International Political Economy

Nobuhiro Hiwatari

2012 Winter Semester Graduate School of Public Policy University of Tokyo

1. BEYOND SYSTEM-LEVEL ANALYSIS 1.1 The Basic Question of IPE

o Why Economic Globalization Persists

- A Post WWII Phenomenon
 - The evolution and spread of open economic development (since the 1990s)
 - → Survived the Global Recession of 2008-09
- From Early 20th Century to the 1930s
 The Collapse of an open global economy

o International Political Explanations

 \rightarrow The Origin of IPE

- Structural Realist Theories

 Hegemonic Stability Theory
 Security Externality (Alliance) Theory
- Liberal Institutionalist Theory
- o Limits of System Level Analysis
 - Empirical challenges

1. BEYOND SYSTEM-LEVEL ANALYSIS 1.2 System Level Analysis: Realism

• Structural Realism (= Third Image)

o Anarchy (⇔ Hierarchy) and Unitary Actor
o Security dilemma and Relative gains

o Hegemonic Stability Theory

- International finance (⇔ Kindleberger)
 - ° "Beggar-thy-neighbor Policy" and financial stability
 - Hegemon = Provider of public goods
 - \circ Problems = public good provision
- International trade (⇔ Krasner)
 - When free trade benefits?
 - o Structure dependent free trade
 - Contributions and problems
- Beyond HST: Alliance Theory

 Polarity and Free Trade
 - Security externalities (⇔ Gowa)

o Limits of Realist IPE

- Absolute gains and relative gains debate
- Economic globalization sans hegemon

1. BEYOND SYSTEM-LEVEL ANALYSIS 1.3 System-Level Analysis: Institutionalism

o Complex interdependence (\Leftrightarrow Nye and Keohane)

➔ International Organization Policymaking

• Critique of realism

o Interdependence and bargaining power
o Issue analysis (⇔ Structural analysis)

o Liberal Institutionalism (⇔ Keohane)

→ Why International Institutions?

Anarchy and unitary actor (→ third image)

 Reiterated prisoners dilemma, Coase theorem, and information asymmetry

Role of international institutions/regimes

o Problems with Liberal Institutionalism

• Institutions and the distribution problem

• Institutions and compliance

• The selection bias and compliance problem

1. BEYOND SYSTEM-LEVEL ANALYSIS 1.4 Conflicting Evidence

- o Democratic peace theory (Russett, Oneal, etc.)
 - Kantian Tripod
 - Democratic dyads, commercial interdependence, and joint membership in international organizations
 - ➔ If so, trade and IO membership is dependent on domestic regime ⇔ inter-dependence/ institutionalism
 - Scope and limits
 - Scope Similarity with embedded liberalism (norms)
 - Criticism and problems cf. commercial peace theory

• **Democratic trade** (→ Milner and Mansfield)

- Democracies trade more
- Democracies enter more trade agreements
- \rightarrow What is the source of this democratic advantage?

1.2 Hegemonic Trade Theory: Trade

	Predicted effects of openness according to (direction of relationship)				
Goals	Larger relative size of country	Higher level of development of country			
Political power	+	+			
National income	_	system			
Economic growth	system	system			
Social stability	+	+			

Domestic Effects of Openness

Probability of an Open Trading Structure with Different Distributions of Potential Economic Power

			Size of States	
		RELATIVE	ELY EQUAL	VERY UNEQUAL
Level of		SMALL	LARGE	VERT UNEQUAL
Development	EQUAL	Moderate-High	Low-Moderate	High
of States	UNEQUAL	Moderate	Low	Moderate-High

Krasner's Hegemonic Stability Theory Framework (Lake 1993)

1.2 Polarity, Alliance and Trade

TABLE 1

Regression of Exports on GNP, Population, Distance, Alliances, and War, 1905-85

$\log X_{ij(t)} = \log A + B_1 \log Y_{i(t-1)} + B_2 \log Y_{j(t-1)}$

- + $B_3 \log P_{i(t-1)}$ + $B_4 \log P_{i(t-1)}$
- + $B_5 \log D_{ij(t-1)}$ + $B_6 \log BA_{ij(t-1)}$
- + $B_7 \log MA_{ii(t-1)}$ + $B_8 \log War_{ii(t-1)}$ + $\log z_{ii}$, (1)

	1	PERIOD O	F MULTI	POLARITY		PERIOD OF BIPOLARITY			
PARAMETER	1905	1913	1920	1930	1938	1955	1965	1975	1985
Intercept	-4.57	-8.79	57.21***	7.39	12.44*	34.81***	5.69	6.29	12.14**
	(7.88)	(9.99)	(14.74)	(5.06)	(6.19)	(8.19)	(5.17)	(4.25)	(4.88)
log GNP	.95*** (.17)	1.68*** (.23)	2.78*** (.34)	1.53*** (.14)	1.67*** (.20)	1.12*** (.26)	.28 (.26)	.83*** (.20)	.96** (.32)
log GNP _j	1.10***	.90***	2.17***	1.25***	1.57***	.93***	.44**	.55***	1.19**
	(.18)	(.25)	(.27)	(.14)	(.22)	(.25)	(.26)	(.21)	(.32)
log Population,	02 (.33)	95*** (.35)	-4.10*** (.83)	-1.21*** (.23)	-1.68*** (.34)	-1.88*** (.49)	.14 (.39)	68*** (.26)	-1.13** (.42)
log Population,	-1.21***	92***	-4.83***	-1.74***	-2.27***	-1.82***	38	45**	-1.42**
	(.27)	(.31)	(.59)	(.23)	(.32)	(.49)	(.39)	(.25)	(.40)
log Distance _{ij}	33***	06	.27	35***	06	01	12**	23***	28**
	(.09)	(.10)	(.13)	(.06)	(.09)	(.09)	(.06)	(.05)	(.07)
log Bilat. alliance _{ij}	37	57	.20	1.04***	30	3.02***	2.58***	2.07***	2.10**
	(.31)	(.36)	(.77)	(.42)	(.40)	(.55)	(.39)	(.32)	(.43)
log Multilat. alliance _{ij}	61 (.55)	31 (.72)	.96*** (.39)	_*	.48* (.35)	.86** (.46)	1.65*** (.33)	.99*** (.18)	.84** (.26)
log War _{ij}	-7.12*** (.61)	_b	1.55 (.72)	_ b	b	b	b	b	b
Adjusted R ²	.92	.71	.83	.86	.80	.78	.82	.82	.80
	39	39	37°	40	37°	41	40	41	41

Note: Entries are unstandardized regression coefficients with standard errors 42 observations minus the number of outliers. No multilateral alliances existed among the major powers in 1929. No wars between major powers were conducted during these years. No data on the Soviet Union's exports to Germany are available for 1920. No data on the Soviet Union's exports to Germany are available for 1938. 'p s _ 10 (one-tailed test); intercept p $\leq .10$ (two-tailed test). ''p $\leq .01$ (one-tailed test); intercept p $\leq .01$ (two-tailed test).

TABLE 2					
Regression of Exports on	Per Capita	GNP, Distance,	and Alliances,	Excluding the	Soviet Union, 1905–1985

	PER	LIOD OF MU	JLTIPOLAF	ALLA	PERIOD OF BIPOLARITY			
PARAMETER	1905	1913	1920	1938	1955	1965	1975	1985
Intercept	9.57*** (2.54)	3.60 (3.46)	2.68 (2.95)	3.17 (3.05)	10.51*** (1.85)	8.73** (3.48)	8.33*** (2.79)	7.78* (4.27)
log Per capita GNP,	1.12*** (.23)	1.76*** (.30)	1.88*** (.29)	1.41*** (.26)	.80*** (.21)	.79*** (.31)	.90*** (.21)	.69** (.30)
log Per capita GNP _j	.96*** (.23)	.69*** (.32)	.94*** (.28)	1.36*** (.26)	.51*** (.20)	.82*** (.30)	.78*** (.21)	1.15***
log Distance _{ij}	26** (.11)	.06 (.14)	21** (.10)	18** (.10)	14* (.10)	17* (.11)	21*** (.06)	32** (.09)
log Bilat. alliance _{ij}	41 (.39)	11 (.42)	.58 (.66)	21 (.62)	2.36*** (.49)	2.41*** (.51)	2.18*** (.32)	1.92*** (.44)
log Multilat. alliance _{ij}	61 (.63)	12 (.75)	1.06** (.35)	.33 (.41)	1.31*** (.53)	.93* (.55)	.97*** (.25)	.80*** (.31)
Adjusted R ²	.75	.63	.74	.78	.87	.80	.85	.81
N	28	28	28	28	29	30	28	28

Note: Entries are unstandardized regression coefficients with standard errors in parentheses. Years shown are year t in equation 2. For each year, there are 30 observations minus the number of outliers.

