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Abstract

We propose a theory of linking in long-term relationships based on what infor-

mation becomes self-evident in equilibrium at the end of a stage game. We obtain

a tight bound on the average per-period efficiency loss that must be incurred to

enforce a stage-game outcome throughout aT-period repeated game whenT is

large. Our results apply to all monitoring structures and strategy profiles. They

encompass the inefficiency result in Abreu, Milgrom, and Pearce (1991), as well

as the approximate-efficiency results in Compte (1998), Obara (2009), and Chan

and Zhang (2016).

1 Introduction

In a team moral-hazard problem where it is impossible to determine which player has

shirked (Holmstrom, 1982; Radner, Myerson, and Maskin, 1986), each player has an

incentive to free-ride on the efforts of the other players. As a result, the Nash equilibri-

um outcome is typically inefficient. The inefficiency persists even when the players can
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write a binding incentive contract among themselves so longas no budget deficit is al-

lowed. Efficiency can be restored if the players can contractwith a third party who can

provide external finance to break the no-budget-deficit constraint. Thus, in his seminal

paper, Holmstrom (1982) notes that “The fact that capitalistic firms feature separation

of ownership and labor implies that the free-rider problem is less pronounced in such

firms than in closed organizations like partnerships.”

Recent research in repeated games, however, suggests that access to external finance

may not be as important as it seems when players are patient and interact repeatedly.

Instead of a series of short-term contracts, the players canuse a long-term contract that

links incentives across periods. Such long-term contractsare common in reality. For

example, in many business organizations, workers are terminated only after performing

poorly in multiple periods. In a highly influential paper, Abreu, Milgrom, and Pearce

(1991) show that in a repeated game with imperfect monitoring, linking incentives may

reduce the cost of imperfect monitoring if the release of monitoring information can

be delayed. Subsequent research shows that similar resultscan be obtained in repeat-

ed games of private monitoring under various information structures (Compte, 1998;

Obara, 2009; Chan and Zhang, 2016).

The existing results are essentially about two polar cases:public monitoring where

there is no gain from linking, and conditionally independent monitoring where, with

sufficiently patient players, the efficiency loss of imperfect monitoring disappears with

linking as the length of the contract goes to infinity. In manysituations, one would

expect that players observe both private and public signals. For example, members of

a cartel may observe their own sales, which are private information, as well as a public

estimate of the total industry sales. A natural question to ask is what happen then? Will

it be more like public monitoring? Or will it be more like the conditionally independent

monitoring?1

In this paper we try to provide a general and intuitive explanation of how linking

can improve efficiency. We consider aT-period contracting game between a principal

and a group of players.2 The principal’s objective is to design a contract to enforce

1We thank a referee for the suggestion for framing our resultsin this way.
2Our results can be readily applied to repeated games with side-payments. Working with theT-period

contracting problem allows us to focus on the mechanism of linking and abstract away from the problem
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a particular stage-game outcome throughout the game, subject to the constraint that

the total payments to the players be negative. Since Compte (1998), this problem has

become a crucial building block in the theory of repeated game with private monitoring.

We characterize the value of linking in the enforcement of any outcomes, correlated or

non-correlated, in games with any monitoring structures. For outcomes that cannot be

implemented efficiently in the long run, we provide a tight bound on the efficiency loss.

A central concept in our analysis is the notion of self-evident event, which is intro-

duced by Aumann (1976) to describe beliefs in incomplete-information games. We use

the concept to capture what is special about an event being “public”. In our model, a

state of a period describes the private information of the players about what has hap-

pened in the period. Unlike the model in Aumann (1976), the distribution of states in

our model depends on the actions of the players. Our innovation is to apply the notion of

self-evident events to the players’equilibriumbeliefs. We show that any efficiency loss

that arises from a one-shot contract can be almost entirely eliminated in the long-run if

and only it is not “self evident”. To answer our earlier questions, the results suggest, in

a sense to be made precise, that public monitoring is a special case, while independent

and correlated private monitoring are similar when the players are sufficiently patient.

Our results provide a unified framework to understand the value of linking. Fol-

lowing Abreu, Milgrom, and Pearce (1991), Compte (1998), Obara (2009), and Chan

and Zhang (2016) apply the linking idea to obtain folk theorems. Taking a different ap-

proach, Fudenberg, Levine, and Maskin (1994), Kandori and Matsushima (1998), and

Rahman and Obara (2010) identify conditions under which an outcome can be enforced

by a budget-balanced contract. Our results naturally combine these two approaches and

connect them to the inefficiency result in repeated games with public monitoring. We

discuss the repeated-game literature in Section 6.1. Instead of relying an external bud-

get breaker, members of a partnership may hire a disinterested mediator to implement

correlated strategies that virtually enforce an outcome with a budget-balanced contrac-

t (Rahman and Obara, 2010). In our setting, players may use correlated strategies to

make incentives non-self-evident. We show that any strictly enforceable outcome, re-

gardless of the monitoring structure, has a correlated outcome close to it that can be

of implementing transfers through continuation strategies.
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enforced almost efficiently in the long run.

Beyond repeated games, the idea of linking also plays an important role in the liter-

ature of relational contracting and organizational economics (Fuchs, 2007; Zhao, 2008;

Ke, Li, and Powell, 2018). While these models focus on a long-term principal-agent

relationship given a fixed discount factor, we deal with a partnership problem when the

discount factor goes to one.

The rest of the paper is organized as follows. The next section illustrates the main

ideas behind our results in a repeated Prisoners’ Dilemma game. Section 3 introduces

the formal model. Section 4 introduces the notion of self-evident events and establishes

a key lemma that is crucial for our results. Section 5 gives our main results. Section 6

characterizes the value of linking in terms of the primitiveof the model and discusses

the literature of repeated games with private monitoring. Section 7 shows that any

strictly enforceable outcome is virtually enforceable with almost no long-run efficiency

loss. Section 8 concludes.

2 Example

In this section we motivate our results by considering aT-period two-person noisy Pris-

oners’ Dilemma game. In each periodt = 1, . . . ,T, each playeri = 1,2 independently

choosesC or D. The expected stage-game payoff is given in Table 1. If both players

chooseC, then each player obtains a payoff of 1. If one player choosesC and the other

choosesD, then the player who playsD receives(1+d), while the player who playsC

receives−h, whered, h> 0. The unique stage-game Nash equilibrium is(D,D).

C D

C 1,1 −h,1+d

D 1+d,−h 0,0

Table 1: Payoff matrix.

At the end of each period, each playeri observes a private signalyi ∈ {H,L}. Table

2 describes the signal distributions conditional on the action profiles(C,C), (C,D), and
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(D,C).

H L

H p−ρ p(1− p) ρ p(1− p)

L ρ p(1− p) (1− p)−ρ p(1− p)

Signal distribution under(C,C)

H L

H q−ρq(1−q) ρq(1−q)

L ρq(1−q) (1−q)−ρq(1−q)

Signal distribution under(C,D) or (D,C)

Table 2: Signal distributions.

If both players playC, thenyi = H with probability p. If one player choosesC and

the other choosesD, thenyi = H with probabilityq< p. The correlation between the

players’ signals depends on the parameterρ . Whenρ = 0, the signals are perfectly

correlated. In this case the players are effectively observing a public signal.3 When

ρ = 1, the signals are conditionally independent and a player cannot learn about the

other player’s signal from his own. Whenρ ∈ (0,1), the signals are positively and

imperfectly correlated conditional on the action profile.

A principal, without access to external funding, tries to design a contract to enforce

(C,C) in every period. At the end of periodT, the principal asks the players to report

their signals. WriteyT for
(
yT

1 ,y
T
2

)
, whereyT

i = (yi (1) , . . . ,yi (T)) is aT-period profile

of player i’s signal. AT-period contractwT =
(
wT

1 ,w
T
2

)
is a function that maps each

yT to a payment to each player, subject to the constraint that the total payment be non-

positive. To simplify exposition, we assume in this sectionthat the players’ discount

factor is one so that the utility of a player is equal to the total stage-game payoffs plus

the contract payment.

3In our model, there is no difference between a public signal and a vector of perfectly correlated

private signals.
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The assumption that the total payment must be negative implies that incentives are

costly. Consider the one-period case. Letw = (w1,w2) denote a one-period contract.

With a slight abuse of notation, letwi(H) andwi(L) denote playeri’s payment when

player j ’s signal isH andL, respectively. It is straightforward to see that it is optimal

for playeri to chooseC if and only if

(p−q)(wi(H)−wi(L))≥ d.4

Since a player’s payment depends only on the report of the other player, the players

have no incentive to lie about their reports. Given the constraint wi(H),wi(L) ≤ 0, the

most efficient way to enforce(C,C) is to set

wi(H) = 0

wi(L) = −
d

p−q
.

The per-player efficiency loss is thus(1− p)d/(p−q); see Figure 1. The inefficiency

L

− d
p−q

H

0

− (1−p)d
p−q

Figure 1: The one-period contract and efficiency loss.

arises because a player has to destroy an amount equal tod/(p− q) when the other

player reports anL signal. The value cannot be transferred to the other player because

doing so will interfere with the incentives of the other player. In our example, if player

1 has to pay player 2d/(p−q) when player 2’s report isL, player 2 will always report

L.

When the contract lasts for multiple periods, the principalcan still use the one-

period contract(wi (H) ,wi (L)) = (0,−d/(p−q)) to enforce(C,C) period by period.

4Because the stage game is symmetric, we can consider only symmetric contracts wherew1 =w2 < 0.

The single-period optimal contract does not depend onρ .
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The question is whether the principal can do better by using anon-linear contract. The

existing literature has largely focused on two polar cases.Whenρ = 0, linking has no

value and the linear contract is the best that one could do, but whenρ = 1, linking is

useful and the per-period efficiency loss disappears whenT goes to infinity. Our results

are about what happens in between whenρ ∈ (0,1). In the following, we briefly recount

the two polar cases before explaining our results.

2.1 Case 1:ρ = 0.

We can use the two-period case to illustrate why linking has no value when the signals

are perfectly correlated. To induce(C,C) in both periods, three incentive-compatibility

constraints must be satisfied; namely, the first period, the second period after the players

observeH, and the second period after the players observeL. See Figure 2.

LH

−2(1−p)d
p−q

L

− d
p−q

H

0

− (1−p)d
p−q

L

−2 d
p−q

H

− d
p−q

− (1−p)d
p−q − d

p−q

Figure 2: The two-period case.

Letw2 denote a contract that enforces(C,C) for two periods, and letE
[
w2

i |y(1),CC
]

denote the expected payment to playeri conditional on the first-period signaly(1) and

the second-period action profile(C,C).5 Since enforcing(C,C) in the second period

aftery(1) = H is the same as enforcing(C,C) in a single-period game,

E
[
w2

i |H,CC
]
≤−(1− p)

d
p−q

. (1)

The incentive-compatibility constraint in period 1 requires that

(p−q)
(
E
[
w2

i |H,CC
]
−E

[
w2

i |L,CC
])

≥ d. (2)

5Since the signals are perfectly correlated, we will mentionthe common signal.
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Combining (1) and (2), we have

E
[
w2

i |L,CC
]
≤−(2− p)

d
p−q

.

It follows that

pE
[
w2

i |H,CC
]
+(1− p)E

[
w2

i |L,CC
]
≤−2(1− p)

d
p−q

.

