# Airlines-within-airlines strategies and entry of Low-cost carriers

Ming Hsin LIN Faculty of Economics, Osaka University of Economics

# 1. Intro. Entry of LCCs

 After airline deregulation, low cost carriers (LCCs) entered the markets.eg., Southwest, American West, Frontier, Jetblue...

One interesting aspect: LCCs entered in non-hub city-pairs ("rim" routes).



### Entry routes by Southwest By Bamberger and Carlton 2006



### Entry routes by other LCCs By Bamberger and Carlton 2006



## 1.Intro. A-in-a strategies

Hub-spoke carriers establishing "low cost, no frills" divisions to meet LCCs those entered their rim routes. [airlines-within-airlines strategy] in U.S.: major carriers failed on Aina. in Europe and Asia Pacific: carriers are now adopting the A-in-a stra.

# 1.Intro. Examples in US

| Major<br>carriers                | Delta   | United                       | Continental | Delta            | US<br>Airways |
|----------------------------------|---------|------------------------------|-------------|------------------|---------------|
| Low-cost,<br>nonstop<br>division | Song    | Ted                          | CALite      | Delta<br>Express | Metrojet      |
| Start of operation               | 2003    | 2004                         | 1993        | 1996             | 1998          |
| End of operation                 | 2006    | 2008                         | 1995        | 2003             | 2002          |
| LCC rivals                       | JetBlue | Frontier,<br>America<br>West |             |                  |               |

# 1.Intro. in EU/Asia Pacific

| Major<br>carriers                | British<br>Airways   | Qantas          |                    | Iberia<br>Airline                           | Thai<br>Airways         |
|----------------------------------|----------------------|-----------------|--------------------|---------------------------------------------|-------------------------|
| Low-cost,<br>nonstop<br>division | OpenSkies            | Jetstar         | Jetstar            | Clickair                                    | Nok Air                 |
| Start of operation               | Oct.2008             | May.2004        | Nov.2006           | 2006                                        | 2004                    |
| Operation<br>routes              | NY-Paris<br>NY-Amst. | in<br>Australia | Australia-<br>Asia | Barcelona<br>-Amst.<br>Barcelona<br>-Athens | Bangkok-<br>Singapore   |
| LCC rivals                       |                      |                 |                    | Vueling<br>Airlines                         | Value Air,<br>Tiger Air |



& new examples in this paper !!

### 1.Intro. Carriers' concerns

interesting trade-off: Merit: has cost advan.to comp.with LCCs. Demerit: cannibalizes network carries' pi

Is the A-in-a stra profitable for major carriers?

### 1. Intro. Anti-comp. concerns

Two complaints to DOT.
 Valujet complained US airways:
 Air south Continental:

DOT suggests the A-in-a stra. are difficult to explain as non-predatory.

## 1. Intro. Previous studies

- Morrell (2005) JATM: cost comparison analysis
- Junn (2008) IJIO: empirical study
- No existing study addresses the issue of A-in-a stra and LCCs' entry theoretically.

# 1.Intro. Dunn's main results

A hub-spoke network carrier

Network carriers' own one-stop service (or their rivals') is low quality





# 1.Intro. Dunn's main results

A hub-spoke network carrier



hub-spoke network carriers



if non-stop rival exists

# 1.Intro. Paper's purpose

- Theoretically investigate profitability of Aina stra., relevant impacts on LCCs.
- Focus and features:
- 4 entry of LCCs
- adoption of A-in-a stra:
  =establish a low cost nonstop division
- flight frequency com.