30 observations manus the number of outliers. $^{**}p \le .10$ (one-tailed test); intercept $p \le .10$ (two-tailed test), $^{**}p \le .05$ (one-tailed test); intercept $p \le .05$ (two-tailed test), $^{**}p \le .01$ (one-tailed test); intercept $p \le .01$ (two-tailed test).

POWER POLITICS AND INTERNATIONAL	
TRADE (GOWA AND MANSFIELD 1993)	

1.4 DEMOCRATIC PEACE THEORY

	Coefficient	Standard error of coefficient	Probability
Joint IGO memberships,-1	-0.008	0.003	.01
Democracy score,	-0.023	0.007	.002
Democracy score _H	0.017	0.007	.02
Dependence score _{t-t-1}	-21.087	12.296	.09
Trend in dependence	-3.915	1.770	.03
Three-year economic growth,	0.012	0.007	.10
Capability ratio	-0.0010	0.0003	.10
Allies	-0.245	0.103	.02
Contiguity	0.746	0.118	.000
Constant	-1.760	0.140	.000
Log likelihood function	-3210.2		
N	19,752		

TABLE 1. Involvement in militarized disputes: The pacific benefits of democracy, interdependence, and IGOs

$DISPUTE_{ij,t} = \beta_0 + \beta_1$	$* IGO_{ij} + \beta_2 * DEM_i$	$L + \beta_3 * DEM_H +$	$\beta_4 * DEPEND_L$
--------------------------------------	--------------------------------	-------------------------	----------------------

+ β_5 * $dDEPEND_H$ + β_6 * $GROWTH_L$ + β_7 * $CAPRATIO_{ij}$

+ $\beta_8 * ALLIES_{ij} + \beta_9 * CONTIG_{ij}$

TABLE 2. Joint IGO memberships as affected by militarized disputes, democracy, and interdependence

	Coefficient	Standard error of coefficient	Probability
Dispute involvement _{i-1}	-2.151	1.073	.05
Democracy score _L	0.604	0.063	.000
Dependence score _{L,t-1}	348.013	130.465	.01
Allies	7.503	0.742	.000
Distance	-0.0019	0.0001	.000
GDPPC ₁	0.0032	0.0002	.000
Constant	34.449	0.910	.000
Adjusted R2	0.63		
N	18,657		

 $IGO_{ij} = \beta_0 + \beta_1 * DISPUTE_{ij} + \beta_2 * DEM_L + \beta_3 * DEPEND_L$

 $+ \ \beta_4 * ALLIES_{\mathit{ij}} + \beta_5 * DISTANCE_{\mathit{ij}} + \beta_6 * GDPPC_{\mathit{L}}$

KANTIAN TRIPOD: DEMOCRACY, DEPENDENCE, INTER-GOVERNMENT ORGANIZATIONS (RUSSETT, ONEAL, DAVIS 1998)

2. SECOND IMAGE "REVISITED" 2.1 The Sources of Democratic Openness

Social Sources of Economic Openness
 Democratic Peace

• *Embedded liberalism* (= Ruggie)

• Political Sources of Economic Openness

- *Leadership survival* (= Survival theory)
 - → Why democracies provide (openness as)public goods
- Democratic institutions
 - → Why certain democracies are more open
 - Distribution
 - → Small State Corporatism (Katzenstein / Cameron)
 - Stability

→ Patterns of Democracy and Veto Players (Liphart / Tsebelis)

8

- Democratic competition
 - Transparency and consent
 - → Economic Voting and representation (spatial) theory

• Sources of International Democratic Advantage

- Democratic Advantage in reaching agreements
 → Two level games and consensus, veto players, and transparency
- Democratic Advantage in Credible Commitments
 - → Sources of Reliability, endurance, magnitude
 - ⇔ Compliance and self-selection

2. SECOND IMAGE "REVISITED" 2.2 Democratic Distinctiveness

o Social Sources

- Democratic peace theory (Russett, Oneal, etc.)
 - Kantian Tripod
 - Democratic dyads, commercial interdependence, and joint membership in international organizations
 - Scope Domestic origins and norms (constructivism)
 - Limits Cannot explain democratic diversity
 - Criticism and problems cf. commercial peace theory
- Embedded liberalism (Ruggie)
 - Historical Uniqueness
 - → Economic openness founded on domestic stability

• Pre-WWI	No IEOs	Superiority of external adjustment
• Interwar	No IEOs	Emergence of domestic factors
• Post WWII	IEOs	Superiority of domestic adjustment reinforced by international regimes

• Scope and Limits - same as Democratic Peace Theory

o Political Sources

- Selectorate theory (Bueno de Mesquita, Smith, etc.)
 - Leadership survival (= Size of selectorate and winning coalition)
 - Policy provision (= *public goods and private goods*)
 - \circ Large winning coalition \rightarrow more public goods, more challenges
 - Evidence (BdM and Smith 1999 vs. Quinn and Wooley 2001)
- → Empirical support for trade and Democracy (Mansfield et al. 2000, McGillivray and Smith 2004⇔ Souva et al. 2008)

2. SECOND IMAGE "REVISITED" 2.3 Democratic Diversity

• Democratic Institutions

- Distribution
 - Small State Corporatism (Katzenstein)
 - Industrial policy, proportional representation, social democracy
 - \rightarrow Corporatist state more open
 - Evidence
 - Market Distribution (Rodrik 1999)
 - State Redistribution (Cameron 1978, Rodrik 1998, Adsera and Boix 2002)
- Stability
 - Patterns of Democracy
 - Majoritarian vs. Consensus Democracies
 - $\circ \ Electoral \ systems/Government \ coalition/Market \ organization$
 - → consensus democracies more open/larger fiscal states
 - Evidence (Persson and Tabellini 2003, Iversen and Soskice 2006)
 - Veto player theory (Tsebelis)
 - Policy stability
 - Number, distance, and coherence of (institutional and political) veto players

10

o Democratic Competition

- → Transparency and consent
- Economic Voting
- Ideological Voting
 - Ideological Competition and Median Voter Theorem

2. SECOND IMAGE "REVISITED" 2.4 DEMOCRATIC ADVANTAGE

o International Negotiations

- *Two-level games* (Putnam)
 - Distribution issues and negotiations
 - Win-set and ratifying agent
 - Democratic advantages
 - Winning coalition, veto players, and transparency
 - Transparency Empirical support
 - → Trade and Democracy (Mansfield et al. 2000, McGillivray and Smith 2004⇔ Souva et al. 2008)

o International Institutional Cooperation

- Credibility of Commitment/Compliance
 - Democratic Advantages
 - \rightarrow Winning coalition, veto players, and transparency
 - Commitment and Compliance ⇔ Liberal Institutionalism
- International Obligations and Domestic Commitments

2.2 DEMOCRATIC DISTINCTIVENESS DEMOCRATIC PEACE THEORY

TABLE 1. Involvement in militarized disputes: The pacific benefits of democracy, interdependence, and IGOs