Intuitively, since the continuation game afterH is completely separated from the con-

tinuation game afterL, the incentives in these subgames cannot be linked. Hence, en-

forcing (C,C) in the continuation game followingH must incur a one-period efficiency

loss. This, together with the fact that the value of the continuation game afterL must be

lower than that afterH, implies that the two-period efficiency loss must be no less than

twice the one-period efficiency loss.

2.2 Case 2:ρ = 1.

Let −i denote the player who is not playeri. Let f−i
(
L|yT

)
denote the number ofL

signals that player−i observes in the signal profileyT . Consider a “linear” contract̃wT ,

where fori = 1,2

w̃T
i

(
yT)=−

(
f−i
(
L|yT)−T (1− p−ν)

)
(d/(p−q)+ ε) ,

whereε andν are small positive constants. The contract punishes playeri by (d/(p−q)+ ε)
for everyL signal player−i observes. It strictly enforces(C,C) but violates the con-

straint that the total payment be non-positive. When both players observe fewer than

T (1− p−ν) L signals, each player will receive a strictly positive payment.

To satisfy the non-positive-payment constraint, we truncate w̃T
i at zero to obtain a

“truncated” contract̂wT , where

ŵT
i

(
yT)=−max

(
f−i
(
L|yT)−T (1− p−ν) ,0

)
(d/(p−q)+ ε) . (3)

If both players chooseC, the average number ofL signals that player−i should observe

is T (1− p). Thus, the truncated contract punishes playeri for L signals in excess of a
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threshold set below the mean byTν. The truncated incentives, the difference between

w̃T
i andŵT

i , are equal to

Ri
(
yT)=−min

(
f−i
(
L|yT)−T (1− p−ν) ,0

)
(d/(p−q)+ ε) .

The distortionary effect of the truncation on playeri’s incentives, however, is very

small whenT is large. Assuming that playeri is choosingC in every period, by the law

of large number, the probability that the fraction ofL signals is lower than 1− p, the

ex ante mean, byν is exceedingly small whenT is large. Since playeri does not learn

aboutyT
−i from his own signals, the distortionary effect of the truncation remains very

small throughout the contract and is compensated by the small extra punishmentε.

The expected per-player per-period efficiency loss caused by ŵT
i is approximately

ν (d/(p−q)+ ε) .

As T becomes large,ν andε can be chosen so that the per-player per-period efficiency

loss goes to zero.

It is important to note that the truncated contract does not enforce(C,C)whenρ =0.

Although ex ante the probability thatf−i
(
L|yT

)
is less than(1− p−ν)T is very small,

player i will come to believe that this probability is large after observing very fewL

signals.

2.3 Case 3:ρ ∈ (0,1).

In this case, as the signals are correlated, the continuation games after different signal

realizations are not separated as in Case 1. Nevertheless, player i, after observing very

few L signals, will come to believe that it is likely that player−i has observed very few

L signals as well. One may, therefore, expect that linking incentives would become less

effective asρ decreases. It turns out thatρ = 0 is a special case. So long asρ > 0, the

per-player per-period efficiency loss can be reduced to almost zero asT goes to infinity.

The idea is to distribute the truncation effect among the players in a way that distorts

each player’s incentive minimally. Conditional on both players choosingC in every

period, each playeri, on average, should observe theL signal in T (1− p) periods.
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Denote the “excess”L signals that playeri observes inyT by

τi
(
L|yT)= fi

(
L|yT)−T (1− p) .

Using this notation, we can restate the payment to playeri under the truncated contract

ŵT as

ŵT
i

(
yT)=−max

(
τ−i
(
L|yT)+Tν,0

)
(d/(p−q)+ ε) .

The incentive is truncated whenτ−i
(
L|yT

)
<−Tν.

We decomposeτi
(
L|yT

)
into three components. For anyyT , let fi

(
yi ,y−i |yT

)
de-

note the number of periods inyT in which playeri observesyi and player−i observes

y−i . Conditional on(C,C), player−i expects playeri to observeL with probability

ρ (1− p)when he observesH. Hence, he expects playeri to observeρ (1− p) f−i
(
H|yT

)

L signals in thef−i
(
H|yT

)
periods in which he observesH. The number of “excess”L

signals that playeri observes in the periods player−i observesH is, therefore,

τi
(
L|yT ,H

)
≡ fi

(
L,H|yT)−ρ (1− p) f−i

(
H|yT) .

Similarly, denote the number of “excess”L signals playeri observes among the periods

player−i observesL by

τi
(
L|yT ,L

)
≡ fi

(
L,L|yT)− (1−ρ p) f−i

(
L|yT) .

Using the fact that

f−i
(
L|yT)+ f−i

(
H|yT)= T,

it is straightforward to verify that

τ1
(
L|yT) = (1−ρ)τ2

(
L|yT)+ τ1

(
L|yT ,H

)
+ τ1

(
L|yT ,L

)
; (4)

τ2
(
L|yT) = (1−ρ)τ1

(
L|yT)+ τ2

(
L|yT ,H

)
+ τ2

(
L|yT ,L

)
. (5)

Equations (4) and (5) decomposeτi
(
yT
)

into (1) the excessL signals observed by player

−i, (2) the excessL signals playeri observes in the periods player−i observesH, and

(3) the excessL signals playeri observes in the periods player−i observesL.

Player−i can observe only the first component. By the law of iterated expectation,

player−i always expectsτi
(
L|yT ,H

)
andτi

(
L|yT ,L

)
to be zero. That is,

EyT
i

[
τi
(
L|yT ,H

)
|yT
−i

]
= EyT

i

[
τi
(
L|yT ,L

)
|yT
−i

]
= 0 for all yT

−i .
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Hence,

EyT
i

[
τi
(
L|yT) |yT

−i

]
= (1−ρ)EyT

i

[
τ−i
(
L|yT) |yT

−i

]

= (1−ρ)τ−i
(
L|yT) . (6)

That is, whenρ > 0, player−i’s expectation ofτi
(
L|yT

)
is less thanτ−i

(
L|yT

)
.

Combining (4) and (5), we have whenρ > 0,

τi
(
L|yT)= τi

(
L|yT ,H

)
+ τi

(
L|yT ,L

)
+(1−ρ)

(
τ−i
(
L|yT ,H

)
+ τ−i

(
L|yT ,L

))

1− (1−ρ)2
. (7)

Equation (7) means thatτi
(
L|yT

)
can only be negative if one ofτi

(
L|yT ,H

)
, τi
(
L|yT ,L

)
,

τ−i
(
L|yT ,H

)
, andτ−i

(
L|yT ,L

)
is negative. (Note that the argument critically relies on

ρ > 0.) Recall that for everyyT
−i , player−i expectsτi

(
L|yT ,y−i

)
to be zero. Hence,

anyyT with τi
(
L|yT

)
< 0 is “unexpected” to either playeri or player−i.

Fix any ν > 0. It is possible to pickς > 0 such that for anyyT , τi
(
L|yT

)
< −Tν

implies

min
(
τi
(
L|yT ,H

)
,τi
(
L|yT ,L

)
,τ−i

(
L|yT ,H

)
,τ−i

(
L|yT ,L

))
<−Tς .

Start with the truncated contract̂wT in Case 2. Add a side-bet contractzT =
(
zT
1 ,z

T
2

)
.

For i = 1,2,

zT
i

(
yT)= Ri

(
yT)(1− Ii

(
yT))−R−i

(
yT) Ii

(
yT) ,

where

Ii
(
yT)=

{
0 if min

(
τ−i
(
L|yT ,H

)
,τ−i

(
L|yT ,L

))
≥−Tς ,

1 otherwise.

Under this side-bet contract, playeri receives the extra incentivesRi when

min
(
τ−i
(
L|yT ,H

)
,τ−i

(
L|yT ,L

))
≥−Tς ;

otherwise, he paysR−i , the extra incentives for player−i. Under the truncated contract

ŵT , the distortionary effect of the truncation of playeri’s payment is entirely borne by

playeri. The side-bet contract reallocates the distortionary effect to a player who does

not expect the distortion to occur.6 The total payment of this side-bet contract is always

6In simple words, the side-bet contract says that a player must bear the truncation effect if the distri-

bution of the other player’s signal deviates significantly from what the player expects given what he has

observed.
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negative. WhenRi > 0, eitherIi or I−i must be equal to 1. Hence, when playeri receives

a strictly positive amount through the side-bet contract, player−i must pay for it.

WhenT is large, playeri believes that the probability thatIi = 0 is very close to

one throughout the contract. As a result, playeri believes, regardless of what signals he

may observe during the contract, that he will almost always receive the extra incentives

Ri , and almost never need to payR−i. This means that whenT is large the difference

between the truncated-cum-side-bet contract and the linear contract,w̃T , is small. Since

w̃T strictly enforces(C,C), so does the truncated-cum-side-bet contract.7

The efficiency loss of the side bets is very small whenT is large becauseR1 andR2

are almost always equal to zero. We have already shown that the efficiency loss of the

truncated contract is small. Hence,(C,C) can be enforced almost efficiently whenT is

sufficiently large.

Recall in the single-period case, a third-party is needed tocontract efficiently. What

we show is that, asT becomes large, it is possible for one player to partially compensate

another player without distorting the incentive of the firstplayer. The key observation

behind this result is that whenρ > 0, anyyT that involves any player observing very

few L signals must be “unexpected” to some player. In Section 4.1,we generalize this

observation to all stage games.

We are not the first to exploit the differential beliefs between players. Fong, Gossner,

Hörner, and Sannikov (2011), in a repeated Prisoners’ Dilemma similar to our example,

make use of the fact each player expects the other player to observe fewer excessL

signals than he does to support an approximately efficient equilibrium. As Eq. (6)

makes clear, our approach can be viewed as a generalization of theirs.

7Although, with the side-bet contract, each player may want to mis-report his own signals, the incen-

tive is small and the side-bet contract can be slightly modified to maintain truth-telling.
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3 Model

3.1 Stage game

Consider a finite stage game endowed with a correlating device. LetN = {1,2, . . . ,n}

denote a set of players,A = A1 × ·· · × An a finite set of action profiles,η ∈ ∆(A)
a distribution overA, and g = (g1, . . . ,gn) : A → Rn a profile of stage-game payoff

functions. In each period, the correlating device drawsã = (ã1, . . . , ãn) ∈ A accord-

ing to η and privately recommends̃ai to each playeri. After learningãi , each player

i ∈ N privately choosesai ∈ Ai . Playeri’s expected stage-game payoff isgi(a), where

a= (a1, . . . ,an). The players do not directly observe the stage-game payoffs. Instead,

each playeri observes a signalyi . The signal profiley = (y1, . . . ,yn) is drawn from a

finite setY =Y1×·· ·×Yn according to a distributionp(·|a) ∈ ∆(Y).
Since the only function of the correlating device is to allowthe players to playη,

modeling the correlating device as private recommendations is without loss of general-

ity.8 Whenη is a pure or uncorrelated mixed outcome, the correlation device can be

dispensed with. To avoid extra notations we shall assume that all signals are associated

with distinct posterior beliefs. All results go through without this assumption, although

some may have to be rephrased to allow for the possibility of redundant signals.

Assumption 1. For eachi ∈ N, a ∈ A, andyi , y′i ∈ Yi , p(y−i |a,yi) 6= p(y−i |a,y′i) for

somey−i ∈Y−i .

We impose no further restriction on the correlation structure beyond Assumption 1.

In general, the players’ signals may be correlated andp(· |a) may not have full support.