## 2. Model. Utility function

w:will.to pay, uniformly distributed  $[-\infty, W]$ 

Symmetric AH, BH spoke markets

$$u_j = w + (f_j^1)^{1/2} - p_j^1, j = AH, BH$$

Connecting AB market (hub-through extra cost:T)

 $u_{AB} = \begin{cases} u_{AB}^{\text{nonstop}}: \text{ if using Airline i's nonstop service, i } = 2,3 \\ u_{AB}^{\text{onestop}}: \text{ if using Airline 1's onestop service} \end{cases}$ 

$$u_{AB}^{\text{nonstop}} = w + (f_{AB}^{i})^{1/2} - p_{AB}^{i}$$
$$u_{AB}^{\text{onestop}} = w + (f_{j}^{1})^{1/2} - p_{AB}^{1} - T$$

### 2.Model. Demand functions

Case-e: without q<sup>3</sup>AB, P<sup>3</sup>AB Case-aI:  $P_i^1 = W + (f_i^i)^{1/2} - q_i^1, j = AH, BH$  $P_{AB}^{1} = W + (f_{i}^{i})^{1/2} - (q_{AB}^{1} + q_{AB}^{2} + q_{AB}^{3}) - T$  $P_{AB}^2 = W + (f_{AB}^2)^{1/2} - (q_{AB}^1 + q_{AB}^2 + q_{AB}^3)$  $P_{AB}^{3} = W + (f_{AB}^{3})^{1/2} - (q_{AB}^{1} + q_{AB}^{2} + q_{AB}^{3})$ Case-aII: without q<sup>1</sup>AB, P<sup>1</sup>AB

# 2. Model. Cost differential

Following Brueckner & Zhang 2001, Kawasaki 2008

Air.i's oper.costs/per direct flight: Ki,i=1,2,3

- Ki=fixed cost+constant marginal cost(=0)
- $K1 \ge K2 \equiv 1$ , K3 larger/smaller than k2.
- Entry/establishment costs are ignored.

# 2.Model. Profits functions Case aI: $\Pi_1 = p_{AH}^1 q_{AH}^1 + p_{BH}^1 q_{BH}^1 + p_{AB}^1 q_{AB}^1$ $-(f_{AH}^1 + f_{BH}^1)K_1 + [p_{AB}^3 q_{AB}^3 - f_{AB}^3 K_3]$ $\pi_2 = p_{AB}^2 q_{AB}^2 - f_{AB}^2 K_2$

3. Outcomes for three cases See Table A.1, A.2 in Appendix 4. Adoption of A-in-a stra. Lemma 1. benchmark case: K2=K3

 $\Pi_1^{aII} \ge \Pi_1^{aI} \text{ if } T \ge T_L^a \equiv [2(3 - 2K_1)/5(4K_1 - 1)] W$ 



A-in-a strategy with Sce.II (withdraw the onestop service) is preferable, except costs (T,K1) is small

# 4. Intuition for lemma 1

**Network for Case-aI** 

**Network for Case-aII** 





Merit: enjoy Network Freq. Eff. by joint-production Demerit: cannibalization effect Demerit: cannot enjoy Network Freq. Eff. Merit: without cannibalization

(T,K1) small: Air.1 remains one-stop to enjoy NFE.
 (T,K1) large: then give up NFE, derives larger profits by Air.3 with lower cost K3.

### 4.effects for A-in-aI



#### Prop. 1: A-in-a I always $\downarrow \Pi 1$ , $\uparrow \pi 2$ . This holds, even though K3<<K2=1

# 4. Intuition for Prop. 1



establishing 3 cannibalizes 1's demand of one-stop service  $\rightarrow$  1 has to  $\downarrow$  spokes' f1s. $\rightarrow$  f1s,q1s,  $\downarrow \quad \Pi 1^{HS} \downarrow > \pi 3 \uparrow \Rightarrow \quad \Pi 1 \downarrow$ [q1ABe] >[q1ABaI+q3ABaI]  $\Leftrightarrow$  [q2ABe]<[q2ABaI]  $\Rightarrow \pi 2 \uparrow$ 