	Coefficient	Standard error of coefficient	Probability
Joint IGO memberships,-1	-0.008	0.003	.01
Democracy score _L	-0.023	0.007	.002
Democracy score _H	0.017	0.007	.02
Dependence score _{I-1-1}	-21.087	12.296	.09
Trend in dependence	-3.915	1.770	.03
Three-year economic growth,	0.012	0.007	.10
Capability ratio	-0.0010	0.0003	.10
Allies	-0.245	0.103	.02
Contiguity	0.746	0.118	.000
Constant	-1.760	0.140	.000
Log likelihood function	-3210.2		
N	19,752		

 $\text{DISPUTE}_{ij,i} = \beta_0 + \beta_1 * \text{IGO}_{ij} + \beta_2 * \text{DEM}_L + \beta_3 * \text{DEM}_H + \beta_4 * \text{DEPEND}_L$

+ β_5 * dDEPEND_H + β_6 * GROWTH_L + β_7 * CAPRATIO_i

+ $\beta_8 * ALLIES_{ij} + \beta_9 * CONTIG_{ij}$

TABLE 2. Joint IGO memberships as affected by militarized disputes, democracy, and interdependence

	Coefficient	Standard error of coefficient	Probability
Dispute involvement _{i-1}	-2.151	1.073	.05
Democracy score _L	0.604	0.063	.000
Dependence scoreL t-1	348.013	130.465	.01
Allies	7.503	0.742	.000
Distance	-0.0019	0.0001	.000
GDPPC ₁	0.0032	0.0002	.000
Constant	34,449	0.910	.000
Adjusted R2	0.63		
N	18,657		

 $IGO_{ij} = \beta_0 + \beta_1 * DISPUTE_{ij} + \beta_2 * DEM_L + \beta_3 * DEPEND_L$

+ $\beta_4 * ALLIES_{ij} + \beta_5 * DISTANCE_{ij} + \beta_6 * GDPPC_L$

KANTIAN TRIPOD: DEMOCRACY, DEPENDENCE, INTER-GOVERNMENT ORGANIZATIONS (RUSSETT, ONEAL, DAVIS 1998)

2.2 DEMOCRATIC DISTINCTIVENESS DEMOCRATIC PEACE IOS

3. Only certain types of IGOs, defined by function and by the global/regional distinction, may have significant conflict-reducing effects. For example, global organizations with nearly universal membership may have no discernible effect, but others which, though global, have more restricted membership [for example, the General Agreement on Tariffs and Trade (GATT), World Trade Organization (WTO), World Bank, and International Monetary Fund] may exclude states already in highly conflictual relationships with one or more of their members, and so, may more effectively inhibit violent conflict among those who are members.

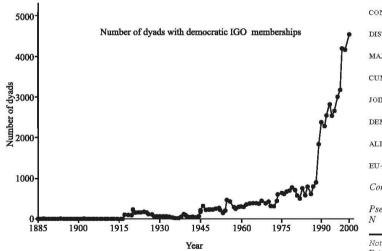


FIGURE 1. Trends in democratic IGO membership over time

 TABLE 2. The effects of democracy, interdependence, and IGO membership on fatal militarized disputes, 1885–2000

Variable	Base model	Democratic dyads	Allies	Base model ¹	EU/EFTA
DEMOCRATIC IGOS	-0.079**	-0.072**	-0.079**	-0.073***	-0.073***
	(0.037)	(0.036)	(0.037)	(0.027)	(0.044)
DEMOCRACY ₃	-0.063***	-0.052 ***	-0.063***	-0.058***	-0.063***
	(0.014)	(0.017)	(0.014)	(0.014)	(0.014)
DEPENDENCES	-52.011***	-52.110***	-51.915 ***	-51.705 * * *	-51.670***
	(18,272)	(18,407)	(18.051)	(18.047)	(18, 229)
CONTIGUITY	1.635***	1.632***	1.638***	1.631***	1.635***
	(0.263)	(0.264)	(0.270)	(0.264)	(0.263)
DISTANCE	-0.693 * * *	-0.695 ***	-0.693 ***	-0.690 * * *	-0.694 ***
	(0.104)	(0.104)	(0.104)	(0.104)	(0.104)
MAJOR POWER	1.348***	1.347***	1.348***	1.361***	1.350***
	(0.190)	(0.191)	(0.191)	(0.191)	(0.189)
CUMULATIVE MIDS	0.118***	0.117***	0.117***	0.119***	0.117***
	(0.015)	(0.015)	(0.015)	(0.014)	(0.014)
JOINT IGOS	-0.001	-0.002	-0.001	0.001	-0.001
	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)
DEMOCRATIC DYAD	1	-0.393* (0.301)			
ALLIES		_	-0.011	s <u></u> s	
			(0.183)		
EU-EFTA	_	_	_	_	-0.480
					(1.300)
Constant	-0.939	-0.846	-0.942	-0.961	-0.938
	(0.836)	(0.853)	(0.833)	(0.839)	(0.836)
Pseudo R ²	.27	.27	.27	.27	.27
N	454,380	454,380	454,380	454,380	454,380

Notes: Parameters are estimated using logistic regression, after including a cubic spline function with two knots. Entries in parentheses are Huber standard errors clustered on the dyad. All significance tests are one-tailed: *** $p \le 0.01$; ** $p \le 0.05$; * $p \le 0.1$.

1. DEMOCRATIC IGOS includes IGOs with composite democracy scores at or above 6.

DEMOCRATIC IOS AND PEACE (RUSSETT AND PEVEHOUSE 2006)

2.2 DEMOCRATIC DISTINCTIVENESS SELECTORATE THEORY EVIDENCE

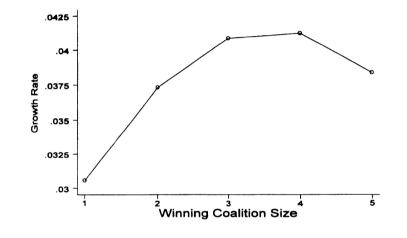
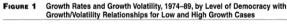


Figure 1: Winning Coalition Size and Economic Growth

 TABLE 2

 Cox Proportional Hazards Results of the Effect of Institutions on Leader Survival: All Cases and When Policy Performance Is Poor

		All Cases	When Policy Performance Is Poor				
	Hazard Ratio	Probability (one-tailed)	Hazard Ratio	Probability (one-tailed,			
W	1.09	0.00	1.08	.11			
S	0.91	0.02	0.75	.02			
Ν	9,502		915				


Selectorate and growth Bueno de Mesquita et al. (1999)