Hence, our model includes public monitoring as a special case.9

8As is well known, the correlating device can be replaced by pregame communication when there are

more than five players (Gerardi, 2004).
9The game becomes one of public monitoring whenY1 = · · ·=Yn and for alla∈ A, p(y|a)> 0 only

if y1 = · · ·= yn.
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3.2 T-period contracting problem

In period 0, a principal proposes a contract. After observing the contract, the players

play the stage game forT periods. At the end of periodT, the players report the private

signals observed, and the correlating device reports the recommendations made during

theT periods. In addition to the stage-game payoffs, at the end oftheT-period game,

each player receives a payment as stipulated by the contract. While the correlating

device always reports honestly, players may lie.

For each variablex, we usex(t) to denote the period-t value ofx andxt =(x(1), . . . ,x(t))

to denote the history ofx up to periodt. Hence,̃aT = (ã(1), . . . , ã(T)) is the history of

recommendations and the report of the correlating device. Let ŷT
i = (ŷi(1), . . . , ŷi(T))

denote theT-period signal-report of playeri and ŷT = (ŷT
1 , . . . , ŷ

T
n ) denote the signal-

report profile. AT-period contract consists ofn functionswT = (wT
1 , . . . ,w

T
n ), where

eachwT
i maps each(ãT , ŷT) ∈ AT ×YT into a payment.10 The total payment must be

weakly negative; i.e.,

n

∑
i=1

wT
i (ã

T , ŷT)≤ 0, ∀(ãT , ŷT) ∈ AT ×YT .

Playeri’s total discounted payoff is

1−δ
1−δ T

(
T

∑
t=1

δ t−1gi(a(t))+wT
i (ã

T , ŷT)

)
,

whereδ ∈ (0,1) is a common discount factor for the players.11

Since N, A, and g are fixed in our analysis, we denote theT-period game by

Γ(η,T,δ ,wT). A pure strategy of playeri consists of two components: an action s-

trategyαT
i that maps each

(
ãt

i ,a
t−1
i ,yt−1

i

)
∈
⋃T

s=1

(
As

i ×As−1
i ×Ys−1

i

)
into an action

ai ∈ Ai and a reporting strategyρT
i that maps each

(
ãT

i ,a
T
i ,y

T
i

)
∈ AT

i ×AT
i ×YT

i into a

10The contracts in our model can be viewed as theT-period version of the ones in Rahman and Obara

(2010). The only difference is that in Rahman and Obara (2010) a contract must be budget belanced,

whereas in ours the total payment can be strictly negative.
11The restriction to negative total transfer arises naturally in different contexts. For example, if bonus

contracts are not legally enforceable, then the principal may have to commit to “burn” the difference

between a lump sum and the actual bonus (MacLeod, 2003; Fuchs, 2007). In repeated games, players

can enforce cooperation only by switching to inefficient continuation paths.
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reportŷT
i ∈YT

i .12 A mixed strategyσT
i is a probability distribution over the set of pure

strategies(αT
i ,ρT

i ). Let ΣT
i denote the set of mixed strategies for playeri.

Playeri’s expected payoff conditional onσT =
(
σT

1 , . . . ,σ
T
n

)
is

vT
i

(
σT ;wT

i

)
≡

1−δ
1−δ T E

[
T

∑
t=1

δ t−1gi(a(t))+wT
i (ã

T , ŷT)

∣∣∣∣∣σ
T

]
,

where the expectation is taken over
(
ãT ,aT ,yT , ŷT

)
with respect to the distribution in-

duced byσT , η, andp.

The contracting problem is to choosewT to enforce the correlated outcomeη through-

out the contract. By the revelation principle, we can focus on mechanisms where play-

ers play the obedient strategies that follow recommendations in every period and report

signals truthfully. LetσT∗
i =

(
αT∗

i ,ρT∗
i

)
denote the obedient strategy of playeri and

σT∗ =
(
σT∗

1 , . . . ,σT∗
n

)
.

Definition 1. A contractwT enforcesη for T periods ifσT∗ is a Nash equilibrium in

Γ(η,T,δ ,wT). That is, if for all i ∈ N andσT
i ∈ ΣT

i ,

vT
i

(
σT∗;wT

i

)
≥ vT

i

(
σT

i ,σ
T∗
−i ;wT

i

)
.

The enforcement is strict if the inequality is strict forσT
i that deviates from the recom-

mendations with positive probability. An outcomeη is (strictly) enforceable if it can be

(strictly) enforced by somewT .

Obviously, if η cannot be enforced whenT = 1, then it cannot be enforced when

T > 1. Conversely, ifη can be enforced whenT = 1 by w, then it can be enforced for

anyT by applyingw period by period. Thus, it is sufficient to consider the caseT = 1

to determine the enforceability ofη.13

In the following we writeσ for σ1 andw for w1 for convenience. Letµ denote the

distribution over(ã,y) induced byη andp. For all(ã,y) ∈ A×Y,

µ(ã,y) = p(y|ã)η(ã).
12As usual,a0 denotes the null history /0 andA0 denotes the set whose only element isa0. Similar

notations apply for signal.
13Same for strict enforceability.
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With a slight abuse of notation, we also useµ to denote the distribution of(ã, ŷ) induced

by the obedient strategy profileσ∗. Let πσi denote the distribution of(ã, ŷ) when player

i deviates toσi , while other players chooseσ∗
−i . For any(ã, ŷ) ∈ A×Y,

πσi(ã, ŷ) = ∑
(αi ,ρi)

σi(αi ,ρi) ∑
yi :ρi(ãi ,αi(ãi),yi)=ŷi

p(yi , ŷ−i |ã−i,αi (ãi))η(ã).

Definition 2. A deviating strategyσi is undetectableif πσi = µ.

The following result due to Rahman (2012) provides a necessary and sufficient con-

dition for enforceability.

Lemma 1 (Theorem 1, Rahman, 2012). An action profileη is enforceable if and only

if for all i ∈ N and all undetectableσi ,

∑
(αi ,ρi)

σi(αi,ρi) ∑̃
a∈A

gi (αi(ãi), ã−i)η (ã)≤ ∑̃
a∈A

gi(ã)η(ã).

Because the total payment must be negative, enforcing a non-stage-game Nash e-

quilibrium may come with a cost. The per-period efficiency loss of enforcingη with

wT in Γ(η,T,δ ,wT) is

W
(
η,T,δ ,wT)≡−

n

∑
i=1

1−δ
1−δ T E

[
wi(ã

T , ŷT)|σT∗] .

Let W (η,T,δ ) be the set ofwT that enforcesη. The minimum per-period efficiency

loss to enforceη is

W∗ (η,T,δ ) = min
wT∈W (η,T,δ )

W
(
η,T,δ ,wT) .

Our objective is to characterizeW∗ (η,T,δ ) asT goes to infinity andδ goes to 1.

In the following, we often deal with the caseT = 1. As δ does not matter, for

convenience we writeW (η) for W (η,1,δ ), W(η,w) for W (η,1,δ ,w) andW∗ (η)
for W∗ (η,1,δ ).

Before we proceed, a comment about the solution concept is inorder. As is well

known, Nash equilibrium imposes no restriction on players’responses off the equilib-

rium path. In our model, it is consistent with Nash equilibrium for players who observe
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signals inconsistent with the equilibrium actions to report honestly. Theorem 1, which

establishes a lower bound on efficiency loss, continues to hold if the stronger notion

of sequential equilibrium is used instead. Following Kandori and Matsushima (1998),

Theorem 2, which establishes the tightness of the bound, canbe made consistent with

sequential equilibrium by assuming that the support of the signal distribution is invari-

ant witha. Extending the result without invariant support would require specifying and

keeping track of the players’ diverging beliefs (as well as their beliefs about other play-

ers’ continuation strategies) after one or multiple players observe inconsistent signals.

We do not pursue this issue in this paper.

4 Self-Evident Events

In the example in Section 2, the key property of a public signal is that no one could miss

it. If a player observes that a public signal isL, he knows that every player observesL,

and that every player knows that every player observesL, and so on. It is only then that

the continuation game afterL is entirely separated from the continuation game afterH.

In a stage game with private signals, although the players donot directly observe the

recommendations to and signals of the other players, they form beliefs about them on

the basis of their own. Conditional on the correlated strategy profileη, the recommen-

dation and signal pair(ã,y) is distributed according toµ. Write supp(µ) for the support

of µ. Let Pi denote playeri’s information partition of supp(µ)⊂ A×Y. Denote the ele-

ment ofPi that contains(ã,y) by Pi(ã,y). For anyi ∈N and any(ã,y),(ã′,y′)∈ supp(µ),
(
ã′,y′

)
∈ Pi (ã,y) if and only if

(
ã′i,y

′
i

)
= (ãi ,yi) .

The vector(P1, . . . ,Pn) describes the players’ knowledge structure whenη is chosen.

Conditional on observing(ãi,yi), playeri believes that the realized(ã,y) must belong

to Pi(ã,y). In the terminology of interactive epistemology, a subsetE of supp(µ) is an

event. Playeri “knows” thatE occurs at(ã,y) if

Pi(ã,y)⊆ E. (8)

That playeri knowsE is itself an event that consists of all(ã,y) where (8) is true. Thus,

we can talk about playerj knows that playeri knowsE. An eventE is common belief
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among the players at(ã,y) if, when (ã,y) occurs, every player knowsE, knows that

everyone knowsE, and so on. An eventE is self-evident if it is common belief at every

(ã,y) ∈ E.

A self-evident event is called irreducible if it contains noproper subset that is self-

evident. LetP denote the meet of(P1, . . . ,Pn) (i.e., the least common coarsening). It is

well known that any element ofP is self-evident and irreducible (Chapter 5 of Osborne

and Rubinstein, 1994).

In the noisy Prisoners’ Dilemma example in Section 2, there are two irreducible

self-evident events:{(HH)} and{(LL)} when the signals are perfectly correlated. Oth-

erwise there is only one irreducible self-evident event:{(HH) ,(HL) ,(LH) ,(LL)}. In

general, every realization of a public signal is self-evident conditional onany stage-

game strategy.14 However, a self-evident event may not be related to any public signal,

and an event may be self evident conditional on one stage-game strategy but not self ev-

ident conditional on another. In the following, when we say that an event is self-evident,

it is always with respect to the equilibrium correlated strategy profileη.

4.1 A key lemma

In Section 2, we show that when the players’ signals are not perfectly correlated, any

yT that deviates from the ex ante distribution must “surprise”some player (given the

player’s information). In this section, we generalize the result.

Write P(ã, ŷ) for the element ofP to which (ã, ŷ) belongs. For any
(
ãT ,yT

)
, let

f (ã,y|ãT ,yT), f (ãi ,yi |ãT ,yT), and f (P(ã,y))|ãT ,yT) denote, respectively, the numbers

of times(ã,y), (ãi,yi), andP(ã,y) occur in(ãT ,yT).

Consider an observer who in each period observes only the element ofP. Suppose

(ãT ,yT) occurs. The observer knows that a particular outcome(ã,y) does not occur in

periodt when(ã,y) /∈ P(ã(t) ,y(t)). In each periodt where(ã,y) ∈ P(ã(t) ,y(t)), the

observer believes that there is a probabilityµ(ã,y|P(ã,y)) that the outcome is(ã,y).

Hence, the total number of times the observer expects(ã,y) to occur in(ãT ,yT) is

µ(ã,y|P(ã,y)) f (P(ã,y) |ãT ,yT).

