) $X X Y, \underline{\theta}^{X B}(\gamma)<c / a \leq \min \left\{\bar{\theta}^{X B}(\gamma), \theta^{X B}(\gamma)\right\}$

* XBY is impossible (R_{2} cannot order Y).
- M compete directly with R_{2} in Y;
- $c / a \leq \theta^{X B}(\gamma) \Rightarrow$ unacceptable $w_{Y 2} \Rightarrow q_{Y R 2}=0$;
- $X B Y \Rightarrow X X Y$.
(iii) $X B Y, \max \left\{\underline{\theta}^{X B}(\gamma), \theta^{X B}(\gamma)\right\}<c / a \leq \theta^{B B}(\gamma)$

$* \#_{R 1}<\#_{R 2} \Rightarrow \pi_{R 1}<\pi_{R 2}$
- c is still relatively low, alleviating encroachment is prior to enlarging the product range.
(iv) $X Y N, \theta^{X Y}(\gamma)<c / a \leq \bar{\theta}^{X B}(\gamma)$

Intuition: when c is relatively high, encroachment can be deterred if variety distribution in the wholesale channel is balanced.

- e.g. R_{2} gives up X, otherwise it directly compete with M in Y.

Coordination failure

Corollary 1
The retailers' coordination failure may occur in the following ranges:
(i) If $\underline{\theta}^{X X}(\gamma)<c \leq \underline{\theta}^{X B}(\gamma), X X Y$ and BBB coexist;
(ii) If $\theta^{B B}(\gamma)<c \leq \min \left\{\theta^{X B}(\gamma),{ }^{-X B}(\gamma)\right\}, B B N$ and $X X Y$ coexist;
(iii) If $\theta^{X Y}(\gamma)<c \leq \bar{\theta}^{X B}(\gamma), X Y N$ and $B B N$ coexist.

M's unprofitable encroachment

(1) $\pi^{\text {online }} \uparrow, \pi^{\text {wholesale }} \downarrow \stackrel{\text { large } c}{\Rightarrow} \pi_{M} \downarrow$ (channel efficiency \downarrow)
(2) $\#_{R} \downarrow+\#_{M} \uparrow \Rightarrow \pi_{M} \downarrow(\# \downarrow)$ (in monopoly retailer case, \# does not change)

Proposition 6

M benefits by committing not to open the online store when $\theta^{B B}(\gamma)<c / a \leq \bar{\theta}^{X B}(\gamma)$.

\# \uparrow may harm social welfare

Proposition 7
When $\gamma>0.751$, TS downward jumps at $\underline{\theta}^{X X}(\gamma)$, where $X X Y$ changes to BBB.

Intuition: $\gamma \uparrow$ in $c \sum_{n} q_{n M}$

$$
T S=U\left(Q_{X}, Q_{Y}\right)-c \sum_{n \in L} q_{n M}
$$

- Social loss depends only on c;
- $\gamma \uparrow \Rightarrow U\left(Q_{X}, Q_{Y}\right) \downarrow(-)$;
- $X X Y$: when $\gamma=0 \Rightarrow M$ monopolizes in $Y \Rightarrow$ large $c q_{Y M}$. $\gamma \uparrow \Rightarrow q_{Y M} \downarrow \Rightarrow c q_{Y M} \downarrow(+) ;$
- BBB: M and R_{i} always direct compete in both varieties. $\gamma \uparrow$ slightly decreases $c q_{n M}(+)$.
* Although \# \downarrow, it shifts more business from M to R_{i}.

Concluding remarks

Conclusions:
(1) Order the more the better? No
(2) Online store always benefits? No
(3) More varieties the better for the social welfare? No

Discussions:

- Technically difficult for more than two varieties.
- Retailer VS Online store in product quality: vertically differentiated products.

Thank you!

If you have any questions or comments, please contact me via pge042pc@student.econ.osaka-u.ac.jp

Asymmetric online retailing costs

- If Δc is small enough, the results still hold.