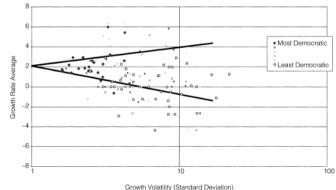

2.2 Democratic Distinctiveness

TABLE 4 Democracy Is a Robust Determinant of the Volatility of Economic Growth

Variable	Model 1	Model 2	Model 3	Model 4
Prior Volatility (logged, 1963–1973)	.171**	.256***	.241*	.147
	(.073)	(.072)	(.127)	(.086)
Initial GDP per capita, 1973 (log)	.029		.260***	.341**
	(.073)		(.085)	(.095)
Investment (logged)	200		356	.203
(INV)	(.175)		(.282)	(.185)
Population Growth	.091			.122*
(GPO)	(.058)			(.061)
Secondary-School enrollment (log)	.093			.054
(SEC)	(.077)			(.076)
Primary-School enrollment (log)	.014			149
(PRI)	(.107)			(.105)
Trade Openness (log, Imports +	.083	.260**	.043	.260*
Exports as a Percentage of GDP)	(.075)	(.113)	(.125)	(.101)
Volatility of Government Expenditures	.080***	244	.063***	.187**
(log, as % of GDP)	(.016)	(0.151)	(.019)	(.053)
Index of Democracy, 1973	787***	524***	673**	631**
	(.234)	(.197)	(.285)	(.214)
Change in Index of Democracy	-0.689**	548**	455	432*
ΔDemocracy (1974–1989)	(.030)	(.279)	(.373)	(.214)
Average Annual Growth (GDP7489)		090***		0.002
		(.026)		(0.035)
Growth, 1974–89, Squared		.012*		.009
		(0.006)		(.006)
Volatility in Terms of Trade (log)			.317***	
(VARTERMS)			(.093)	
Share of Primary Products as % of			1.694**	
Exports (SXP)			(.717)	
Government Consumption (log)				020
(GOV)				(.012)
Growth of Government Share				.011
(GSG)		0.47		(.015)
Revolutions/coups		.047		010 (.225)
(REVC)		(.215)		(.220)
Political Instability, 1974–89 (Feng, Kugler, and Zak 2000)		1.243 (1.768)		
		(1.700)		.308*
Africa dummy (AFRICA)				(.142)
Latin America dummy				.368*
(LAAM)				(.144)
Growth of domestic credit				001
(GDC)				(.001)
Standard Deviation of				070
Domestic credit (STDC) (log)				(.062)
Export-share growth				.042**
(XSG)				(.012)
Intercept	2.369***	2.203***	.314	-1.69
meroepi	(0.834)	(.519)	(1.201)	(1.01)
Observations	105	96	45	88
Adj. R ²	.47	.48	-55	.59

DEMOCRACY AND GROWTH

Democracy, Growth, and Economic Volatility (Quinn and Woolley 2001)

15

(Standard errors are listed below the coefficients) * < 1, ** < .05, *** < .01 Notes: Coefficients were estimated using ordinary least squares regression (OLS), with a Heteroskedasticity-Consistent Covariance Matrix (White 1984).

2.3 Democratic Diversity Small State Corporatism

TABLE VII Tests of Some Possible Channels of Causation from Democracy to Manufacturing Wages

	Bench- mark	Ru		Political instability	lb		nker inghights		co	Political mpetitice rticipatio	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
democracy (Freedom											
House)	0.60*	0.43**	0.73^{*}	0.64**	0.59^{*}	0.61*	1.58^{*}	1.56°			
	(0.16)	(0.21)	(0.23)	(0.24)		(0.18)		(0.25)			
ICRG index		0.01									
bureaucratic											
efficiency			-0.01 (0.03)								
pinstab				0.04							
				(0.45)							
unionization											
ratio					-0.16		0.44^{***}				
					(0.21)		(0.21)				
basic worker											
rights						0.00		0.11^{*}			
						(0.03)		(0.02)			
political rights									1.46^{++}		
									(0.63)		
civil liberties									0.31		
									(0.55)		
competitiveness											
of political										0.57^{**}	
participation										(0.28)	(0.17)
competitiveness										0.00	
of executive recruitment										-0.38 (0.27)	
openness of										(0.21)	
executive										0.50^{*}	
recruitment										(0.16)	
constraints on											
the chief		*								0.10	
executive										(0.27)	
N	93	80	59	60	53	92	27	27	27	89	89
Root MSE	0.31	0.30	0.31	0.36	0.21	0.32	0.20	0.14	0.21	0.30	0.31
R^2	0.93	0.94	0.94	0.91	0.97	0.93	0.93	0.98	0.97	0.94	0.93

All regressions (except these in columns (8)–(11)) use WBLMDB/UNIDO wage data for 1985–1989 and include a constant term, log MVA per worker, log per capita GDP, log price level and dummies for East Asia, Latin America, sub-Saharan Africa, socialist countries, and OECD members (coefficient estimates not shown). Regressions in columns (8)–(11) use BLS data for 1990–1994. Robust standard errors are reported in

perentises. Levels of statistical significance are indicated by asterisks: * 99 percent; ** 95 percent; ** 90 percent;

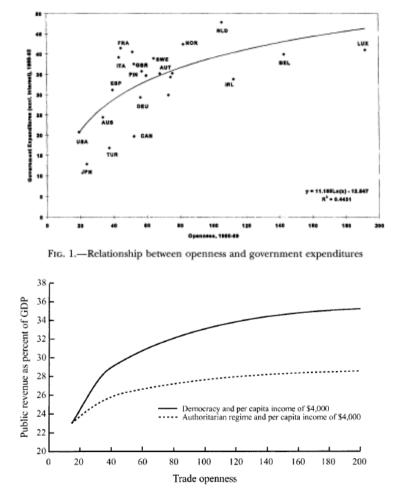
TABLE IV											
DEMOCRACY	AND	WAGES:	PANEL	RESULTS	USING	WBLMDB/UNIDO	DATA				
			0	1960 - 199	4)						

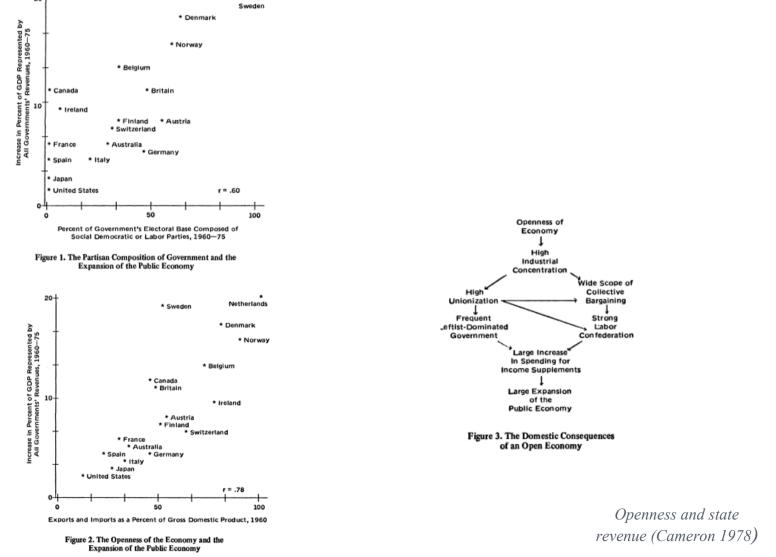
	L	Log wages (manuf.)				Log factor share of labor (manuf.)				
Democracy	OLS (1)	Fixed effects (2)	OLS (3)	Fixed effects (4)	OLS (5)	Fixed effects (6)	OLS (7)	Fixed effects (8)		
Freedom House index	0.28*	0.15** (0.07)			0.41* (0.07)	0.14** (0.07)				
Polity III index			0.16* (0.04)	0.12* (0.04)			0.20* (0.04)	0.11** (0.05)		
Log MVA/worker	0.77* (0.03)	0.75* (0.03)	0.78* (0.03)	0.74° (0.03)						
Log GDP/cap.	0.27* (0.03)	0.34 [*] (0.06)	0.23* (0.03)	0.34* (0.05)	0.16* (0.03)	0.20* (0.06)	0.13* (0.03)	0.17* (0.05)		
Log price level	0.30* (0.06)	0.20* (0.05)	0.27* (0.05)	0.26* (0.04)	0.12** (0.05)	0.09*** (0.05)	$\begin{array}{c} 0.12^{*} \\ (0.04) \end{array}$	0.12* (0.04)		
Period dummies Country	yes	yes	yes	yes	yes	yes	yes	yes		
dummies N	no 441	yes 441	no 548	yes 548	no 441	yes 441	no 548	yes 548		
R^2	0.94	0.99	0.95	0.98	0.43	0.87	0.44	0.83		

Estimated using five-year averages covering 1960–1964, 1965–1969, 1970–1974, 1975–1979, 1980–1984, 1985–1989, and 1990–1994. Regressions using Freedom House index do not cover 1960–1964 and 1985–1969. OLS regressions include a constant term and dummies for East Asia, Latin America, sub-Saharan Africa, socialist countries, and OECD members (coefficient estimates not shown). Robust standard errors are reported in parentheses for OLS regressions. Levels of statistical significance are indicated by asterisks: * 99 percent; * 95 percent; *** 90 percent.