14To be precise, the set of all recommendation and signal profiles that are consistent with the public

signal is a self-evident event.

18



For any(ã,y) ∈ supp(µ) and anyι > 0, define

ZT ((ã,y) , ι) =
{(

ãT ,yT) |
∣∣ f (ã,y|ãT ,yT)−µ(ã,y|P(ã,y)) f (P(ã,y) |ãT ,yT)

∣∣> ι
}

as the set of
(
ãT ,yT

)
where the number of times(ã,y) occurs in

(
ãT ,yT

)
deviates byι

from the expectation of the aforementioned observer.

For each playeri, define

ZT
i ((ã,y) , ι) =

{(
ãT ,yT) |

∣∣ f (ã,y|ãT ,yT)−µ−i(ã−i ,y−i|ãi ,yi) f (ãi,yi |ã
T ,yT)

∣∣> ι
}

as the set of
(
ãT ,yT

)
where the number of times(ã,y) occurs in

(
ãT ,yT

)
deviates from

the mean conditional on the private information that playeri receives in
(
ãT ,yT

)
by ι.

Write ZT∗ (ι) for ∪(ã,y)∈A×YZT ((ã,y) , ι) and ZT∗
i (ι) for ∪(ã,y)∈A×YZT

i ((ã,y) , ι).
Every

(
ãT ,yT

)
induces a distribution over stage-game outcomesA×Y. ZT∗ (ι) contains

any
(
ãT ,yT

)
that induces a distribution that deviates from the expecteddistribution

conditional on self-evident events, whileZT∗
i (ι) contains any

(
ãT ,yT

)
that induces a

distribution that deviates from the expected distributionconditional on playeri’s private

information.

Lemma 2. For any ι > 0, there exists c0 > 0 such that, for any T and any(ãT ,yT) ∈

supp(µ)T , if (ãT ,yT) ∈ ZT∗ (ι), then(ãT ,yT) ∈ ZT∗
i (c0ι) for some player i.

Lemma 2 says that if the distribution induced by
(
ãT ,yT

)
deviates from the expected

distribution conditional on self-evident events byι, then it must also deviate by at least

c0ι from the expected distribution conditional on the private information of some player

i.

To illustrate the lemma, recall in the Prisoners’ Dilemma example in Section 2,

there are four possible outcomes:(HH), (HL), (LH), and (LL). When the signals

are correlated, all four outcomes belong to the same irreducible self-evident event. If

in someyT , the number of times(HH) occurs is greater than the unconditional mean

but is equal to the mean conditional on the periods in which player 1 observingH, as

well as the mean conditional on the periods in which player 2 observingH, then the

number of times(H,L) and(L,H) occur inyT must also be greater than their respective

unconditional means. This means that the number of times(L,L) occurs inyT must
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be less than the unconditional mean, as well as the mean conditional on the periods in

which player 1 observingL.

Note thatι andc0 apply uniformly to allT and
(
ãT ,yT

)
in Lemma 2. Givenι and

c0, by the law of large number bothZT∗ (ι) andZT∗
i (c0ι) become extremely unlikely

asT becomes large.

4.2 Decomposing incentives

A single-period contract is a mapping from an outcome profileto a vector of payments.

We say that the incentives provided by a single-period contract vary across two self-

evident events if, given the equilibrium outcomeη, the total expected payment con-

ditional on one self-evident event is different from another. As we see in Case 1 of

Section 2, efficiency loss due to incentives that vary acrossthe self-evident events can-

not be reduced by linking. In a general contract, incentivesmay vary both across and

within self-evident events. To characterize the extent to which this efficiency loss can

be reduced by linking, we need to decompose a single-period contract into a component

that varies across self-evident events and a residual that is constant across self-evident

events.

Write ω for a typical element ofP. For any stage-game contractw ∈ W (η), let

E [wi(ã, ŷ)|σ∗,ω] denote playeri’s expected transfer conditional onσ∗ andω, and let

ωmax∈ argmax
ω∈P

n

∑
i=1

E [wi(ã, ŷ)|σ∗,ω]

denote the element ofP with the maximum expected total payment. For any stage-game

contractw and any playeri, we can write

wi(ã, ŷ) = wi,a(ã, ŷ)+wi,b(ã, ŷ), (9)

where

wi,a(ã, ŷ) ≡ wi (ã, ŷ)−wi,b(ã, ŷ)

wi,b(ã, ŷ) ≡ E
[
wi
(
ã′, ŷ′

)
|σ∗,P(ã, ŷ)

]
−E

[
wi
(
ã′, ŷ′

)
|σ∗,ωmax

]
.

We call wi,b the self-evident component ofwi , as it depends only on the element

of P to which (ã, ŷ) belongs. This component measures incentives that vary across
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irreducible self-evident events. The expected value of theresidual componentwi,a is

constant conditional on anyω ∈ P. For all i ∈ N andω ∈ P,

E [wi,a(ã, ŷ)|σ∗,ω] = E
[
wi
(
ã′, ŷ′

)
|σ∗,ωmax

]
. (10)

By construction, the sum of the self-evident component is always negative. For all

(ã, ŷ) ∈ supp(µ),
n

∑
i=1

wi,b(ã, ŷ)≤ 0,

with the equality holds whenP(ã, ŷ) = ωmax.

The efficiency loss ofw can be similarly decomposed into two components:

W(η,w) =−
n

∑
i=1

E [wi,a(ã, ŷ) |σ∗]−
n

∑
i=1

E
[
wi,b(ã, ŷ) |σ∗

]
. (11)

Denote the efficiency loss associated with the self-evidentcomponent by

L(η,w) ≡−
n

∑
i=1

E
[
wi,b(ã, ŷ) |σ∗

]
. (12)

Substituting (11) and (10) into (12), we have

L(η,w) =W(η,w)+
n

∑
i=1

E
[
wi
(
ã′, ŷ′

)
|σ∗,ωmax

]
. (13)

Thus, the self-evident efficiency loss of a contract is equalto the total loss minus the

loss conditional onωmax.

5 Main Results

In this section, we present our main results.

Let

L∗(η)≡ min
w∈W (η)

L(η,w) (14)

denote the minimum self-evident efficiency loss of any contract that enforcesη. Theo-

rem 1 says that the per-period efficiency loss is bounded frombelow byL∗(η).

Theorem 1. For any enforceableη, W∗ (η,T,δ )≥ L∗(η) for any T≥ 1 andδ ≤ 1.
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In Case 1 of the noisy Prisoners’ Dilemma example in Section 2, we saw that the

value of linking is limited by the need to provide separate incentives in continuation

games after different realizations of a public signal. The same is true in general. Since

anyω ∈ P is self-evident, the continuation games after different realizations ofω ∈ P

can be treated as separate subgames. Hence, any efficiency loss associated with the

self-evident component of a contract cannot be eliminated through linking.

Whenη is pure and the signal is public, every irreducible self-evident event is of

the form{(ã,y)}, whereã is the unique element in the support ofη. If w is an optimal

one-shot contract, we must have

n

∑
i=1

E
[
wi
(
ã′, ŷ′

)
|σ∗,ωmax

]
= max

y∈Y

n

∑
i=1

wi (ã,y) = 0

and the second term in (13) is zero.15 Hence

L∗(η) = min
w∈W (η)

W(η,w).

Theorem 1, therefore, implies that linking has no value whenη is pure and the signal is

public.

The converse of Theorem 1 holds under an additional condition. Following Black-

well (1953), we can think of a player’s action as an experiment to generate information

about the actions and signals of the other players. In Blackwell (1953), one experiment

is more informative than another if the latter can be expressed as a garbling of the for-

mer. Letηi denote the marginal distribution of playeri’s action underη. Let γi ∈ ∆(Ai)

denote a mixed action for playeri, whereγi (ai) is the probability of choosingai .

Definition 3. For anyγi ,γ ′i ∈ ∆(Ai), γi is more informative thanγ ′i at the recommen-

dationãi ∈supp(ηi) if for any (ai,yi) ∈ Ai ×Yi , there exists a distributionλ(ai ,yi) (·, ·) ∈

∆(Ai ×Yi) such that for all(ã−i,y−i) ∈ A−i ×Y−i and all(a′i,y
′
i) ∈ Ai ×Yi ,

∑
(ai ,yi)∈Ai×Yi

λ(ai ,yi)

(
a′i ,y

′
i

)
γ (ai) p(y−i ,yi |ã−i,ai)η(ã) = γ ′

(
a′i
)

p
(
y−i ,y

′
i |ã−i,a

′
i

)
η(ã).

(15)

15Otherwise, letymax maximize∑n
i=1wi (ã,y). Then the contractwi,b(ã,y) = wi(ã,y)−wi(ã,ymax)

strictly improves uponwi .
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An actionγi is strictly more informative thanγ ′i if γi is more informative thanγ ′i but not

vice versa.

Unlike the setup in Blackwell (1953), where the distribution of states is fixed, in

our model playeri’s action may alter the distribution ofy−i . Equation (15) requires

that for everỹa−i with η(ãi , ã−i)> 0 (assuming that the other players are following the

recommendations)γi lead to the same distribution ofy−i that γ ′i induces, and be more

informative thanγ ′i in the Blackwell sense. Since{λ(ai ,yi)(·)|(ai,yi) ∈ Ai ×Yi} can be

interpreted as a mixed reporting strategy, an equivalent definition is to say thatγi is more

informative thanγ ′i if player i can chooseγi and misreportyi to mimic the distribution

of y underγ ′i .

Definition 4. An action profileη satisfies the no-free-information condition if

∑
ai∈Ai

γi (ai) ∑
ã−i∈A−i

g(ai, ã−i)η(ã)< ∑
ã−i∈A−i

g(ã)η(ã)

for any i ∈ N, ãi ∈ supp(ηi), andγi strictly more informative thañai at ãi .

In words,η satisfies the no-free-information condition if any deviation that gener-

ates more information for a player must strictly lower his stage-game payoff.

We can now state the converse of Theorem 1.

Theorem 2. If η is enforceable and satisfies the no-free-information condition, then for

anyε > 0, there exists T0 such that, for any T≥ T0 and anyδ ≥ 1−T−2, W∗ (η,T,δ )≤
L∗(η)+ ε.

Theorem 2 says that the bound established in Theorem 1 is tight whenη satisfies

the no-free-information condition. It means that any efficiency loss due to incentives

that vary within self-evident events can be eliminated in the long run. Note that whenη
is pure andP is a singleton,L∗(η) = 0. In the literature of repeated games with private

monitoring, it is standard to assume that the signal distribution has full support, and

the assumption is often treated as merely a simplifying assumption. In fact, since full

support implies thatP is a singleton, it, by itself, implies a pure action profile can be

enforced efficiently in the long run.
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Under a non-stationary contract that links incentives across periods, how an action is

rewarded depends on past outcomes. Thus, players have incentives to deviate to actions

that generate more information about the private information of the other players.16

The no-free-information condition ensures that no player can do so without paying a

cost and without being detected. Note that the condition does not impose a lower bound

on the cost to acquire more information. AsT becomes large, the potential gain from

having more information can be made arbitrarily small (but non-zero).

It is standard in the literature to assume that the desired outcome is strictly enforce-

able. Since strict enforceability rules out any profitable deviation from the recommen-

dation, it implies the no-free-information condition. Theno-free-information condition,

however, is more intuitive and weaker than strict enforceability.