### 4.effects for A-in-aI comparative-static analysis of K3

Corollary 1 to Prop. 1: (a)  $d\Pi 1/dK3 < 0$ ,  $d\pi 2/dK3 > 0$ .  $\leftarrow$  transparent (b)  $d\Pi 1^{HS}/dK3 < 0$ ,  $d\pi 3/dK3 > 0$ .  $\leftarrow$  unusual

K3 ↓ → 3 ↑ f3AB → bring new demand into the market! However this created demand is absorbed by 1 i.e.,[1 ↑ spokes f1s → f1s,q1s ↑ ⇒  $\Pi 1^{Hs}$  ↑ ] ⇔ q3AB ↓ ⇒  $\pi 3$  ↓





**Network for Case-aII** 



### 4.effects for A-in-aII Prop.2: holds when K3=K2=1



# 4. Intuition for Prop.2



Reg. Z (T,K1) large: large K1 leads 1 to withdraw q1AB, to  $\downarrow$  expensive f1s large T leads 1 to shift its one-stop service to its division's nonstop service with low cost K3. 3 greatly steals 2's AB demand  $\Rightarrow \pi 2 \downarrow$ Reg. V,X (T,K1) small: 1 not adopt Aina, so as to enjoy large NFE. If adopt  $\Pi 1 \downarrow$ ,  $\pi 2 \uparrow$ Reg. Y (T,K1) intermediate: If adopt,  $q^{1}AB < q^{3}AB \rightarrow q^{2}AB \downarrow \Rightarrow \pi 2 \downarrow$ , But the loss on the two

spokes (the cost for giving up NFE)>  $\pi$ 3+  $\Rightarrow$  $\Pi$ 1 $\downarrow$ 

### **4.effects for A-in-aII** Corollary 2 to Prop.2: dΠ1/dK3<0、dπ2/dK3>0.



### 5. Conclusion-Contribution 1 implications for a HS network carrier

- to meet its nonstop LCC rivals, Aina stra.could be profitable only if the HS network operating costs are suff.ly large. But importantly, has to withdraw the one-stop
- if it aims to enjoy NFE by remaining HS network (ie, remain one-stop service), while to seek cost advantage by A-in-a stra. then even though its division is relatively cost efficient, the stra. is unprofitable overall.

### 5. Conclusion-Contribution 2 with Dunn's empirical results

Dunn (2008): it is not unusual that network carriers entering markets with nonstop service, even though they also offer one-stop service through a hub, in particular, when their one-stop service is of low-quality.

This theoretical paper: if the quality of network carriers' one-stop service is low (e.g., the hub-through extra cost is large), then it is sensible for network carriers to adopt the Ain-a stra, but importantly it has to withdraw the one-stop service.

### 5. Conclusion-Contribution 3 new insight into airline studies

Previous studies showed: HS network is useful for deterring the entry on spoke markets.

This paper found that in certain circumstance the Aina stra. may hurt LCCs, implicitly implies the possibility of

point-to-point network formed by Aina stra. may play a role of deterring the LCCs' entry on rim markets.

# 5. Conclusion-future works

- > the relationship between the parent airlines and their low-cost divisions
- to consider the choices of aircraft size (the relationship between frequencies and total traffic volume)
- to consider the timing of LCCs' entry and the establishment of low-cost divisions. Using a dynamic game to explicitly investigate how Aina stra. affects the entry decision of LCCs.

Thank you for your attention >

Ming Hsin LIN(明信 林)\* Hereafter for references

# 4. Intuition for Prop. 1-note

Why [q1ABe] >[q1ABaI+q3ABaI] ? larger -1 +1

Establishing  $3 \rightarrow$  hedonic price is the same  $\rightarrow$  total demand does not change.

If q3AB and q1AB are identical  $\rightarrow$ [q1ABe]=[q1ABaI+q3ABaI] -1 +1 But! Network frequency effect exist q3AB+1  $\rightarrow$ q1AB -1  $\rightarrow$  f1AH(q1AH)  $\downarrow \rightarrow$  q1AB  $\downarrow$  more