> Democracy and Market Distribution (Wages) (Rodrik 1999)

2.3 DEMOCRATIC DIVERSITY SMALL STATE CORPORATISM




FIGURE 2. Public revenue as a function of trade openness and political regime

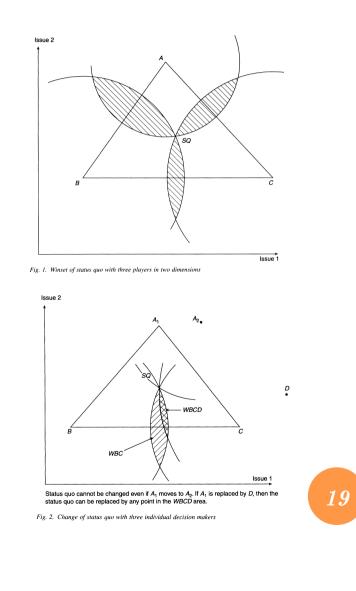
Openness and the fiscal size of the state: OECD countries (Rodrik 1998)

Openness, political regimes, and the revenue size: Simulation (Adsera and Boix 2002)

2.3 DEMOCRATIC DIVERSITY SMALL STATE CORPORATISM

* Netherlands

*


20+

2.3 DEMOCRATIC DIVERSITY INSTITUTIONAL ANALYSIS - VETO POWER THEORY

PROPOSITION 1: As the number of players who are required to agree for a movement of the status quo increases, the winset of the status quo does not increase (i.e., policy stability does not decrease).

PROPOSITION 2: As the distance of players who are required to agree for a movement of the status quo increases along the same line, the winset of the status quo does not increase (i.e., policy stability increases).

PROPOSITION 3: As the size of the yolk of collective players who are required to agree for a movement of the status quo increases, the area that includes the winset of the status quo increases (i.e., policy stability decreases).

2.3 DEMOCRATIC DIVERSITY INSTITUTIONAL STABILITY

TABLE 2. Effect of institutions and leadership turnover on dyadic trade (U.S. dyads only)

CONFIGENS 30210 30214 30219	Fixed-effect (dyad) panel regression (with variance modeled)	Dependent	ariable: w(TRADRARS), who and state B , and t re		ad U.S.	
		Model 1	Model 2	Model 3	Model 4	
Lataneza, (.007) (.007) (.007) (.007) (.007) Allanameza, 044** 055** .044* .055* .046 .000** ws (.018) (.019) (.019) (.019) (.019) (.019) ws 022 027 035* .046 .000** ws (.027) (.018) (.017) (.018) (.027) Aws (.017) (.018) (.017) (.019) .039 (Aws) ² (.027) .00018** 00018** 00018** 00018** 00019** .00007) (.00007) (.00007) (.00007) (.00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00007) .00019** .0019** .0019** .0019** .0019** .0019** .0019** .0019** .0019** .0019** .0019** .0019** .0019** .0019** <t< th=""><th></th><th>876**</th><th>876**</th><th>868**</th><th>867**</th><th></th></t<>		876**	876**	868**	867**	
ALEARMER*wn Dd4* D55* Dd6 D66* ws 024 032* 027 035* Aws .039 .039 .039 Aws .030 .029 .047 ConvactA .00018** .00017* .00017* ConvactB .00007* .00018** .00017* .00017* ConvactB .00007* .00007* .00007* .00017* .00017* ConvactB .00007* .00007* .00007* .0001		(.007)	(.007)	(.007)	(.007)	
ws 024 027 056* Δwm (D17) (D18) (D17) (D19) (Δwm) ²	ΔLEADERB _t *wn	.044+	.055*	.046	.060**	
Δwm (J36) (J39) (J29) (Δwm) ² 055 047 ConvruentA -00018** -00014** -0001** ConvruentB -00010** -00019** -00019** -00019** Lx(conv) 366** 366** 403** 406** (ConvruentB -00010** -0011** -0019** -0019** Lx(conv) 366** 366** 403** 406** (ConvruentB (ConvruentB) (D46) (O446) (O45) (D45) Lx(conv) 135** 154** 169** 171** 169** Lx(conv) (D15) (D15) (D16) (D46) (D44) (vrons) 965** 963** 160** 152** trade (D15) (D15) (D15) (D16) (D47) (D03) yystem equation (D35) (D33) (D33) (D33) (D33) (D31) AlaxossB, *ws 062** 060** 061** .000 <	WB	024	032*	027	036*	
(550) (646) (645) CONTINCTA 00018** 00018** 00018** 0001* H]: 1 CONTINCTB 00010** 00018** 0001** 000** 4.00** .410** .411** .111**		(227)	.036	()	.039	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(.050)		(.048)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(.00007)	(80000.)	(.00007)	(.00007)	HI: I tion s
$\begin{array}{cccc} 153^{++} & 1.54^{++} & 1.69^{++} & 1.71^{++} \\ (015) & (015) & (016) & (016) \\ (145) & (-107)^{++} & -1.081^{++} & H2: I \\ (150) & (150) & (145) & (-145) & (-145) \\ (150) & (-150) & (-145) & (-145) & (-145) & (-145) \\ (150) & (-150) & (-145) & ($		(.0005)	(.00054)	(.00051)	(.00051)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LN (GDPII)	.153**	.154**	.169**	.171**	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ln(popa)	965**	963**	-1.070**	-1.081++	H2: L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LN (POPE)	.153**	143**	149**	152**	trade. systen
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						H3: So system
$\begin{array}{llllllllllllllllllllllllllllllllllll$						a signi
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ΔLEADERB _t			015	024*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ΔLEADERB _t *wn			010	.004	H4: R
$ \begin{array}{c} (035) \\ \mbox{LaGGED TRADE LN}({\rm trade}_{1,54}) &0044^{++} &005 \\ (.0017) & (.002) \\ \mbox{Constant} & 245^{++} & 2.49^{++} \\ (.007) & (.007) & (.007) \\ \mbox{servations} & 4.855, 143 \mbox{dyads} & 4.855, 143 \$					(.021)	ship ti
$ \begin{array}{c} (0017) & (.002) \\ 2.45^{++} & 2.49^{++} \\ (.007) & (.007) $				- 0044++	(.035)	nonsi
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				(.0017) .245**	(.002) .249**	
test (β equation): Δ LEADERB _t +WB = 0 and Δ LEADERB _t = 0 F(2,4702) = 3.27 F(2,4700) = 4.18 chi ² (2) = 6.60 chi ² (2) = 9.01 chi ² (2) chi ²		F(1,4702) = 0.00	F(1,4700) = .07	4,855, 143 dyads chi ² (1) = .05	4,855, 143 dyads chi ² (1) = 0.25	
	est (β equation): Δ LEADER B_t *wB = 0 and Δ LEADER B_t =	F(2,4702) = 3.27	F(2,4700) = 4.18	chi ² (2) = 6.60	chi ² (2) = 9.01	

H1: Institutional effects: Large coalition states are more open than small coalition states and hence, all else equal, have greater trade flows.

H2: Leadership dynamics: Leadership turnover in a small coalition system reduces trade. The impact of leadership turnover on trade is smaller in large coalition systems.

H3: Sour relations: Relative to small coalition systems, large winning coalition systems are less likely to have poor relations with trading partners (measured as a significant decline in trade relative to recent historical trading patterns).

H4: Restoration of cooperation: If relations between states are poor then leadership turnover in a small winning coalition system is more likely to restore relations than leadership change in large coalition systems.

> Leadership turnover and trade (McGillivary and Smith 2004) 20

Note: Standard error in parentheses. Pr. - probability. ** significant at 1% level in one-tailed test; * significant at 5% in a one-tailed test.