Definition 5 (Almost-strict enforceability). A contractw almost strictly enforcesη if,

for any playeri and any strategyσi ∈ Σi ,

vi(σ∗;wi)≥ vi
(
σi ,σ∗

−i ;wi
)
,

with the inequality strict for any detectableσi . An action profile is almost-strictly en-

forceable if it can be enforced almost strictly by somew.

Unlike strict enforceability, almost-strict enforceability requires only that a player

be strictly worse off when the deviation is detectable.

Lemma 3. An enforceable action profile that satisfies the no-free-information condition

is almost-strictly enforceable.

Lemma 3 follows from the theory of alternatives. The converse of Lemma 3 is false

as almost-strict enforceability does not rule out pure undetectable deviations that are

more informative than the obedient strategy. Theorem 2 doesnot hold if the no-free-

information condition is replaced with almost-strict enforceability. We show this by an

example in the online Appendix.

Note that ifη can be enforced by bothw andw′, the latter almost strictly, then any

linear combination ofw andw′ also enforcesη almost strictly. Hence, by Lemma 3, if

η satisfies the no-free-information condition, then there exists a contractw with L(η,w)
close toL∗(η) that enforcesη almost strictly.

16Under a truncated contract, a player will gain from learningwhether the truncation is likely to occur.
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5.1 Linking incentives

In this section, we describe the long-term contract in the proof of Theorem 2. The idea

is similar to Case 3 of Section 2. Readers who are not interested in the details can skip

this section.

For anyε > 0, letw∗ denote a contract that enforcesη almost strictly with

L(η,w∗)≤ L∗(η)+
ε
2
. (16)

Let w∗
i,b andw∗

i,a denote, respectively, the self-evident and residual components ofw∗
i

(as defined in Section 4). LetwT∗, wT∗
i,a , andwT∗

i,b denote theT-period version ofw∗, w∗
i,a

andw∗
i,b, respectively. For alli ∈ N and all(ãT , ŷT),

wT∗
i (ãT , ŷT) =

T

∑
t=1

δ t−1w∗
i (ã(t), ŷ(t)) ;

wT∗
i,a(ã

T , ŷT) =
T

∑
t=1

δ t−1w∗
i,a(ã(t), ŷ(t)) ;

wT∗
i,b(ã

T , ŷT) =
T

∑
t=1

δ t−1w∗
i,b(ã(t), ŷ(t)) .

Fix some smallκT > 0. Let

R+
i (ã

T , ŷT ,κT) = max
(
0,wT∗

i,a(ã
T , ŷT)−E[wT∗

i,a(ã
T′, ŷT′)|σT∗]−κT

)

R−
i (ã

T , ŷT ,κT) = min
(
0,wT∗

i,a(ã
T , ŷT)−E[wT∗

i,a(ã
T′, ŷT′)|σT∗]−κT

)

denote, respectively, the positive and negative parts of the difference betweenwT∗
i,a and

the mean ofwT∗
i,a plusκT .

Let

BT
i (κT) =

{(
ãT , ŷT) ∈ AT ×YT |R+

i (ã
T , ŷT ,κT)> 0

}

denote set of
(
ãT , ŷT

)
whereR+

i (ã
T , ŷT ,κT) > 0. Recall thatZT∗ (ι) denotes the set of

(
ãT , ŷT

)
whose distribution of outcomes deviates from the expected distribution by ι

conditional on self-evident events. Forw∗
i,a

(
ãT , ŷT

)
to deviate from the mean, the real-

ized outcome distribution must differ from the expected distribution as well.17 Hence,

17By constructionE [wi,a(ã, ŷ)|σ∗,ω ] = E [wi,a (ã, ŷ) |σ∗] for all ω ∈ P.
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there existsι0 > 0 such thatBT
i (κT)⊆ Z∗ (ι0κT). Then, by Lemma 2,

BT
i (κT)⊆ ∪ j∈NZT∗

j (c0ι0κT) . (17)

We can therefore define a vector of indicator functions as follows. For anyi ∈ N,

set

Ii
(
ãT , ŷT ,κT

)
=

{
1 if

(
ãT , ŷT

)
∈ Z∗

i (c0ι0κT),

0 otherwise.

Now, define a new contractwT∗∗. For all(ãT , ŷT), set

wT∗∗
i (ãT , ŷT ,κT) = R−

i (ã
T , ŷT ,κT)+wT∗

i,b

(
ãT , ŷT ,κT

)

+

[
R+

i (ã
T , ŷT ,κT)

(
1− Ii(ã

T , ŷT ,κT)
)
−∑

j 6=i

R+
j (ã

T , ŷT ,κT)Ii(ã
T , ŷT ,κT)

]
. (18)

Under this new contract, each playeri is paid the self-evident component ofwT∗
i , the

part of the residual that is less than the mean plusκT , and a third component (inside

the square bracket) that pays playeri R+
i whenIi = 0 and−R+

j whenIi = 1. The total

payment is negative for all
(
ãT , ŷT

)
. By definition, for all

(
ãT , ŷT

)
,

n

∑
i=1

(
R−

i (ã
T , ŷT ,κT)+wT∗

i,b

(
ãT , ŷT ,κT

))
≤ 0.

The sum of the third component in (18) is also negative. By (17), for any playeri and

any
(
ãT , ŷT

)
∈ BT

i (κT), I j
(
ãT , ŷT ,κT

)
= 1 for some playerj. Intuitively, if player i is

to receive someR+
i (ã

T , ŷT ,κT)> 0, then some other playerj must pay for it.

Rearranging the terms on the right-hand side of (18), we can write

wT∗∗
i (ãT , ŷT ,κT) = wT∗

i (ãT , ŷT)−E[wT∗
i,a(ã

T′, ŷT′)|σT∗]−κT −φi(ã
T , ŷT ,κT), (19)

where

φi(ã
T , ŷT ,κT) =

n

∑
j=1

R+
j (ã

T , ŷT ,κT)Ii(ã
T , ŷT ,κT)

measures the distortion in incentives.

The following lemma shows that we can chooseκT so that the expected value of

φi(ãT , ŷT ,κT) conditional on any private information playeri may learn during the game

on the equilibrium path diminishes uniformly and exponentially with T.

26



Let HT∗
i denote the set of histories that playeri may observe during theT-period

contract underσT∗.

Lemma 4. Let κT = T2/3. There exists c> 0 such that for all i∈ N, T ≥ 1, and

hi ∈ HT∗
i ,

E
[
φi(ã

T , ŷT ,κT)|σT∗,hi
]
< cTexp

(
−
(c0ι0)

2

2
T1/3

)
.

We prove Lemma 4 by the Hoeffding inequality (Hoeffding, 1963). Lemma 4 means

that, whenT is sufficiently large, a playeri who has followedσT∗
i up to some periodt ≤

T (conditional on any private information that he may observefrom period 1 to(t−1))

will believe that if he follows the equilibrium strategyσT∗
i in the remaining periods,

he will obtain aφi close to zero. This, together with the fact thatφi is always positive,

means that no deviation can reduce the expected value ofφi significantly. SincewT∗
i

enforcesη almost strictly andη satisfies the no-free-information condition, a playeri

deviating in any period must be strictly worse off if the deviation is detectable or more

informative than the recommended one. Since the effect of a single-period deviation on

the total payoff is of the order 1/T (asδ goes to one), the players will have the incentives

to playη underwT∗∗ whenT is sufficiently large, as the distortion in incentives due to

the truncation diminishes at a rate faster than 1/T.

The per-period efficiency loss ofwT∗∗ is

−
1−δ

1−δ T

n

∑
i=1

E
[
wT∗

i

(
ãT , ŷT)−E[wT∗

i,a(ã
T′, ŷT′)|σT∗]−κT −φi(ã

T , ŷT ,κT)|σT∗]

=L(η,w∗)+
1−δ

1−δ T

(
nκT +

n

∑
i=1

E[φi(ã
T , ŷT ,κT)|σT∗]

)
.

(20)

The per-period efficiency loss converges toL(η,w∗) as the second term in the last e-

quation converges to zero asδ goes to one andT goes to infinity.

6 Value of Linking

In this section, we characterizeL∗ (η) in terms of the primitives of the model. The

following theorem provides a sufficient condition forL∗(η) = 0.
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Theorem 3A. For any enforceableη, we haveL∗(η) = 0 if for any playeri ∈ N, any

deviating strategyσi ∈ Σi/{σ∗
i } satisfies one of the following conditions:

(i) There exists(ã, ŷ) such thatπσi (ã, ŷ)> 0 andµ(ã, ŷ) = 0.

(ii) There existsω ∈ P such thatπσi (·|ω) 6= µ (·|ω).

(iii) There exists a playerj ∈ N such that there is noσ j with πσ j = πσi .

Theorem 3A identifies three types of deviations that can be deterred almost costless-

ly asT becomes large: first, deviations that may result in(ã, ŷ) outside of the support of

µ; second, deviations that change the distribution of(ã, ŷ) conditional on someω ∈ P;

third, deviations that lead to distributions of(ã, ŷ) that cannot be caused by some oth-

er player. Rahman and Obara (2010) call the last type of deviationsattributable. By

contrast, a deviating strategy profile(σ1, . . . ,σn) satisfying

πσ1 = · · ·= πσn

is unattributable, as the common distributionπσ1 could have been caused by any player.

The first type of deviations can be deterred costlessly by a contract that punishes all

players severely when an out-of-support(ã, ŷ) occurs. The second type can be deterred

by a contract with a zero self-evident component. The third type can be deterred by a

budget-balance contract (Rahman and Obara, 2010).

Not all outcome profiles can be enforced almost efficiently inthe long run. The next

theorem characterizeL∗(η) for all η. Let

Q(η)≡ {σ ∈ Σ|πσ1 = · · ·= πσn ∈ co({µ(·|ω) | ω ∈ P})/{µ}}

denote the set of unattributable deviations that are distinct fromµ and undetectable with

respect to anyω ∈ P. If σi does not satisfy any of Conditions (i) to (iii) in Theorem 3A,

then there must existσ−i such that(σi,σ−i) belongs toQ(η).
For anyσi , let

di(σi)≡ ∑
(αi ,ρi)

σi(αi ,ρi) ∑̃
a∈A

(gi (ã−i ,αi(ãi))−gi(ã))η (ã)
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denote playeri’s gain from the deviationσi , and let

l(σi)≡ max
ω∈P

πσi(ω)

µ(ω)

measure the difference betweenπσi and µ. Consider someσ ∈ Q(η). Any w that

enforcesη must satisfy, for all playeri, the incentive-compatibility constraint that

∑
(ã,ŷ)∈A×Y

(µ (ã, ŷ)−πσi (ã, ŷ))wi (ã, ŷ)≥ d(σi) . (21)

Sinceσ ∈ Q(η), for all ω ∈ P,

E [wi (ã, ŷ) |µ,ω] = E [wi (ã, ŷ) |πσi ,ω] . (22)

Substituting (22) into (21), and summing overi, we have

∑
ω∈P

(µ (ω)−πσi (ω))
n

∑
i=1

E [wi (ã, ŷ) |µ,ω]≥
n

∑
i=1

d(σi) . (23)

It then follows from the definition ofL, (13), that

L(η,w) = ∑
ω∈P

µ (ω)

(
−

n

∑
i=1

E [wi (ã, ŷ) |µ,ω]+max
ω ′∈P

n

∑
i=1

E
[
wi (ã, ŷ) |µ,ω ′

]
)

≥ ∑
ω∈P

µ (ω)

πσi (ω)
µ(ω) −1

l (σ1)−1

(
−

n

∑
i=1

E [wi (ã, ŷ) |µ,ω]+max
ω ′∈P

n

∑
i=1

E
[
wi (ã, ŷ) |µ,ω ′

]
)

≥ ∑
ω∈P

µ (ω)−πσi (ω)

l (σ1)−1

n

∑
i=1

E [wi (ã, ŷ) |µ,ω]

≥
∑n

i=1d(σi)

l (σ1)−1
.

The first inequality follows from the definition ofl(σi). The second inequality fol-

lows from the fact that∑n
i=1E [wi (ã, ŷ) |µ,ω ′] ≤ 0. The last inequality follows from

(23). Intuitively, sinceσ is unattributable, every player must be punished, and the to-

tal punishment must be greater than∑n
i=1d(σi), the total deviating gain. The resulting

efficiency loss is equal to the total deviation gain multiplied by a factor that measures

the difference betweenπσi andµ. The smaller the difference, the harder it is to distin-

guish between the two distributions, and, hence, the higherthe efficiency loss. Since

the argument applies to everyw that enforcesη, for anyσ ∈ Q(η),

L∗ (η) ≥ ∑n
i=1d(σi)

l (σ1)−1
.
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Theorem 3B shows that the converse is also true.

Theorem 3B. For any enforceableη,

L∗(η) = sup
(σ1,...,σn)∈Q(η)

max(∑n
i=1d(σi) ,0)

l (σ1)−1

if Q(η) is nonempty. Otherwise,L∗(η) = 0.

Theorem 3B implies thatL∗(η)>0 only if there is someσ ∈Q(η)with ∑n
i=1d(σi)>

0. Theorem 3B, thus, implies Theorem 3A.

In the noisy prisoners’ dilemma example in Section 2, when the signals are perfectly

correlated (ρ = 0), conditional on(C,C) there are two irreducible singleton self-evident

events:HH andLL. Either player deviating toD results in the same signal distribution

(q,1−q). Hence, the only way to enforce(C,C) is to punish the players when the

signalL occurs. By Theorem 3B, the per-period efficiency loss is

2d

max
(

q
p,

1−q
1−p

)
−1

= 2
(1− p)d

p−q
,

whered is a player’s gain from deviating toD. Theorem 3B effectively shows that any

long-term efficiency loss arises for the same reason as in theprisoners’ dilemma exam-

ple. WhenQ(η) contains multiple strategy profiles, the efficiency loss is determined by

the one that is the hardest to deter.

6.1 Relation to literature

Our results are closely related to the literature in repeated games with private monitor-

ing and communication.18 The literature can be divided into two strands. One strand,

following Abreu, Milgrom, and Pearce (1991), applies the linking idea to obtain approx-

imate efficiency (Compte, 1998; Obara, 2009; Chan and Zhang,2016; Rahman, 2014;

Sugaya, 2017a,b).19 Another strand (Fudenberg, Levine, and Maskin, 1994; Kandori

18Instead of infinitely repeated games, we work with aT-period contracting problem that allows us to

focus on the mechanism of linking and abstract away from the problem of implementing transfers through

continuation strategies. Our results can be readily applied to repeated games with side-payments.
19The literature of repeated games with private monitoring and without communication also exploits

the idea of linking. See, e.g., Matsushima (2004) and Fong, Gossner, Hörner, and Sannikov (2011).
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and Matsushima, 1998; Rahman and Obara, 2010) identifies conditions that ensure that

an outcome can be costlessly enforced in a stage game by a budget-balanced contract.

Theorem 3A naturally combines the two approaches. It, together with Theorem

2, implies that an outcome can be enforced in the long-run almost efficiently if every

deviating strategy can be deterredeitherby a contract that links efficiently or is budget

balanced. Theorems 1 and 3B further connect the efficiency results in the repeated-

game literature with the inefficiency result of Abreu, Milgrom, and Pearce (1991).20 It

shows that the two approaches taken by the repeated-game literature are, in fact, the

only approaches to obtain efficiency. If there is a deviationthat cannot be deterred by

either one, then long-run efficiency loss may be inevitable,and the way the efficiency

loss arises is exactly the same as in Abreu, Milgrom, and Pearce (1991) (Case 1 of

Section 2).

In a repeated game, the players observe private signals at the end of every period.

While the players may delay revealing their signals, each may nevertheless update his

beliefs about other players’ signals on the basis of his own.Compte (1998) and Obara

(2009) deal with this problem by imposing restrictions on the signal structure to ensure

the existence of a contract that enforces the desired outcome with the property that no

player can learn about his payment from his own signals.21 Rahman (2014) adopts a

similar approach when correlated strategies are allowed. We show that these restric-

tions are not necessary as linking could work even when a player can learn about his

payment. Our approach relies on the fact that, whenT is large, it is possible to have

one player to partially compensate another player for the truncation effect so long as

the truncation is not self evident. Chan and Zhang (2016) adopt a similar approach to

obtain efficiency in repeated games where players observe their own payoffs and the

signal distribution has full support. While Chan and Zhang (2016) consider only pure

outcomes, our framework applies to all monitoring structures (both public and private)

and action profiles (both pure and correlated).

In two recent papers, Sugaya (2017a,b) derives upper and lower bounds in equilib-

20Compte (1998), Obara (2009) and Chan and Zhang (2016) consider pure action profile and assume

that the signal distribution has full support, which rules out public signals.
21Compte (1998) assumes independent signals. Obara (2009) considers correlated signals and identi-

fies a condition on the signal distribution that ensures thatno player can learn about his own transfer.
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rium payoffs in repeated games with private monitoring and correlated strategies. In

particular, Sugaya (2017a) shows that approximate efficiency can be achieved when the

players can observe their own payoffs. Sugaya’s method always requires a correlating

device, while ours requires one only when the outcome is correlated. While Sugaya

(2017a,b) focuses on the equilibrium payoff set, we focus onthe minimum efficiency

loss associated with the enforcement of a given outcome.

7 Correlated Strategies

Rahman and Obara (2010) show that, instead of having a disinterested owner to break

the budget constraint, a partnership may reduce the cost of noisy monitoring by using a

disinterested mediator to implement a correlated strategythat identifies non-deviators.

In our setting, players may also change the information structure endogenously through

a correlated strategy profile.22 Since a small change in a correlated strategy can alter

the support of the distribution of action-signal profiles substantially, it can have a large

impact on the long-run efficiency loss asδ goes to one andT goes to infinity. The idea

is first raised by Rahman (2014). He proves a folk theorem under the condition that the

signal distribution satisfies conditional identifiability.

To illustrate the idea, let us return to the noisy Prisoners’Dilemma in Case 1 (ρ = 0)

of Section 2. As we showed in the last section,L∗(C,C)= 2(1−p)d/(p−q). Consider

the correlated strategy profileη where

η(C,C) = 1− ε;η(C,D) = η(D,C) = 0.5ε.

Whenε is small,η is close to the pure strategy profile(C,C). Yet the support of the

distribution of the action-signal profiles underη is very different from the support under

(C,C). Now eachPi consists of four elements. In particular,

P1 : {CCH,CDH} ,{CCL,CDL} ,{DCH} ,{DCL}

P2 : {CCH,DCH} ,{CCL,DCL} ,{CDH} ,{CDL} ,

22This involves changing the correlating device correspondingly.
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and the meet ofP1 andP2 is

P : {CCH,CDH,DCH},{CCL,CDL,DCL} .

Note that each member of the meet contains multiple elements. As a player is instructed

to chooseC, he is not sure whether the other player is choosingC or D. Let p(H|DD) =

r. Conditional identifiability requires that

p
q
6=

q
r

and
1− p
1−q

6=
1−q
1− r

.

The condition says that how playeri’s action affects the relative likelihood ofH andL

depends on whether playerj is choosingC or D. Since playeri does not observe the

action of playerj, η can be “secretly” enforced so that the players do not learn about

their own punishments from the public signal. Hence, by choosing a smallε, the players

can obtain close to the efficient payoff(1,1), when the players are sufficiently patient

andT is sufficiently large.

Using Theorems 2 and 3A, we can show thatη can be enforced almost efficiently

without assuming conditional identifiability. It is straightforward to see thatη is en-

forceable. Letαxy
i denote the strategy of choosingx whenC is recommended andy

whenD is recommended. Each player has four pure action strategies: αCD
i , αDD

i , αCC
i ,

andαDC
i . In Table 3, each row gives the probabilities of outcomes with anH signal

under a different pure strategy of player 1 (assuming that player 2 playsαCD
2 ).

CCH DCH CDH

αCD
1 (1− ε) p 0.5εq 0.5εq

αDD
1 (1− ε)q 0.5εq 0.5εr

αCC
1 (1− ε) p 0.5ε p 0.5εq

αDC
1 (1− ε)q 0.5ε p 0.5εr

Table 3: The probability for each outcome with anH signal.

Notice that the ratio of the relative probability ofCCH overDCH is strictly higher

when player 1 follows the recommendation and playsαCD
1 . Hence, every deviation is

detectable with respect to the self-evident event{CCH,CDH,DCH}. By Theorem 3A,
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L∗ (η) = 0. Intuitively, the recommendationDC serves as a “benchmark” for player

1. Given that player 2 is choosingC, player 1 choosingD minimizes the probability

of H. Hence, if player 1 deviates toD when told to chooseC, he must lower the

relative probability ofCCH overDCH. Finally, since any unilateral deviation fromη is

detectable,η satisfies the no-free-information condition. Hence, by Theorem 2,η can

be enforced almost efficiently in the long run.

The following theorem generalizes the above example. It says that any strictly en-

forceable outcome can be virtually enforced with almost no long-run efficiency loss.23

The proof is in the online Appendix.

Theorem 4. For any strictly enforceableη and anyε > 0, there exists an enforceable

correlated action profileη that satisfies the no-free-information condition and with

max̃a∈A |η(ã)−η(ã)| ≤ ε and L∗(η) = 0.

8 Conclusion

Players in a long-run relationship can reduce incentive costs by linking incentives across

periods, but the value of linking is limited by the information the players obtain during

the course of the relationship. We show that the long-run per-period efficiency loss in

enforcing an action profile is bounded from below by the incentive cost that becomes

self-evident at the end of each period, and the bound is tightwhen players cannot obtain

free information undetectably. The results extend the insights of Abreu, Milgrom, and

Pearce (1991) to general stage games where players may observe both public and private

signals and use a correlating device to coordinate their actions.

23Theorem 4 does not hold ifη merely satisfies the no-free-information condition but is not strictly

enforceable. The strict enforceability ofη , together with the fact thatη is close toη , ensures that underη
no player can deviate undetectably without strictly reducing his stage-game payoff when recommended

to choose an action in the support ofη .
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A Proof of Theorem 1

By definition,W∗(η) ≥ L∗(η). Hence, Theorem 1 holds forT = 1. Suppose the theo-

rem holds forT −1. Consider theT-period case.

Let ã2,T andŷ2,T denote, respectively, the value ofãT andŷT from period 2 through

T. Fix wT ∈ W (η,T,δ ). For eachi and each(ã(1), ŷ(1)) ∈ A×Y, let

wi(ã(1), ŷ(1))≡ ∑
(ã2,T ,ŷ2,T)

wT
i (ã(1), ã

2,T , ŷ(1), ŷ2,T)
T

∏
t=2

µ(ã(t), ŷ(t))

denote the expected value ofwT
i conditional on(ã(1), ŷ(1)), assuming that all players

follow the equilibrium strategy.