2.3 DEMOCRATIC DIVERSITY INSTITUTIONAL TRANSPARENCY

Economies, and War,	Measure of Regime Type							
	Jaggers and	Gurr (1995)	Alvarez et al. (1996)					
Variable	(1)	(1A)	(2)	(2A)				
log β ₀	17.274*** (3.058)	17.688*** (3.057)	22.550*** (3.166)	23.263 (3.175)				
$\log(GDP_i \times GDP_j)$.512*** (.039)	.512*** (.039)	.580*** (.044)	.582 (.044)				
$log(POP_i \times POP_j)$	937*** (.080)	943*** (.080)	-1.211*** (.083)	-1.232 (.084)				
log(DIST _{ij})	759*** (.014)	758*** (.014)	778*** (.014)	777 (.014				
MIXED _{ij}	188*** (.035)	233*** (.039)	111*** (.025)	134 (.027				
AUT _{ii}	.098 (.065)	.036 (.069)	053 (.051)	075				
OTHER _{ij}	088* (.039)	141*** (.043)	_	_				
DEMZ _{ij}	_	142** (.053)	_	120 (.043				
ALLY _{ij}	.119* (.052)	.115* (.052)	.184*** (.051)	.180				
PTA _{ij}	.527*** (.039)	.521*** (.039)	.473*** (.040)	.470				
MP _{ij}	.548*** (.136)	.548*** (.135)	.618*** (.136)	.620				
$ALLY_{ij} imes PTA_{ij}$.535*** (.066)	.537*** (.067)	.618*** (.066)	.620				
$ALLY_{ij} imes MP_{ij}$.179** (.068)	.182** (.068)	.052 (.067)	.050 (.067				
$PTA_{ij} \times MP_{ij}$	476*** (.068)	483*** (.068)	518*** (.068)	522				
GATT _{ij}	.074 (.038)	.072 (.038)	.126** (.040)	.125				
COL _{ij}	1.682*** (.085)	1.684*** (.085)	1.780*** (.087)	1.787 (.087				
COM _{ii}	1.033*** (.095)	1.031*** (.095)	.855**** (.117)	.847 (.117				
VAR _{ij}	-6.463*** (.107)	-6.447*** (.107)	-6.556*** (.110)	-6.562 (.110				
agged log (X _{ij})	.855*** (.014)	.855*** (.014)	.946*** (.014)	.946 (.014				
72	.53	.53	.55	.55				
v	33,116	33,116	30.480	30,480				

$\log(X_{ij}) = \log \beta_0 + \beta_1 \log(GDP_i \times GDP_j)$
+ $\beta_2 \log(POP_i \times POP_j) + \beta_3 \log(DIST_{ij})$
+ $\beta_4 MIXED_{ij} + \beta_5 AUT_{ij} + \beta_6 OTHER_{ij} + \beta_7 ALLY_{ij}$
+ $\beta_8 PTA_{ij}$ + $\beta_9 MP_{ij}$ + $\beta_{10}(ALLY_{ij} \times PTA_{ij})$
+ $\beta_{11}(ALLY_{ij} \times MP_{ij})$ + $\beta_{12}(PTA_{ij} \times MP_{ij})$
+ $\beta_{13}GATT_{ij}$ + $\beta_{14}COL_{ij}$ + $\beta_{15}COM_{ij}$ + $\beta_{16}WAR_{ij}$
+ β_{17} lagged log (X_{ij}) + log z_{ij} . (2)

Democracy and Exports (Mansfield et al. 2000)

2.3 DEMOCRATIC DIVERSITY

Table 3. Reforms and Democracy, Robustness to Controls

Dependent variable: reform in (country, sector, year)											
	(1)	(2)	(3)	(4)	(5)	(6)					
Lagged democracy	0.008**	0.016***	0.041***	0.009***	0.011***	0.038***					
Lagged level of index	-0.161***	-0.223***	-0.427***	-0.149***	-0.192***	-0.421***					
Lagged crisis (inflation>40)	-0.003					-0.006					
Lagged real devaluation	0.004**					-0.007					
Lagged public expenditure to GDP		0.000				-0.001					
Lagged bureaucratic quality			0.002			0.003					
Lagged tertiary enrollment			0.018			0.003					
Lagged reforms in geographical neighbor				0.056***		0.072					
Lagged dummy for left					0.002	-0.002					
Lagged dummy for presidential					-0.002	0.005					
Observations	18,245	13,176	7,027	19,851	16,762	6,019					

Note. The estimators are within estimators and allow for first-order autoregressive disturbance term. All regressions control for country sector, year fixed effects and country*sector and sector*year interactions. ***, ** and * denote statistical significance at 1, 5 and 10 percent respectively.

Dependent variable: reform in (country, year)								
	(1)	(2)	(3)	(4)	(5)	(6)	Ø	(8)
	Finance	Cap. Acc.	Prod. Mkt	Agricult.	Labor	Fiscal	Trade	Curr. Acc.
Lagged democracy	0.067+++	0.182***	-0.028	0.202***	0.056++	0.033	0.075***	0.167+++
Lagged level of index	-0.379***	-0.521***	-0.291***	-0.558***	-0.826+++	-0.920***	-0.420***	-0.540***
Lagged crisis (inflation>40)	0.019*	-0.042*	-0.001	-0.016	0.008	0.004	0.002	0.017
Lagged real devaluation	-0.007	0.024	-0.016	-0.039*	-0.003	0.007	0.006	-0.004
Lagged public expenditure to GDP	0.002	0.002	0.002	0.000	0.000	-0.001	-0.003+++	0.000
Lagged bureaucratic quality	0.014+++	0.022*	0.012	-0.01	-0.011*	-0.001	0.012++	0.022**
Lagged tertiary enrollment	-0.038	0.057	0.117	-0.145	0.112**	0.017	-0.007	0.05
Lagged reforms in geographical neighbors	-0.01	0.257*	0.061	-0.147	-0.016	-0.028	0.228++	0.012
Lagged dummy for left	-0.003	-0.008	-0.007	-0.005	-0.007	0.004	-0.001	0.000
Lagged dummy for presidential	0.037*	0.026	0.039	0.042	0.075***	-0.024	0.046++	0.015
Observations	786	786	824	807	525	824	857	610

Table 5. Reforms and Democracy: By Reform

Note. The estimators are within estimators and allow for first-order autoregressive disturbance term. All regressions control for country and year fixed effects. ***, ** and * denote statistical significance at 1, 5 and 10 percent respectively.

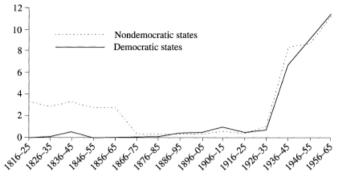
> Democracy and Reforms (Giuliano 2009)

2.4 DEMOCRATIC ADVANTAGE INTERNATIONAL COOPERATION

H1: Jointly democratic dyads will engage in comparatively high levels of cooperation.

H2: Jointly autocratic dyads will engage in higher levels of cooperation than dyads composed of one democracy and one autocracy.

H3: Dyads composed of one democracy and one autocracy will find the impediments to cooperation strongest; they will engage in lower levels of cooperation than states with similar internal structures.


Table 1. Regime Type and International Cooperation, 1953-1978
Unit of Analysis: Dyad-Year

Independent Variable	Model 1 Average Level of Cooperation	Model 2 Cooperation (1 = Yes; 0 = No)	Model 3 Average Level of Cooperation if Cooperation > 0
Jointly Democratic Dyad	3.108** (0.408)	0.606** (0.101)	2.847** (0.237)
Jointly Autocratic Dyad	3.062** (0.275)	0.410** (0.077)	1.335** (0.166)
Mixed Regime Type Dyad	2.180** (0.255)	0.311** (0.059)	0.563** (0.174)
Jointly Wealthy Dyad	0.890* (0.394)	0.225* (0.098)	0.616** (0.192)
Jointly Stable Dyad	0.728** (0.167)	0.187** (0.034)	0.271* (0.130)
Shared Alliance	4.553** (0.361)	0.542** (0.082)	1.541** (0.159)
Constant	3.523	-0.455	10.847
N	22,320	22,320	11,815

Note: Each cell contains the estimated coefficient with its associated standard error listed in parentheses below. **indicates statistical significance at the .001 level. *indicates statistical significance at the .05 level.