For eachi, each
(
ã2,T , ŷ2,T

)
and eachω ∈ P, let

wT−1,ω
i

(
ã2,T , ŷ2,T)≡ ∑

(ã(1),ŷ(1))∈ω
wT

i

(
ãT , ŷT)µ ( ã(1), ŷ(1)|ω)

denote the expected value ofwT
i conditional on

(
ã2,T , ŷ2,T

)
and(ã(1), ŷ(1)) being in

the setω, assuming that all players follow the equilibrium strategy.

SincewT enforcesη for T periods,w = (w1, . . . ,wn) must enforceη in the first

period. Hence,w∈ W (η). Furthermore, sinceω is self-evident, the continuation game

following ω can be treated as a(T−1)-period game with an extra randomization device

µ (·|ω), and the contractδ−1wT−1,ω must enforceη in this game. By the revelation

principle, adding this extra randomization device will notenhance the efficiency of

the contract. Hence, by the supposition that Theorem 1 holdsfor T −1, the expected

efficiency loss of this contract, which is equal to

−δ−1
n

∑
i=1

wi(ã(1), ŷ(1))µ ( ã(1), ŷ(1)|ω) ,

must be greater than1−δ T−1

1−δ L∗(η). Let

ωmax∈ argmax
ω∈P

n

∑
i=1

E [wi (ã(1), ŷ(1)) |σ∗,ω] .
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It follows that

−
n

∑
i=1

E[wT
i (ã

T , ŷT)|σT∗]

= − ∑
i,(ã(1), ŷ(1))

wi(ã(1), ŷ(1))µ(ã(1), ŷ(1))

≥ L∗(η)− ∑
i,(ã(1),ŷ(1))∈ωmax

wi(ã(1), ŷ(1))µ(ã(1), ŷ(1)|ωmax)

≥ L∗(η)+δ
1−δ T−1

1−δ
L∗(η)

=
1−δ T

1−δ
L∗(η).

The first inequality follows from the fact thatw∈ W (η).

B Proof of Lemma 2

Define two constants

c1 ≡ max
(ã,y)∈supp(µ)

1
µ(ã,y)

and c0 ≡
1

(2|supp(µ)|+1)c1
.

We show for all(ãT ,yT) ∈ supp(µ)T , if (ãT ,yT) /∈ ZT∗
i (c0ι) for all player i, then

(ãT ,yT) /∈ ZT∗ (ι).
Fix any(ã′,y′) ∈ supp(µ) and letω be the element ofP that contains(ã′,y′). Since

ω is an element of the meetP, any(ã′′,y′′)∈ω is reachable from(ã′,y′), i.e., there exists

a sequence(ã′,y′) = (ã1,y1), (ã2,y2), . . . , (ãk,yk) = (ã′′,y′′) such that(ãs,ys) ∈ ω for

eachs≤ k and that any two consecutive profiles(ãs,ys) and(ãs+1,ys+1) have the same

is-th component for playeris∈ N (see, e.g., Aumann, 1976; Geanakoplos, 1994).

For each(ãs,ys) and eachm∈ N, by supposition, we have

∣∣ f (ãs,ys|ãT ,yT)−µ−m(ã
s
−m,y

s
−m|ã

s
m,y

s
m) f (ãs

m,y
s
m|ã

T ,yT)
∣∣≤ c0ι. (24)

Dividing both sides of (24) byµ(ãs,ys), we have

∣∣∣∣
f (ãs

m,y
s
m|ã

T ,yT)

µm(ãs
m,ys

m)
−

f (ãs,ys|ãT ,yT)

µ(ãs,ys)

∣∣∣∣≤
c0ι

µ(ãs,ys)
≤ c1c0ι. (25)
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Fix any two playersi, j ∈ N. It follows from (25) that
∣∣∣∣∣

f (ã′i,y
′
i |ã

T ,yT)

µi(ã′i,y
′
i)

−
f (ã′′j ,y

′′
j |ã

T ,yT)

µ j(ã′′j ,y
′′
j )

∣∣∣∣∣

≤

∣∣∣∣
f (ã′i,y

′
i |ã

T ,yT)

µi(ã′i,y
′
i)

−
f (ã1,y1|ãT ,yT)

µ(ã1,y1)

∣∣∣∣+
∣∣∣∣∣

f (ã1,y1|ãT ,yT)

µ(ã1,y1)
−

f (ã1
i1,y

1
i1|ã

T ,yT)

µi1(ã
1
i1
,y1

i1
)

∣∣∣∣∣

+

∣∣∣∣∣
f (ã2

i1,y
2
i1|ã

T ,yT)

µi1(ã
2
i1
,y2

i1
)

−
f (ã2,y2|ãT ,yT)

µ(ã2,y2)

∣∣∣∣∣+ · · ·+

∣∣∣∣∣
f (ãk,yk|ãT ,yT)

µ(ãk,yk)
−

f (ã′′j ,y
′′
j |ã

T ,yT)

µ j(ã′′j ,y
′′
j )

∣∣∣∣∣

≤2kc1c0ι ≤ 2|ω|c1c0ι.

This implies that

f (ã′′j ,y
′′
j |ã

T ,yT)

µ j(ã′′j ,y
′′
j )

−2|ω|c1c0ι ≤
f (ã′i,y

′
i |ã

T ,yT)

µi(ã′i,y
′
i)

≤
f (ã′′j ,y

′′
j |ã

T ,yT)

µ j(ã′′j ,y
′′
j )

+2|ω|c1c0ι. (26)

Note that (26) holds for allj and all (ã′′j ,y
′′
j ). Multiplying each side of (26) by

µ j(ã′′j ,y
′′
j ) and summing over all(ã′′j ,y

′′
j ) ∈ A j ×Yj for which there exists(ã′′− j ,y

′′
− j) ∈

A− j ×Y− j such that(ã′′,y′′) = (ã′′j , ã
′′
− j ,y

′′
j ,y

′′
− j) ∈ ω , we have

f (ω|ãT ,yT)−2|ω|c1c0ιµ(ω)≤
f (ã′i,y

′
i |ã

T ,yT)

µi(ã′i,y
′
i)

µ(ω)≤ f (ω|ãT ,yT)+2|ω|c1c0ιµ(ω).

Using (25), we have
∣∣∣∣

f (ã′,y′|ãT ,yT)

µ(ã′,y′)
−

f (ω|ãT ,yT)

µ(ω)

∣∣∣∣≤ (2|ω|+1)c1c0ι,

or
∣∣ f (ã′,y′|ãT ,yT)−µ(ã′,y′|ω) f (ω|ãT ,yT)

∣∣

≤(2|ω|+1)c1c0ιµ(ã′,y′)≤ (2|supp(µ)|+1)c1c0ι = ι.

C Proof of Lemma 3

By Lemma 1, pure and undetectable strategies(αi,ρi) are unprofitable. Hence, it suf-

fices to show that there exists a contractw such that for any playeri and any pure

strategy(αi,ρi),

∑
(ã,ŷ)∈A×Y

[µ(ã, ŷ)−παi ,ρi (ã, ŷ)]wi(ã, ŷ)≥ ∑̃
a∈A

(gi(ã−i,αi(ãi))−gi(ã))η(ã) (27)
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with the inequality strict ifπαi ,ρi 6= µ. By the theory of alternatives (see, e.g., Proposi-

tion 5.6.2 of Bertsekas, 2009), (27) does not have a solutionwi if and only if there exists

λi(αi,ρi)≥ 0 for each(αi,ρi) such that

∑
(αi ,ρi)

λi(αi,ρi) [µ(ã, ŷ)−παi ,ρi (ã, ŷ)] = 0 for each(ã, ŷ),

and either one of the following two cases holds:

(i) We have∑(αi ,ρi)λi(αi,ρi)∑ã∈A(gi(ã−i,αi(ãi))−gi(ã))η(ã)> 0.

(ii) We have∑(αi ,ρi)λi(αi,ρi)∑ã∈A(gi(ã−i ,αi(ãi))−gi(ã))η(ã)≥ 0 andλi(αi ,ρi)>

0 for some(αi,ρi) such thatπαi ,ρi 6= µ.

In either case,λi(α ′
i ,ρ ′

i ) > 0 for some(α ′
i ,ρ ′

i ). By dividing eachλi(αi ,ρi) by

∑(α ′
i ,ρ ′

i )
λi(α ′

i ,ρ ′
i ) if necessary, we may assume that∑(α ′

i ,ρ ′
i )

λi(α ′
i ,ρ ′

i ) = 1. That is,λi

represents a mixed strategy for playeri.

Sinceη is enforceable, by Lemma 1, Case (i) cannot hold. Case (ii) violates the

no-free-information condition. Hence (27) must have a solution.

D Proof of Lemma 4

We apply the following inequality of Hoeffding (1963) to prove the lemma. Suppose

that ξ (1), ξ (2), . . . , ξ (T) are independent random variables such that|ξ (t)| ≤ ν for

eacht ≤ T. Then, for anyκ > 0, Hoeffding’s inequality asserts that

Pr

(
T

∑
t=1

ξ (t)≥ E

[
T

∑
t=1

ξ (t)

]
+κ

)
≤ exp

(
−

κ2

2ν2T

)
.

Fix any (ã,y) ∈ supp(µ) and(ãT
i ,y

T
i ), we estimate the probability that(ãT ,yT) ∈

ZT
i ((ã,y) ,c0ι0κT) conditional on(ãT

i ,y
T
i ). Focus on thef (ãi ,yi |ãT ,yT) periods in

which playeri observes(ãi,yi). Note that we can rewritef (ã,y|ãT ,yT) as the sum of in-

dicators 1(ã−i ,y−i) for these periods that equals 1 if(ã−i,y−i) occurs. Thenµ−i(ã−i,y−i |ãi ,yi) f (ãi ,yi|ãT ,yT)
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is the mean of this sum. Hence, by Hoeffding’s inequality, wehave

Pr
(∣∣ f (ã,y|ãT ,yT)−µ−i(ã−i,y−i |ãi ,yi) f (ãi ,yi|ã

T ,yT)
∣∣> c0ι0κT

∣∣σT∗, ãT
i ,y

T
i

)

=Pr

(∣∣∣∣ ∑
t:(ãi(t),yi(t))=(ãi ,yi)

1(ã−i ,y−i)(ã−i(t),y−i(t))

−µ−i(ã−i ,y−i |ãi,yi) f (ãi,yi |ã
T ,yT)

∣∣∣∣> c0ι0κT

∣∣∣∣σ
T∗, ãT

i ,y
T
i

)

≤2exp

(
−

(c0ι0κT)
2

2 f (ãi ,yi |ãT ,yT)

)
≤ 2exp

(
−
(c0ι0κT)

2

2T

)
.

It follows that,

Pr
(

ZT∗
i (c0ι0κT)

∣∣σT∗, ãT
i ,y

T
i

)

≤ ∑
(ã,y)∈supp(µ)

Pr
(∣∣ f (ã,y|ãT ,yT)−µ−i(ã−i,y−i |ãi ,yi) f (ãi ,yi|ã

T ,yT)
∣∣> c0ι0κT

∣∣σT∗, ãT
i ,y

T
i

)

≤2|supp(µ)|exp

(
−
(c0ι0κT)

2

2T

)
.

Let

c2 = max{|w∗
i,a(ã,y)| | i ∈ N, ã∈ A,y∈Y}.

SinceR+
i (ã

T , ŷT)≤ c2T andκT = T2/3,

E
[
φi(ã

T , ŷT ,κT)|σT∗, ãT
i ,y

T
i

]
=E

[
n

∑
j=1

R+
j (ã

T , ŷT ,κT)Ii(ã
T , ŷT ,κT)|σT∗, ãT

i ,y
T
i

]

≤nc2T Pr
(

ZT∗
i (c0ι0κT)

∣∣σT∗, ãT
i ,y

T
i

)

<2c2|supp(µ)|nTexp

(
−
(c0ι0)

2

2
T1/3

)
.

Let c= 2c2|supp(µ)|n. This completes the proof of the lemma.

E Proof of Theorem 2

We say that a pure action strategyαi is equally informative asα∗
i if for each ãi that

may be recommended with strictly positive probability under η, there is a one-to-one

mappingχãi
: Yi →Yi such that for any(ã−i ,y−i) ∈ A−i ×Y−i ,

p(yi ,y−i |αi (ãi) , ã−i) = p
(
χãi

(yi) ,y−i |ã
)
.
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We say that a pure stage-game strategy(αi,ρi) is a duplicate for(α∗
i ,ρ∗

i ) if αi is as

informative asα∗
i andρi (ãi ,αi(ãi), ·) = χãi

.

Note that if some(αi ,ρi) is not a duplicate for(α∗
i ,ρ∗

i ), then either it is detectable

or αi is strictly more informative thanα∗
i . The number of pure stage-game strategies is

finite. Sincew∗
i is almost strict andη satisfies the no free information condition, there

exists∆0 > 0 such that for all non-duplicate(αi ,ρi),

vi(σ∗;w∗
i )−vi(σ∗

−i ,αi ,ρi;w
∗
i )> ∆0. (28)

Becauseη is enforceable, any duplicate action strategy must generate a lower stage-

game payoff for playeri thanα∗
i . Playeri, therefore, will receive a higher payoff if he

replaces any duplicate action strategyαi in some periodt with α∗
i and then, in the

reporting stage, reports the period-t signal truthfully. Hence, to prove Theorem 2, if

suffices to show that any deviation to a non-duplicate strategy will make a player strictly

worse off.

If σT
i deviates fromσT∗

i , there must be a first time a deviation occurs. There are two

types of first-time non-duplicate deviations. First, a player may choose an action that is

not equally informative asα∗
i after some history. Alternatively, the player may follow

the recommendations in allT periods but lie about the signal of a particular period at

the end.

We first consider the first type of deviations. SupposeσT first prescribes a non-

equally-informative action in periodt afterhi ∈ H∗
i . Let vT

i

(
σT ;wT

i ,hi
)

denote player

i’s expected discounted payoff conditionalσT andhi . Recall thatwT∗∗
i is the truncated

contract with side bets in (18) andwT∗
i is T-period version ofw∗

i .

By (19), we can write

vT
i (σT

i ,σT∗
−i ;wT∗∗

i ,hi) =

1−δ
1−δ T

(
Vi(σT

i ;hi)−E[wT∗
i,a(ã

T′, ŷT′,κT)|σT∗]−κT −E[φi(ã
T , ŷT ,κT)|σT∗

−i ,σ
T
i ,hi]

)

where

Vi(σT
i ;hi)≡ E

[ T

∑
s=1

δ s−1(gi(a(s))+w∗
i (ã(s), ŷ(s)))

∣∣∣∣σ
T∗
−i ,σ

T
i ,hi

]

denote playeri’s discounted payoff conditional onhi underwT∗
i .
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It follows that

vT
i (σ

T∗;wT∗∗
i ,hi)−vT

i

(
σT∗
−i ,σ

T
i ;wT∗∗

i ,hi
)

=
1−δ

1−δ T

(
Vi(σT∗

i ;hi)−Vi(σT
i ;hi)

−E[φi(ã
T , ŷT ,κT)|σT∗,hi]+E[φi(ã

T , ŷT ,κT)|σT∗
−i ,σ

T
i ,hi ]

)

≥
1−δ

1−δ T

(
Vi(σT∗

i ;hi)−Vi(σT
i ;hi)−E[φi(ã

T , ŷT ,κT)|σT∗,hi]
)
.

The last inequality follows from the fact thatφ is always positive.

SinceσT first prescribes a non-equally-informative action in period t, it will lower

playeri’s payoff (including the stage-game payment) by∆0 in that period. This, together

with the fact that underwT∗
i the stage-game payoff plus payment is maximized byσT∗

i

in each periods 6= t, implies that

Vi
(
σT∗

i ;hi
)
−Vi

(
αT

i ,ρ
T
i ;hi

)

≥δ t−1(E[gi(a(t))+w∗
i (ã(t), ŷ(t))|σ

T∗,hi ]−E[gi(a(t))+w∗
i (ã(t), ŷ(t))|σ

T∗
−i ,σ

T
i ,hi ]

)

≥δ t−1∆0.

By Lemma 4, we can chooseT0 large enough such that for allT ≥ T0 andδ ≥ 1−T−2,

E[φi(ã
T , ŷT ,κT)|σT∗,hi ]≤ δ T−1∆0.

This proves that anyσT
i first prescribes a non-equally-informative action is not opti-

mal. The argument for following the recommendations but misreporting the signals is

similar.

Finally, by (20), the per-period efficiency loss is

W
(
η,T,δ ,wT∗∗

)
=

1−δ
1−δ T

n

∑
i=1

−E
[
wT∗∗

i |σT∗]

≤L(η,w∗)+
1−δ
1−δ T

n

∑
i=1

(
E[φi(ã

T , ŷT ,T2/3)|σT∗]+T2/3
)
.

By Lemma 4, whenT is sufficiently large

1−δ
1−δ T

n

∑
i=1

(
E[φi(ã

T , ŷT ,T2/3)|σT∗]+T2/3
)
≤

ε
2
.
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F Proof of Theorem 3B

Let

L ≡

{
supσ∈Q(η)

∑n
i=1 d(σi)

l(σ1)−1 , if Q(η) 6= /0;

0, otherwise.

To prove Theorem 3B, it remains to show that

L∗(η)≤ L. (29)

By definition, a contractw enforcesη with L(η,w) ≤ L if and only if

∑
(ã,ŷ)∈A×Y

[παi ,ρi(ã, ŷ)−µ(ã, ŷ)]wi(ã, ŷ) ≤ −di(αi,ρi) ∀(αi,ρi , i); (30)

n

∑
i=1

∑
(ã,ŷ)∈A×Y

[−µ(ã, ŷ)+µ(ã, ŷ|ω)]wi(ã, ŷ) ≤ L ∀ω ∈ P. (31)

By the theorem of alternatives (see, e.g., Proposition 5.1.2 of Bertsekas, 2009), (30) and

(31) does not have a solution inw if and only if there exist{λi(αi ,ρi) ≥ 0 | (αi ,ρi, i)}

and{ν(ω)≥ 0 | ω ∈ P} such that

∑
(αi ,ρi)

λi(αi ,ρi) [παi ,ρi( ·)−µ( ·)]+ ∑
ω∈P

ν(ω) [−µ( ·)+µ( · |ω)] = 0 ∀i (32)

n

∑
i=1

∑
(αi ,ρi)

λi(αi,ρi)di(αi,ρi)− ∑
ω∈P

ν(ω)L > 0. (33)

Suppose (32) and (33) hold. From (33),λ ≡ maxi∈N ∑(αi ,ρi) λi(αi ,ρi) > 0. We can,

therefore, define a mixed strategyσi for each playeri such that, for all(αi ,ρi, i),

σi(αi,ρi)≡

{ λi(αi ,ρi)

λ
, if (αi ,ρi) 6= (α∗

i ,ρ∗
i );

1−∑(αi ,ρi) 6=(α∗
i ,ρ

∗
i )

λi(αi ,ρi)

λ
, otherwise.

Using the definition ofσi , we can rewrite (32) and (33) as

λ [πσi( ·)−µ( ·)]+ ∑
ω∈P

ν(ω) [−µ( ·)+µ( · |ω)] = 0 for eachi (34)

n

∑
i=1

λdi(σi)− ∑
ω∈P

ν(ω)L > 0. (35)
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Fix a contractw. Multiplying each (34) bywi (·), then summing over alli and all

(ã, ŷ) ∈ A×Y, and adding (35), we have

n

∑
i=1

λ

(

∑
(ã,ŷ)∈A×Y

[πσi(ã, ŷ)−µ(ã, ŷ)]wi (ã, ŷ)+di(σi)

)

+ ∑
ω∈P

ν(ω)

(

∑
(ã,ŷ)∈A×Y

[−µ(ã, ŷ)+µ(ã, ŷ|ω)]wi (ã, ŷ)−L

)
> 0.

This means that ifη cannot be enforced by anyw with L(η,w) ≤ L, then there must

existσ such that, for anyw with L(η,w) ≤ L,

vi(σi ,σ∗
−i ;wi)> vi(σ∗;wi)

for some playeri.

We prove (29) by showing that for allσ ∈ Σ, there exists a contractw such that

vi(σi ,σ∗
−i ;wi)−vi(σ∗;wi) ≤ 0 for all i andL(η,w) ≤ L. By Theorem 4(i) of Rahman

and Obara (2010), ifσ is either unprofitable or attributable, then it can be deterred

by a contract with total transfer summing to zero. It remainsto considerσ such that

πσ1 = · · ·= πσn and∑n
i=1di(σi)> 0. Sinceη is enforceable,πσi 6= µ.

Case 1. If there exists(ã, ŷ) such thatπσi (ã, ŷ) > 0 andµ(ã, ŷ) = 0, thenσ can

be deterred by a contractw that punishes every player severely whenever(ã, ŷ) occurs.

Clearly,L(η,w) = 0.

Case 2. Suppose thatπσi (·|ω) 6= µ (·|ω) for someω ∈ P. Then πσi(ã, ŷ|ω) >

µ (ã, ŷ|ω) for some(ã, ŷ) ∈ ω. We define a contractw by letting, for eachi,

wi(ã
′, ŷ′) =





−c, if (ã′, ŷ′) = (ã, ŷ);

−c·µ (ã, ŷ|ω) , if (ã′, ŷ′) /∈ ω;

0, otherwise.

ThenE[wi(ã′, ŷ′)|σ∗,ω ′] =−c·µ (ã, ŷ|ω) for all ω ′ ∈P. HenceL(η,w) = 0. Moreover,

vi(σi ,σ∗
−i ;wi)−vi(σ∗;wi) =−c· (πσi(ã, ŷ|ω)−µ (ã, ŷ|ω))πσi(ω)+d(σi)≤ 0,

whenc is large enough.
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Case 3. Suppose thatσ ∈ Q(η). Let ω solve maxω ′∈P
πσi (ω ′)
µ(ω ′) . We define a contract

w by letting, for eachi,

wi(ã, ŷ) =

{
− d(σi)

πσi (ω)−µ(ω) , if (ã, ŷ) ∈ ω;

0, otherwise.

ThenL(η,w) = ∑n
i=1d(σi)

πσ1(ω)−µ(ω)µ(ω) = ∑n
i=1 d(σi)

l(σ1)−1 and

vi(σi ,σ∗
−i;wi)−vi(σ∗;wi) =−

d(σi)

πσi(ω)−µ(ω)
· (πσi(ω)−µ(ω))+d(σi) = 0.
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