Regime type and international cooperation (Leeds 1999)

2.4 DEMOCRATIC ADVANTAGE INTERNATIONAL ALLIANCE

Decade FIGURE 1. Average alliance density per decade, 1816–1965

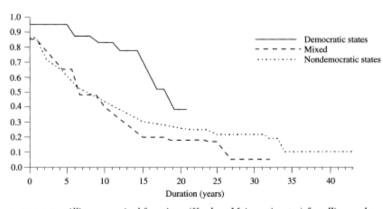


FIGURE 2. Alliance survival functions (Kaplan–Meier estimates) for alliances by treaty (reduced model 1)

Regime type and alliance density (Gaubatz 1996

2.4 DEMOCRATIC ADVANTAGE INTERNATIONAL AGREEMENTS

 $PTA_{ij} = \beta_0 + \beta_1 REG_i + \beta_2 REG_j + \beta_3 GDP_i + \beta_4 GDP_j + \beta_5 \Delta GDP_i \quad (4)$

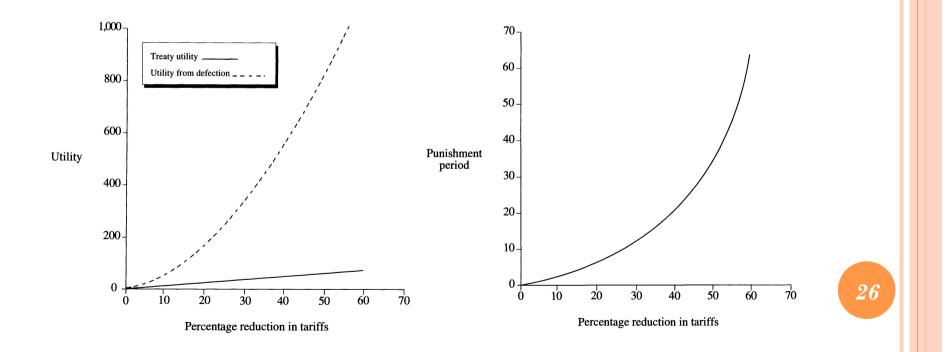
- $+ \beta_{6}\Delta GDP_{j} + \beta_{7}TRADE_{g} + \beta_{8}DISPUTE_{g} + \beta_{9}COL_{g}$
- $+ \beta_{10}ALLY_{g} + \beta_{11}DISTANCE_{g} + \beta_{12}GATT_{g}$

+ β_{13} HEGEMONY + e_{ij} .

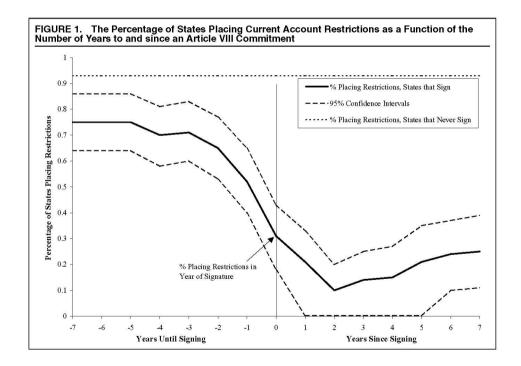
TABLE 1. Effects of regime type, GDP, the change in GDP, trade, military disputes, colonial relations, alliances, distance, the GATT, and hegemony on PTA formation, 1951–1992

Variable	(1)	(2)	(3)	(4)
Intercept	7.315**	7.223**	6.847**	7.212**
	(11.85)	(11.64)	(11.82)	(11.54)
REG,	0.038**	0.038**	0.035**	0.038**
	(8.89)	(8.80)	(8.84)	(8.93)
REG	0.035**	0.035**	0.032**	0.035**
,	(8.47)	(8.40)	(8.15)	(8.51)
GDP,	-4.84×10^{-10}	-3.29×10^{-10}	-7.75×10^{-10}	-4.89×10^{-10}
	(-3.29)	(-3.47)	(-4.26)	(-3.34)
GDP _i	-3.84×10^{-10}	-2.26×10^{-10}	-6.94×10^{-10}	-3.88×10^{-10}
,	(-2.39)	(-2.16)	(-4.17)	(-2.43)
ΔGDP_i	4.72×10^{-9}		6.41×10^{-9}	4.63×10^{-9}
	(1.28)		(1.55)	(1.26)
ΔGDP_i	4.85×10^{-9}		6.88×10^{-9}	4.77×10^{-9}
,	(1.71)		(2.04)	(1.69)
TRADE	-1.21×10^{-7}	-1.23×10^{-7}	()	-1.18×10^{-7}
	(-1.53)	(-1.56)		(-1.52)
DISPUTE	-0.740	-0.734	-0.620	
	(-1.91)	(-1.89)	(-1.64)	
COLii	1.338**	1.327**	1.356**	1.324**
9	(8.74)	(8.73)	(8.62)	(8.45)
ALLY	0.665**	0.663**	0.645**	0.673**
9	(9.70)	(9.69)	(9.34)	(9.73)
DISTANCE _{ii}	-0.731**	-0.730**	-0.681**	-0.717**
	(-17.51)	(-17.47)	(-20.20)	(-16.62)
GATT _{ii}	0.391**	0.389**	0.376**	0.396**
9	(6.05)	(6.03)	(5.79)	(6.12)
HEGEMONY	-53.75**	-53.07**	-52.29**	-53.84**
	(-14.92)	(-14.73)	(-14.68)	(-14.93)
χ^2	1915.28**	1906.12**	1866.84**	1911.48**
Log likelihood	-7146.54	-7147.73	-7173.51	-7149.97

Note: These parameters are estimated using logistic regression, after including a natural spline function with three knots. Figures in parentheses are asymptotic z-statistics computed using Huber standard errors. In each model, N = 223,568.


** $p \leq .001$. Two-tailed tests are conducted for all estimates.

* $p \leq .05$. Two-tailed tests are conducted for all estimates.


Democracy and trade agreements (Mansfield et al. 2000)

2.4 DEMOCRATIC ADVANTAGE TREATY COMPLIANCE

Its message is that (1) compliance is generally quite good; (2) this high level of compliance has been achieved with little attention to enforcement; (3) those compliance problems that do exist are best addressed as management rather than enforcement problems; and (4) the management rather than the enforcement approach holds the key to the evolution of future regulatory cooperation in the international system

2.4 DEMOCRATIC ADVANTAGE COMPLIANCE AND DOMESTIC COMMITMENTS

TABLE 1. Results of Analysis of Current Account Restrictions as a State Approaches an Article VIII Commitment			
ndependent Variables Standard Probit Model			
Lead 4 ^a	473***		
	(.116)		
Year of Signature	931***		
	(.242)		
Article VIII Signatory	494***		
	(.083)		
Terms of Trade Volatility	.183***		
	(.054)		
Balance of Payments/GDP	006*		
	(.003)		
Reserves/GDP	.357*		
	(.179)		
GDP Growth	012*		
	(.006)		
Use of IMF Credits	.364***		
	(.078)		
Years since Last Restriction	034**		
	(.012)		
0 Years since Last Restriction	2.608***		
1 Year since Last Restriction	(.128) .384*		
T fear since Last Restriction			
Constant	(.180) —1.726***		
Constant	(.218)		
Number of Observations	3,100		
Log Likelihood	-693.440		
Note: Figures are probit coefficien			
in parentheses. Dependent variab			
current account in year t, and 0 if			
^a Lead 4 equals 1 if state will sign /	Article VIII in next 1 to 4 years		
and 0 otherwise. *p < 0.05; **p <	: 0.01; *** <i>p</i> < 0.001.		
	10 980		

2.4 DEMOCRATIC ADVANTAGE INTERNATIONAL AGREEMENTS AND DOMESTIC COMMITMENTS

 Table 2
 The maximum

 likelihood estimates of the ordered probit model of all countries

Hypothesis 1 As the depth of its economic reform increases, a country is more likely to enter a higher phase of IMF involvement to signal to international audiences its commitment to reform and the success it has achieved.

Hypothesis 2 Non-democracies are more likely to be participants of IMF programs than democracies at a given level of economic reforms.

	0	if	$y_t^* \leq au_1$
IMF STATUS _t = \langle	1	if	$ au_1 < y_t^* \leq au_2$
	2		$y_t^* > \tau_2$
() ()			040 8 808

$$\begin{split} \mathbf{Y}_{t}^{*} &= \beta_{1} \text{REFORM}_{t-1} + \beta_{2} \text{NONDEM}_{t-1} + \beta_{3} \text{REFORM}_{t-1} \times \text{NONDEM}_{t-1} \\ &+ \beta_{4} \text{DEBT}_{t-1} + \beta_{5} \text{BOP}_{t-1} + \beta_{6} \text{RESERVES}_{t-1} + \beta_{7} \text{GDPPC}_{t-1} \\ &+ \beta_{8} \text{YRSINPROG}_{t-1} + \epsilon \end{split}$$

Independent variables	Model 1	Model 2
$\operatorname{Reform}_{t-1}$	0.224*	0.234*
	(0.057)	(0.054)
Non-democracy $t-1$	2.442*	2.008*
	(1.060)	(0.998)
$Reform \times non-democracy_{t-1}$	-0.167*	-0.147*
	(0.071)	(0.066)
Debt service $t-1$	0.007	0.008
	(0.020)	(0.019)
Balance of payments $t-1$	-3.010	-1.440
	(2.135)	(1.774)
Reserves_{t-1}	-0.086	-0.063
	(0.125)	(0.120)
GDP per capita $_{t-1}$	0.0003*	0.0003*
	(0.0001)	(0.0001)
# years in program $_{t-1}$	-0.114	-0.185*
	(0.76)	(0.075)
Accessions open $_{t-1}$		0.581
		(0.426)
Affinity to US		-1.275
		(0.675)
Threshold 1	1.475	1.321
	(0.760)	(0.726)
Threshold 2	3.581	3.438
	(0.762)	(0.717)
χ ²	117.23	187.27
Log likelihood	-145.77	-141.30
N	218	218
Correctly predicted (%)	74.1	74.3
Modal prediction (%)	49.5	49.5
Reduction of error (%)	48.2	49.1

International institutions and credible commitment (Feng and Owen 2011)

PCSEs in parentheses.

p < 0.05

DEMOCRATIC ADVANTAGE DOMESTIC CHANGE AND INTERNATIONAL COMMITMENTS

TABLE 1. Impact of partisan shifts on capital openness

Variables	Simmons variables	Simmons and DPI controls	Partisan preferences
SHIFTRIGHT			0.079
			(0.033)
BALANCE OF PAYMENTS	0.00082	0.00081	0.00083
	(0.00067)	(0.00068)	(0.00068)
RESERVES	0.54	0.54	0.54
	(0.20)	(0.20)	(0.20)
GDP GROWTH	-0.00015	-0.00014	-0.00015
	(0.00035)	(0.00035)	(0.00035)
USE IMF CREDITS	-0.076	-0.076	-0.076
	(0.026)	(0.026)	(0.026)
GNP PER CAPITA	0.000012	0.000012	0.000012
	(0.0000080)	(0.0000080)	(0.0000081
IMF SURVEILLANCE	-0.027	-0.026	-0.027
	(0.040)	(0.045)	(0.044)
REGIONAL NORM OF RESTRICTIONS	-0.0040	-0.0040	-0.0040
	(0.0018)	(0.0018)	(0.0018)
EXCHANGE RATE FLEXIBILITY	0.031	0.030	0.027
	(0.026)	(0.025)	(0.025)
TRADE DEPENDENCE	0.00094	0.00093	0.00097
	(0.00058)	(0.00060)	(0.00060)
PROPORTION OF STATES SIGNING ARTICLE VIII	-0.0056	-0.0054	-0.0053
	(0.0030)	(0.0030)	(0.0030)
MILITARY		-0.0020	-0.0039
		(0.038)	(0.038)
TERM LIMITATIONS		-0.016	-0.018
		(0.037)	(0.036)
PARLIAMENTARY		0.052	0.049
		(0.095)	(0.095)
Constant	0.029	0.029	0.027
	(0.0061)	(0.0060)	(0.0061)
N	3941	3941	3941

Notes: Robust standard errors in parentheses. Coefficients statistically significant at 0.05. Level marked in bold. DPI = Database of Political Institutions.

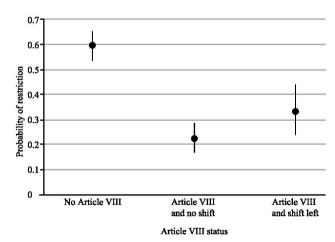


FIGURE 1. Domestic preferences and capital restrictions

TABLE 2. Partisan shifts, Article VIII commitments, and current account restrictions

Variables	Simmons	Simmons and	Article VIII and
	variables	DPI controls	preferences
ARTICLE VIII COMMITMENT	-1.53	-1.56	-1.64
	(0.24)	(0.25)	(0.25)
SHIFTLEFT SINCE ARTICLE VIII			0.54 (0.24)
EXCHANGE RATE FLEXIBILITY	-0.56	-0.57	-0.56
	(0.19)	(0.19)	(0.19)
GNP PER CAPITA	-0.000026	-0.000031	-0.000032
	(0.000020)	(0.000022)	(0.000021)
REGIONAL NORM OF RESTRICTIONS	0.0054	0.0055	0.0052
	(0.0037)	(0.0037)	(0.0037)
GDP GROWTH	-0.0076	-0.0069	-0.0064
	(0.0078)	(0.0079)	(0.0079)
RESERVES	-0.079	-0.086	-0.079
	(0.76)	(0.78)	(0.78)
BALANCE OF PAYMENTS	-0.0057	-0.0061	-0.0060
	(0.0065)	(0.0066)	(0.0065)
USE IMF CREDITS	0.92	0.93	0.93
	(0.12)	(0.18)	(0.18)
IMF SURVEILLANCE	0.46	0.50	0.50
	(0.22)	(0.22)	(0.22)
PROPORTION OF STATES	0.036	0.036	0.037
SIGNING ARTICLE VIII	(0.0096)	(0.0097)	(0.0097)
RESERVES VOLATILITY	0.069	0.043	0.052
	(0.16)	(0.16)	(0.17)
TERMS OF TRADE VOLATILITY	0.34	0.37	0.36
	(0.12)	(0.13)	(0.13)
TRADE DEPENDENCE	-0.0065	-0.0068	-0.0068
	(0.0021)	(0.0022)	(0.0020)
MILITARY		$-0.32 \\ (0.19)$	-0.33 (0.19)
TERM LIMITATIONS		-0.17 (0.22)	-0.17 (0.22)
PARLIAMENTARY		0.064 (0.20)	0.035 (0.20)
TIME SINCE LAST RESTRICTION	-1.67	-1.67	-1.67
	(0.10)	(0.10)	(0.11)
TIME SINCE LAST RESTRICTION SQUARED	0.13	0.13	0.13
	(0.016)	(0.016)	(0.017)
TIME SINCE LAST RESTRICTION CUBED	-0.0030	-0.0030	-0.0030
	(0.00058)	(0.00058)	(0.00058)
Constant	-0.058	0.0094	0.042
	(0.84)	(0.88)	(0.89)
Ν	4362	4362	4362

Notes: Robust standard errors in parentheses. Coefficients statistically significant at 0.05. Level marked in bold. DPI = Database of Political Institutions.

Partisanship and IO membership (Grieco, Gelpi, Warren 2009)

29